ON THE NOTIONS OF CUT, DIMENSION AND TRANSCENDENCE DEGREE FOR MODELS OF $Z F C$

MOHAMMAD GOLSHANI

Abstract

We define notions of generic cut, generic dimension and generic transcendence degree between models of $Z F C$ and prove some results about them.

1. INTRODUCTION

Given models $V \subseteq W$ of $Z F C$, we define the notions of generic cut, generic dimension and generic transcendence degree of W over V, and prove some results about them. We usually assume that W is a generic extension of V by a set or a class forcing notion, but some of our results work for general cases.

2. GENERIC DIMENSION AND GENERIC TRANSCENDENCE DEGREE

In this section we define the notions of generic dimension and generic transcendence degree between two models of $Z F C$, and prove some results about them. Let's start with some definitions.

Definition 2.1. Suppose that $V \subseteq W$ are models of $Z F C$ with the same ordinals.
(1) Let $X=\left\langle x_{i}: i \in I\right\rangle \in W$, where I, the set of indices, is in V. The elements of X are called mutually generic over V, if for any partition $I=I_{0} \cup I_{1}$ of I in V, $\left\langle x_{i}: i \in I_{0}\right\rangle$ is generic over $V\left[\left\langle x_{i}: i \in I_{1}\right\rangle\right]$, for some forcing notion $\mathbb{P} \in V$.
(2) The κ-generic transcendence degree of W over $V, \kappa-g \cdot \operatorname{tr} \cdot \operatorname{deg}_{V}(W)$, is defined to be $\sup \left\{|A|: A \in W\right.$ and for all $X \in[A]^{<\kappa}$, the elements of X are mutually generic over $V\}$.

[^0](3) Upward generic dimension of W over $V,[W: V]^{U}$, is defined to be $\sup \{\alpha$: there exists $a \subset-$ increasing chain $\left\langle V_{i}: i<\alpha\right\rangle$ of set generic extensions of V, where $V_{0}=V$, and each $\left.V_{i} \subseteq W\right\}$.
(4) Downward generic dimension of W over $V,[W: V]_{D}$, is defined to be $\sup \{\alpha$: there exists $a \subset-$ decreasing chain $\left\langle W_{i}: i<\alpha\right\rangle$ of grounds ${ }^{1}$ of W, where $W_{0}=W$, and each $\left.W_{i} \supseteq V\right\}$.

The next lemma is trivial.

Lemma 2.2. (1) $\kappa<\lambda \Rightarrow \kappa-g . \operatorname{tr} \cdot \operatorname{deg}_{V}(W) \geq \lambda-g . t r . d e g_{V}(W)$.
(2) $[W: V]^{U} \geq \kappa-g . t r . d e g_{V}(W)$, for κ such that $\kappa-$ g.tr.deg $g_{V}(W)=\kappa^{+}-$g.tr.deg ${ }_{V}(W)$ (such a κ exists by (1)).

Lemma 2.3. ${ }^{2}$ Let $V[G]$ be a generic extension of V by some forcing notion $\mathbb{P} \in V$, and let W be a model of $Z F C$ such that $V \subseteq W \subseteq V[G]$. Then there are $\mathbb{Q} \in V$ and $\pi: \mathbb{P} \rightarrow \mathbb{Q}$ such that:
(1) $|\mathbb{Q}| \leq|\mathbb{P}|$,
(2) $\pi[G]$ generate a filter H which is \mathbb{Q}-generic over V,
(3) $W=V[H]$.

Proof. Let $\mathbb{B}=r . o(\mathbb{P})$, and let $e: \mathbb{P} \rightarrow \mathbb{B}$ be the induced embedding. Let \bar{G} be the filter generated by $e[G]$, so that $V[G]=V[\bar{G}]$. Then for some complete subalgebra \mathbb{C} of \mathbb{B}, we have $W=V[\bar{G} \cap \mathbb{C}]$. Let $\pi: \mathbb{B} \rightarrow \mathbb{C}$ be the standard projection map, given by $\pi(b)=\min \{c \in \mathbb{C}: c \geq b\}$. Let $\mathbb{Q}=\pi[\mathbb{P}]$, and consider $\pi \upharpoonright \mathbb{P}: \mathbb{P} \rightarrow \mathbb{Q} . \mathbb{Q}$ is a dense subset of \mathbb{C}, and so it is easily seen that $\pi \upharpoonright \mathbb{P}$ and \mathbb{Q} are as required.

Corollary 2.4. Let $V[G]$ be a generic extension of V by some forcing notion $\mathbb{P} \in V$. Then $[V[G]: V]^{U},[V[G]: V]_{D} \leq\left(2^{|\mathbb{P}|}\right)^{+}$.

Question 2.5. In the above Corollary, can we replace $2^{|\mathbb{P}|}$ by $|\mathbb{P}|^{<\kappa}$, where κ is such that \mathbb{P} satisfies the $\kappa-c . c . ?$

[^1]Theorem 2.6. Let $\mathbb{P}=\operatorname{Add}(\omega, 1)$ be the Cohen forcing for adding a new Cohen real and let G be \mathbb{P}-generic over V. Then:
(1) $\omega-$ g.tr.deg $g_{V}(V[G])=2^{\aleph_{0}}$.
(2) For $\kappa>\omega$ we have $\kappa-g \cdot \operatorname{tr} \cdot \operatorname{deg}_{V}(V[G])=\aleph_{0}$.
(3) $[V[G]: V]^{U}=\aleph_{1}$.
(4) $[V[G]: V]_{D}=\aleph_{1}$.

In the proof of the above theorem, we will use the following.

Lemma 2.7. (1) Forcing with $\operatorname{Add}(\omega, 1)$ over V, can not add a generic sequence for $\operatorname{Add}\left(\omega, \omega_{1}\right)$ over V.
(2) A sequence $\left\langle x_{\alpha}: \alpha<\aleph_{1}\right\rangle$ of reals is $\operatorname{Add}\left(\omega, \omega_{1}\right)$-generic over V, iff for any countable set $I \in V, I \subseteq \omega_{1}$, the sequence $\left\langle x_{\alpha}: \alpha \in I\right\rangle$ is $\operatorname{Add}(\omega, I)$-generic over V, where $\operatorname{Add}(\omega, I)$ is the Cohen frcing for adding I-many Cohen reals indexed by I.
(3) If \mathbb{P} is a non-trivial countable forcing notion, then $\mathbb{P} \simeq \operatorname{Add}(\omega, 1)$.

A generalized version of (1) is proved in [3], (2) follows easily using the fact that the forcing notion $\operatorname{Add}\left(\omega, \omega_{1}\right)$ satisfies the countable chain condition, and (3) is well-known.

Proof. (1) : In V, fix a canonical enumeration $F: 2^{<\omega} \rightarrow \omega$ such that if $|s|<|t|$, then $F(s)<F(t)$. For any $t \in\left(2^{\omega}\right)^{V}$, define g_{t} by $g_{t}(n)=g(F(t \upharpoonright n))$. Then $\left.\left\langle g_{t}: t \in\left(2^{\omega}\right)^{V}\right)\right\rangle$ witnesses $\omega-g . \operatorname{tr} \cdot \operatorname{deg}_{V}(V[G])=2^{\aleph_{0}}$.
(2) : Let $\kappa>\aleph_{0}$. As $\mathbb{P} \simeq \operatorname{Add}(\omega, \omega)$, it is clear that $\kappa-$ g.tr.deg $(V[G]) \geq \aleph_{0}$. On the other hand, if $\kappa-g . \operatorname{tr} \cdot \operatorname{deg}_{V}(V[G])>\aleph_{0}$, then let $\left\langle x_{\alpha}: \alpha<\aleph_{1}\right\rangle \in V[G]$ be such that for any countable set $I \in V, I \subseteq \omega_{1}$, the sequence $\left\langle x_{\alpha}: \alpha \in I\right\rangle$ is a set of mutually generics over V. By Lemmas 2.3 and $2.7(3)$, each x_{α} can be viewed as a Cohen real, so it follows from Lemma 2.7(2) that the sequence $\left\langle x_{\alpha}: \alpha<\aleph_{1}\right\rangle$ is $\operatorname{Add}\left(\omega, \omega_{1}\right)$-generic over V, which contradicts Lemma 2.7(1).
(3) : Given any $\alpha<\aleph_{1}$, we have $\mathbb{P} \simeq \operatorname{Add}(\omega, \alpha)$, so let $\left\langle x_{\beta}: \beta<\alpha\right\rangle \in V[G]$ be $\operatorname{Add}(\omega, \alpha)$ generic over V, and define $V_{\beta}=V\left[\left\langle x_{i}: i<\beta\right\rangle\right]$, for $\beta \leq \alpha$ Then $V=V_{0} \subset V_{1} \subset \cdots \subset V_{\alpha}$ is an increasing chain of length α. So $[V[G]: V]^{U} \geq \alpha$.

Now assume on the contrary that, we have an increasing chain $V=V_{0} \subset V_{1} \subset \cdots \subset$ $V_{\alpha} \cdots \subseteq V[G], \alpha<\aleph_{1}$, of generic extensions of V. For each $\alpha<\aleph_{1}$, set $V_{\alpha}=V\left[G_{\alpha}\right]$, where
$G_{\alpha} \in V[G]$ is generic over some forcing notion in V. Again using Lemmas 2.3 and 2.7(3), we can assume that each $G_{\alpha+1}$ is some Cohen real $x_{\alpha+1}$ over V_{α}. Thus we have a sequence $\left\langle x_{\alpha}: \alpha<\aleph_{1}\right\rangle$ of reals, each x_{α} is Cohen generic over $V\left[\left\langle x_{\beta}: \beta<\alpha\right\rangle\right]$. By Lemma 2.7(2), the sequence $\left\langle x_{\alpha}: \alpha<\aleph_{1}\right\rangle$ is $\operatorname{Add}\left(\omega, \omega_{1}\right)$-generic over V, which contradicts Lemma 2.7(1).
(4) can be proved similarly.

Using forcing notions producing minimal generic extensions, we can prove the following.

Theorem 2.8. For any $0<n<\omega$, there is a generic extension $V[G]$ of the V in which $[V[G]: V]^{U}=[V[G]: V]_{D}=n$.
V. Kanovei noticed the following:

Theorem 2.9. There is a generic extension $L[G]$ of L in which $[L[G]: L]^{U}=\omega+1$.

It follows from the results in [5] that:

Theorem 2.10. Given any $\alpha \leq \omega_{1}$, there exists a cofinality preserving generic extension $L[G]$ of L in which $[L[G]: L]_{D}=\alpha+1$.

Question 2.11. Given cardinals $\kappa_{0} \geq \kappa_{1} \geq \ldots \geq \kappa_{n}$, is there a forcing extension $V[G]$ of V, in which $\aleph_{i}-g . \operatorname{tr} \cdot \operatorname{deg}_{V}(V[G])=\kappa_{i}, i=0, \ldots, n$ and $\lambda-g . \operatorname{tr} \cdot \operatorname{deg}_{V}(V[G])=\kappa_{n}$, for all $\lambda \geq \aleph_{n} ?$

Remark 2.12. Force with $\mathbb{P}=\prod_{i=0}^{n} \operatorname{Add}\left(\aleph_{i}, \kappa_{i}\right)$, and let G be \mathbb{P}-generic over V. Then for all $0 \leq i \leq n, \aleph_{i}-g . \operatorname{tr} \cdot \operatorname{deg}_{V}(V[G]) \geq \kappa_{i}$.

Question 2.13. Let $\alpha_{0}, \alpha_{1} \leq \lambda$, where α_{0}, α_{1} are ordinals and λ is a cardinal. Is there a generic extension $V[G]$ of V (possibly by a class forcing notion) in which $[V[G]: V]^{U}=$ $\alpha_{0},[V[G]: V]_{D}=\alpha_{1}$ and the number of intermediate submodels of V and $V[G]$ is λ ?

Using results of [1] and the fact that 0^{\sharp} can not be produced by set forcing, we have:

Theorem 2.14. For all $\kappa, \kappa-$ g.tr.deg $g_{L}\left(L\left[0^{\sharp}\right]\right)=\infty$. Also we have $\left[L\left[0^{\sharp}\right]: L\right]^{U}=\infty$ and $\left[L\left[0^{\sharp}\right]: L\right]_{D}=0$.

3. Some non-Absoluteness Results

In this section we present some results which say that the notions of generic dimension and generic transcendence degree are not absolute between different models of $Z F C$.

Theorem 3.1. There exists a generic extension V of L, such that if R is $\operatorname{Add}(\omega, 1)$-generic over V, then:
(1) $\aleph_{1}-g \cdot t r \cdot \operatorname{deg}_{V}(V[R])=\aleph_{0}$,
(2) $\aleph_{1}-g \cdot \operatorname{tr} \cdot \operatorname{deg}_{L}(V[R]) \geq \aleph_{1}$.

Proof. By [2], there is a cofinality preserving generic extension V of L, such that adding a Cohen real R over V, adds a generic filter for $\operatorname{Add}\left(\omega, \omega_{1}\right)$ over L.

Now (1) follows from Theorem 2.6(2), and (2) follows from the fact that there exists a sequence $\left\langle x_{\alpha}: \alpha<\aleph_{1}\right\rangle$ of reals, which is $\operatorname{Add}\left(\omega, \omega_{1}\right)$-generic over L.

Theorem 3.2. Assume 0^{\sharp} exists, κ is a regular cardinal in L, and let $\mathbb{P}=\operatorname{Sacks}(\kappa, 1)_{L}$, the forcing for producing a minimal extension of L by adding a new subset of κ. Let G be \mathbb{P}-generic over V. Then:
(1) $[L[G]: L]^{U}=[L[G]: L]_{D}=1$,
(2) $[V[G]: V]^{U},[V[G]: V]_{D} \geq \kappa$.

Proof. (1) is trivial, as forcing with \mathbb{P} over L produces a minimal generic extension of L. (2) Follows from a result of Stanley [7], which says that forcing with \mathbb{P} over V collapses κ into ω.

4. GENERIC CUT FOR PAIRS OF MODELS OF $Z F C$

In this section, we define the notion of generic cut between two models of $Z F C$, and prove some results about it. Let's start with the main definition.

Definition 4.1. Suppose that $V \subseteq W$ are models of $Z F C$ with the same ordinals and α, β are ordinals. An $(\alpha, \beta)-$ generic cut of (V, W), is a pair $\langle\vec{V}, \vec{W}\rangle$, where
(1) $\vec{V}=\left\langle V_{i}: i<\alpha\right\rangle$ is a \subset-increasing chain of generic extensions of V, with $V_{0}=V$,
(2) $\vec{W}=\left\langle W_{j}: j<\beta\right\rangle$ is a \subset-decreasing chain of grounds of W, with $W_{0}=W$,
(3) $\forall i<\alpha, j<\beta, V_{i} \subset W_{j}$,
(4) There is no inner model $V \subseteq M \subseteq W$ of $Z F C$ such that $\forall i<\alpha, j<\beta, V_{i} \subset M \subset$ W_{j}.

Note that if W is a set generic extension of V, then any V_{i} is a ground of W and each W_{j} is a generic extension of V.

Lemma 4.2. Suppose that $V \subseteq W$ are models of $Z F C$ and there exists an (α, β)-generic cut of (V, W). Then $\alpha \leq[W: V]^{U}$ and $\beta \leq[W: V]_{D}$.

The next theorem shows that there are no generic cuts in the extension by Cohen forcing.

Theorem 4.3. Let $\mathbb{P}=\operatorname{Add}(\omega, 1)$ be the Cohen forcing for adding a new Cohen real and let G be \mathbb{P}-generic over V. Then there exists no (α, β)-generic cut of $(V, V[G])$.

Proof. Assume towards a contradiction that (\vec{V}, \vec{W}) witnesses an (α, β)-generic cut of $(V, V[G])$.
We consider several cases:
(1) At least one of α or β is uncountable. Suppose for example that $\alpha \geq \aleph_{1}$. It follows that $\left\langle V_{i}: i<\aleph_{1}\right\rangle$ is a \subset-increasing chain of generic extensions of V, which are included in $V[G]$, which contradicts Theorem 2.6(3). So from now on we assume that both α, β are countable.
(2) Both of $\alpha=\alpha^{-}+1$ and $\beta=\beta^{-}+1$ are successor ordinals. Then we have $V \subseteq V_{\alpha^{-}} \subset$ $W_{\beta^{-}} \subseteq V[G]$, and there are no inner models M of $V[G]$ with $V_{\alpha^{-}} \subset M \subset W_{\beta^{-}}$, which is clearly impossible (in fact there should be $2^{\aleph_{0}}$ such M 's).
(3) Both of $\alpha, \beta<\aleph_{1}$ are limit ordinals. We can imagine each $V_{i}, i<\alpha$, is of the form $V_{i}=V\left[a_{i}\right]$, for some Cohen real a_{i} and similarly each $W_{j}, j<\beta$, is of the form $W_{j}=V\left[b_{j}\right]$, for some Cohen real b_{j}. Let $a \in V[G]$ be a Cohen real over V, coding all of a_{i} 's, $i<\alpha$. Then for all $i<\alpha, j<\beta, V_{i} \subset V[a] \subset W_{j}$, a contradiction.
(4) One of α or β is a limit ordinal >0 and the other one is a successor ordinal. Let's assume that α is a limit ordinal and $\beta=\beta^{-}+1$ is a successor ordinal. As $c f(\alpha)=\omega$, we can just consider the case where $\alpha=\omega$. Then for all $i<\omega$ we have $V_{i} \subset W_{\beta^{-}}$. We can assume that each V_{i} is of the form $V_{i}=V\left[a_{i}\right]$, for some Cohen real a_{i}, and that $W_{\beta^{-}}=V[b]$, for some Cohen real b. Using a fix bijection $f: \omega \leftrightarrow \omega \times \omega, f \in V$, we can imagine b as an ω-sequence $\left\langle b_{i}: i<\omega\right\rangle$ of reals which is $\operatorname{Add}(\omega, \omega)$-generic over

ON THE NOTIONS OF CUT, DIMENSION AND TRANSCENDENCE DEGREE FOR MODELS OF ZFC7 V, so that $W_{\beta^{-}}=V\left[\left\langle b_{i}: i<\omega\right\rangle\right]$. We can further suppose that each b_{i} codes a_{i} (i.e., $\left.a_{i} \in V\left[b_{i}\right]\right)$ Let us now define a new sequence $\left\langle c_{i}: i<\omega\right\rangle$ of reals in $V\left[\left\langle b_{i}: i<\omega\right\rangle\right]$, so that $c_{i}(0)=0$, and $c_{i} \upharpoonright[1, \omega)=b_{i} \upharpoonright[1, \omega)$. Finally let $M=V\left[\left\langle c_{i}: i<\omega\right\rangle\right]$. It is clear that each $V_{i} \subset M$. But also $M \subset W_{\beta^{-}}$, as the real $t \in W_{\beta^{-}}$defined by $t(i)=b_{i}(0)$ is not in M (by a genericity argument). We get a contradiction.
(5) One of α or β is 0 and the other one is a limit or a successor ordinal. Then as above we can get a contradiction.

Theorem 4.4. Assume α, β are ordinals. Then there exists a generic extension $V[G]$ of V, such that there is an $(\alpha+1, \beta+1)$-generic cut of $(V, V[G])$,

Proof. Let $\mathbb{P}_{1}=\operatorname{Add}(\omega, \alpha)$, and let $G_{1}=\left\langle a_{i}: i<\alpha\right\rangle$ be a generic filter over V. Force over $V\left[G_{1}\right]$ by any forcing notion which produces a minimal extension $V\left[G_{1}\right]\left[G_{2}\right]$ of $V\left[G_{1}\right]$. Finally force over $V\left[G_{1}\right]\left[G_{2}\right]$ by $\mathbb{P}_{3}=\operatorname{Add}(\omega, \beta)$, and let $G_{3}=\left\langle b_{j}: j<\beta\right\rangle$ be a generic filter over $V\left[G_{1}\right]\left[G_{2}\right]$. Let

- $\vec{V}=\left\langle V_{i}: i \leq \alpha\right\rangle$, where $V_{i}=V\left[\left\langle a_{\xi}: \xi<i\right\rangle\right]$ for $i<\alpha$, and $V_{\alpha}=V\left[G_{1}\right]$,
- $\vec{W}=\left\langle W_{j}: j \leq \beta\right\rangle$, where $W_{j}=V\left[G_{1}\right]\left[G_{2}\right]\left[\left\langle b_{\xi}: j \leq \xi<\beta\right\rangle\right]$ for $j<\beta$, and $W_{\beta}=V\left[G_{1}\right]\left[G_{2}\right]$.

Then (\vec{V}, \vec{W}) witnesses an $(\alpha+1, \beta+1)$-generic cut of $(V, V[G])$.

Remark 4.5. If V satisfies $G C H$, then we can find $V[G]$, so that it also satisfies the $G C H$; it suffices to work with $\operatorname{Add}\left(|\alpha|^{+}, \alpha\right)$ and $\operatorname{Add}\left(|\beta|^{+}, \beta\right)$ instead of $\operatorname{Add}(\omega, \alpha)$ and $\operatorname{Add}(\omega, \beta)$ respectively.

Theorem 4.6. Assume λ_{1}, λ_{2} are infinite regular cardinals and κ is a measurable cardinal above them. Then in a generic extension $V[G]$ of V, there exists $a\left(\lambda_{1}, \lambda_{2}\right)$-generic cut of $(V, V[G])$.

Proof. By [6], we can find a generic extension $V\left[G_{1}\right]$ of V, by a forcing of size $<\kappa$, such that in $V\left[G_{1}\right]$, there exists a $\left(\lambda_{1}, \lambda_{2}\right)$-gap of $P(\omega) /$ fin. κ remains measurable in $V\left[G_{1}\right]$, so let U be a normal measure on κ in $V\left[G_{1}\right]$, and force with the corresponding Prikry forcing \mathbb{P}_{U}, and let G_{2} be \mathbb{P}_{U}-generic over $V\left[G_{1}\right]$. Let $V[G]=V\left[G_{1}\right]\left[G_{2}\right]$. By [4],

$$
\left(\left\{M: M \text { is a model of } Z F C, V\left[G_{1}\right] \subseteq M \subseteq V[G]\right\}, \subseteq\right) \cong\left(P(\omega) / \text { fin }, \subseteq^{*}\right)
$$

Now the result should be clear, as a $\left(\lambda_{1}, \lambda_{2}\right)$-gap in $P(\omega) /$ fin, produces the corresponding $\left(\lambda_{1}, \lambda_{2}\right)$-generic cut (\vec{V}, \vec{W}) of $\left(V\left[G_{1}\right], V[G]\right)$, which in turn produces the same $\left(\lambda_{1}, \lambda_{2}\right)$-generic cut of $(V, V[G])$ (by adding V at the beginning of \vec{V}).

References

[1] Friedman, Sy-David; Ondrejovic, Pavel; The internal consistency of Easton's theorem. Ann. Pure Appl. Logic 156 (2008), no. 2-3, 259-269.
[2] Gitik, Moti; Golshani, Mohammad; Adding a lot of Cohen reals by adding a few. I. Trans. Amer. Math. Soc. 367 (2015), no. 1, 209-229.
[3] Gitik, Moti; Golshani, Mohammad; Adding a lot of Cohen reals by adding a few. II. submitted.
[4] Gitik, Moti, Kanovei, Vladimir; Koepke, Peter; Intermediate submodels of Prikry generic extensions, preprint.
[5] Groszek, Marcia; ω_{1}^{*} as an initial segment of the c-degrees. J. Symbolic Logic 59 (1994), no. 3, 956-976.
[6] Spasojević, Zoran; Some results on gaps, Topology Appl. 56 (1994), no. 2, 129-139.
[7] Stanley, M. C.; Forcing disabled. J. Symbolic Logic 57 (1992), no. 4, 1153-1175.
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran-Iran.

E-mail address: golshani.m@gmail.com

[^0]: The author's research has been supported by a grant from IPM (No. 91030417).
 He also wishes to thank M. Asgharzadeh for his useful comments about notions of dimension and transcendence degree in algebra.

[^1]: ${ }^{1}$ Recall that V is a ground of W, if W is a set generic extension of V by some forcing notion in V.
 ${ }^{2}$ We thank Monroe Eskew for bringing this lemma to our attention.

