
Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Singular Cardinals Problem

Mohammad Golshani

IPM, Tehran-Iran

February 25, 2015



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Table of Contents

1 Introductory notes

2 Inner models: Consistency of GCH

3 Forcing

4 Power function on regular cardinals

5 Singular cardinals problem

6 Large cardinals

7 Forcing and large cardinals

8 Core model theory

9 Global failure of GCH

10 Coding into a real

11 PCF theory: getting ZFC results



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

ZFC axioms

The underlying theory we consider is ZFC .
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ZFC axioms

The underlying theory we consider is ZFC .

ZFC =Ordinary Mathematics.
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ZFC axioms

The underlying theory we consider is ZFC :

ZFC =Ordinary Mathematics.

But most of the talk goes much beyond ZFC !!!.
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The power set function

Consider Cantor’s continuum hypothesis.



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.
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The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.

It asks: How many real numbers are there?
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The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.

It asks: How many real numbers are there?

Cantor Proved:
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The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.

It asks: How many real numbers are there?

Cantor Proved:

1 |R| = 2ℵ0 ,
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The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.

It asks: How many real numbers are there?

Cantor Proved:

1 |R| = 2ℵ0 ,
2 2ℵ0 > ℵ0.
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The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.

It asks: How many real numbers are there?

Cantor Proved:

1 |R| = 2ℵ0 ,
2 2ℵ0 > ℵ0.

CH says there are no cardinals between ℵ0 and 2ℵ0 , i.e.,
2ℵ0 = ℵ1.
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The power set function

Consider Cantor’s continuum hypothesis.

It was introduced by Cantor in 1878.

It asks: How many real numbers are there?

Cantor Proved:

1 |R| = 2ℵ0 ,
2 2ℵ0 > ℵ0.

CH says there are no cardinals between ℵ0 and 2ℵ0 , i.e.,
2ℵ0 = ℵ1.
The continuum problem appeared as the first problem
in Hilbert’s problem list in 1900.
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The power set function

There is no reason to restrict ourselves to ℵ0.
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The power set function

There is no reason to restrict ourselves to ℵ0.
Given any infinite cardinal κ, we can ask the same
question for 2κ.
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The power set function

There is no reason to restrict ourselves to ℵ0.
Given any infinite cardinal κ, we can ask the same
question for 2κ.
Then the generalized Continuum hypothesis (GCH) says
that:

∀κ, 2κ = κ+.
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The power set function

There is no reason to restrict ourselves to ℵ0.
Given any infinite cardinal κ, we can ask the same
question for 2κ.
Then the generalized Continuum hypothesis (GCH)
says that:

∀κ, 2κ = κ+.
GCH first appeared in some works of Peirce, Hausdorff,
Tarski and Sierpinski.
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The power set function

The power set (or the continuum) function is defined by

κ 7→ 2κ.
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The power set function

The power set (or the continuum) function is defined by

κ 7→ 2κ.
The basic problem is to determine the behavior of the
power function.
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The power set function

The power set (or the continuum) function is defined by

κ 7→ 2κ.
The basic problem is to determine the behavior of the
power function.

Some related questions are:
( Continuum problem - Hilbert’s first problem): Is CH
(the assertion 2ℵ0 = ℵ1) true?
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The power set function

The power set (or the continuum) function is defined by

κ 7→ 2κ.
The basic problem is to determine the behavior of the
power function.

Some related questions are:
( Continuum problem - Hilbert’s first problem): Is CH
(the assertion: 2ℵ0 = ℵ1) true?

( Generalized continuum problem): Is GCH (the
assertion: for all infinite cardinals κ, 2κ = κ+) true?
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Some topics that appear in this talk

Some topics that appear during the talk:
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Some topics that appear in this talk

Some topics that appear during the talk:

1 Inner models,
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Some topics that appear in this talk

Some topics that appear during the talk:

1 Inner models,

2 Forcing,
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Some topics that appear in this talk

Some topics that appear during the talk:

1 Inner models,

2 Forcing,

3 Large cardinals,
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Some topics that appear in this talk

Some topics that appear during the talk:

1 Inner models,

2 Forcing,

3 Large cardinals,

4 Core model theory
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Some topics that appear in this talk

Some topics that appear during the talk:

1 Inner models,

2 Forcing,

3 Large cardinals,

4 Core model theory,

5 PCF theory
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Inner models

An inner model is a definable class M such that:
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Inner models

An inner model is a definable class M such that:

M is transitive, i.e., x ∈ M ⇒ x ⊆ M ,
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Inner models

An inner model is a definable class M such that:

M is transitive, i.e., x ∈ M ⇒ x ⊆ M ,
M contains all ordinals,
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Inner models

An inner model is a definable class M such that:

M is transitive, i.e., x ∈ M ⇒ x ⊆ M ,
M contains all ordinals,

M |= ZFC .
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Inner models

We are just interested in those inner models which are
constructed by some law.
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Inner models

We are just interested in those inner models which are
constructed by some law.

It will allow us to construct the required inner model in
a transfinite way.
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Inner models

We are just interested in those inner models which are
constructed by some law.

It will allow us to construct the required inner model in
a transfinite way.

Passing from one level to the next level, we do
construct it in a control and unified way.
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Inner models

We are just interested in those inner models which are
constructed by some law.

It will allow us to construct the required inner model in
a transfinite way.

Passing from one level to the next level, we do
construct it in a control and unified way.

It will allow us to be able to control sets we are adding
in each step, and so control the size of power sets.
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Consistency of GCH

The theory of inner models was introduced by Godel.
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Consistency of GCH

The theory of inner models was introduced by Godel.

He used the method to construct a model L of
ZFC + GCH, thus showing that GCH is consistent with
ZFC .
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Consistency of GCH

The theory of inner models was introduced by Godel.

He used the method to construct a model L of
ZFC + GCH, thus showing that GCH is consistent with
ZFC .

Thus adding GCH to mathematics does not lead to a
contradiction.
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Consistency of GCH

The theory of inner models was introduced by Godel.

He used the method to construct a model L of
ZFC + GCH, thus showing that GCH is consistent with
ZFC .

Thus adding GCH to mathematics does not lead to a
contradiction.

But it does not say that GCH is provable in
mathematics!.
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Forcing

The method of forcing was introduced by Paul Cohen in
1963.
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Forcing

The method of forcing was introduced by Paul Cohen in
1963.

He used the method to show that 2ℵ0 = ℵ2, and hence
¬CH, is consistent with ZFC .
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Forcing

The method of forcing was introduced by Paul Cohen in
1963.

He used the method to show that 2ℵ0 = ℵ2, and hence
¬CH, is consistent with ZFC .

The method was extended by Robert Solovay (in the
same year) to show that 2ℵ0 = κ, for any cardinal κ
with cf (κ) > ℵ0, is consistent with ZFC .
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How does forcing work

1 We start by picking a partially ordered set P,
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How does forcing work

1 We start by picking a partially ordered set P,

2 We assign a subset G of it, called P-generic filter over
V ,
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How does forcing work

1 We start by picking a partially ordered set P,

2 We assign a subset G of it, called P-generic filter over
V ,

3 G is not necessarily in V !!!
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How does forcing work

1 We start by picking a partially ordered set P,

2 We assign a subset G of it, called P-generic filter over
V ,

3 G is not necessarily in V !!!

4 We build an extension V [G ] of V which is still a
transitive model of ZFC with the same ordinals as V .
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How does forcing work

1 We start by picking a partially ordered set P,

2 We assign a subset G of it, called P-generic filter over
V ,

3 G is not necessarily in V !!!

4 We build an extension V [G ] of V which is still a
transitive model of ZFC with the same ordinals as V .

5 V [G ] includes V and has G as a new element.
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How does forcing work

1 We start by picking a partially ordered set P,

2 We assign a subset G of it, called P-generic filter over
V ,

3 G is not necessarily in V !!!

4 We build an extension V [G ] of V which is still a
transitive model of ZFC with the same ordinals as V .

5 V [G ] includes V and has G as a new element.

6 V [G ] is the smallest transitive model of ZFC with the
above properties.
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Easton’s theorem

Recall that:



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Easton’s theorem

Recall that:

κ < λ ⇒ 2κ ≤ 2λ,
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Easton’s theorem

Recall that:

κ < λ ⇒ 2κ ≤ 2λ,
∀κ, cf (2κ) > κ.
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Easton’s theorem

Recall that:

κ < λ ⇒ 2κ ≤ 2λ,
∀κ, cf (2κ) > κ.

Easton’s theorem (1970) says that these two properties are
all things we can prove in ZFC about the power function on
regular cardinals !∞



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Easton’s theorem

Recall that:

κ < λ ⇒ 2κ ≤ 2λ,
∀κ, cf (2κ) > κ.

Thus mathematics says nothing (except two trivial facts)
about power of regular cardinals.
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Easton’s theorem

Recall that:

κ < λ ⇒ 2κ ≤ 2λ,
∀κ, cf (2κ) > κ.

To prove his theorem, Easton created the theory of class
forcing, where the poset is not necessarily a set.
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Easton’s theorem

Recall that:

κ < λ ⇒ 2κ ≤ 2λ,
∀κ, cf (2κ) > κ.

The situation in this case is much more complicated, as it is
not even clear if V [G ] |= ZFC .
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Singular cardinals hypothesis (SCH)

In Easton type models, the power function on singular
cardinals is determined easily:
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Singular cardinals hypothesis (SCH)

In Easton type models, the power function on singular
cardinals is determined easily:

For κ singular, 2κ is the least cardinal such that:
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Singular cardinals hypothesis (SCH)

In Easton type models, the power function on singular
cardinals is determined easily:

For κ singular, 2κ is the least cardinal such that:

1 ∀λ < κ, 2λ ≤ 2κ ,
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Singular cardinals hypothesis (SCH)

In Easton type models, the power function on singular
cardinals is determined easily:

For κ singular, 2κ is the least cardinal such that:

1 ∀λ < κ, 2λ ≤ 2κ ,
2 cf (2κ) > κ.
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Singular cardinals hypothesis (SCH)

In Easton type models, the power function on singular
cardinals is determined easily:

For κ singular, 2κ is the least cardinal such that:

1 ∀λ < κ, 2λ ≤ 2κ ,
2 cf (2κ) > κ.

Call this assumption: singular cardinals hypothesis
(SCH).
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Singular cardinals hypothesis (SCH)

In Easton type models, the power function on singular
cardinals is determined easily:

For κ singular, 2κ is the least cardinal such that:

1 ∀λ < κ, 2λ ≤ 2κ ,
2 cf (2κ) > κ.

Call this assumption: singular cardinals hypothesis
(SCH).

Thus if SCH were a theorem of ZFC , then the power
function would be determined by knowing its behavior
on all regular cardinals and the cofinality function.
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Singular cardinals hypothesis (SCH)

Gitik-Magidor: Fortunately, for the career of the
authors, but probably unfortunately for mathematics,
the situation turned out to be much more complicated.
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Singular cardinals hypothesis (SCH)

Gitik-Magidor: Fortunately, for the career of the
authors, but probably unfortunately for mathematics,
the situation turned out to be much more complicated.

In order to go further, we need to introduce large
cardinals!
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A cardinal κ is inaccessible if
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Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,
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Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,

2 κ is a limit cardinals,
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Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,

2 κ is a limit cardinals,

3 λ < κ ⇒ 2λ < κ.
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Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,

2 κ is a limit cardinals,

3 λ < κ ⇒ 2λ < κ.

The existence of an inaccessible cardinal is not provable
in ZFC !
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Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,

2 κ is a limit cardinals,

3 λ < κ ⇒ 2λ < κ.

The existence of an inaccessible cardinal is not provable
in ZFC !

Even we can not prove their existence is consistent with
ZFC !!



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,

2 κ is a limit cardinals,

3 λ < κ ⇒ 2λ < κ.

The existence of an inaccessible cardinal is not provable
in ZFC !

Even we can not prove their existence is consistent with
ZFC !!

But we use them in the arguments, and in fact we use
much bigger large cardinals!!!
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Large cardinals

A cardinal κ is inaccessible if

1 κ is regular and uncountable,

2 κ is a limit cardinals,

3 λ < κ ⇒ 2λ < κ.

The existence of an inaccessible cardinal is not provable
in ZFC !

Even we can not prove their existence is consistent with
ZFC !!

But we use them in the arguments, and in fact we use
much bigger large cardinals!!!

We also show their existence is necessary for the
results!!!!
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Large cardinals

Some large cardinals that appear in the arguments:
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Large cardinals

Some large cardinals that appear in the arguments:

1 inaccessible cardinals,
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Large cardinals

Some large cardinals that appear in the arguments:

1 Inaccessible cardinals.

2 Measurable cardinals.
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Large cardinals

Some large cardinals that appear in the arguments:

1 Inaccessible cardinals.

2 Measurable cardinals.

3 Measurable cardinals of Mitchell order, say, o(κ) = λ,
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Large cardinals

Some large cardinals that appear in the arguments:

1 Inaccessible cardinals.

2 Measurable cardinals.

3 Measurable cardinals of Mitchell order, say, o(κ) = λ,
4 Strong cardinals.
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Large cardinals

Some large cardinals that appear in the arguments:

1 Inaccessible cardinals.

2 Measurable cardinals.

3 Measurable cardinals of Mitchell order, say, o(κ) = λ,
4 Strong cardinals.

5 Supercompact cardinals.
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Large cardinals

Some large cardinals that appear in the arguments:

1 Inaccessible cardinals.

2 Measurable cardinals.

3 Measurable cardinals of Mitchell order, say, o(κ) = λ,
4 Strong cardinals.

5 Supercompact cardinals.

The existence of a large cardinal of type (i), implies the
consistency of the existence of a proper class of cardinals of
type (i − 1).
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Consistent failure of SCH

Using large cardinals, we can violate SCH:
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Consistent failure of SCH

Using large cardinals, we can violate SCH:

1 (Silver-1970) Using a supercompact cardinal,
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Consistent failure of SCH

Using large cardinals, we can violate SCH:

1 (Silver-1970) Using a supercompact cardinal,

2 (Woodin-Early 1980) Using a strong cardinal,
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Consistent failure of SCH

Using large cardinals, we can violate SCH:

1 (Silver-1970) Using a supercompact cardinal,

2 (Woodin-Early 1980) Using a strong cardinal,

3 (Gitik-1989) Using a measurable cardinal κ with
o(κ) = κ++.
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In all of the above models:
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Consistent failure of SCH

In all of the above models:

1 The cardinal κ in which SCH fails is very big, for
example it is a limit of measurable cardinals,
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Consistent failure of SCH

In all of the above models:

1 The cardinal κ in which SCH fails is very big, for
example it is a limit of measurable cardinals,

2 There are many cardinals below κ in which GCH fails.
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Consistent failure of SCH

In all of the above models:

1 The cardinal κ in which SCH fails is very big, for
example it is a limit of measurable cardinals,

2 There are many cardinals below κ in which GCH fails.

So we can ask:
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Consistent failure of SCH

In all of the above models:

1 The cardinal κ in which SCH fails is very big, for
example it is a limit of measurable cardinals,

2 There are many cardinals below κ in which GCH fails.

So we can ask:

Can κ be small, say ℵω?
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Consistent failure of SCH

In all of the above models:

1 The cardinal κ in which SCH fails is very big, for
example it is a limit of measurable cardinals,

2 There are many cardinals below κ in which GCH fails.

So we can ask:

Can κ be small, say ℵω?

Can GCH first fail at a singular cardinal κ?
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Consistent failure of SCH

(Silver-1974) GCH can not first fail at a singular
cardinal of uncountable cofinality (the first unexpected
ZFC result),
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Consistent failure of SCH

(Silver-1974) GCH can not first fail at a singular
cardinal of uncountable cofinality (the first unexpected
ZFC result),

(Magidor-1977) SCH can fail at ℵω (with
2ℵω < ℵω+ω) (using one supercompact cardinal),
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Consistent failure of SCH

(Silver-1974) GCH can not first fail at a singular
cardinal of uncountable cofinality (the first unexpected
ZFC result),

(Magidor-1977) SCH can fail at ℵω (with
2ℵω < ℵω+ω) (using one supercompact cardinal),

(Magidor-1977) GCH can first fail at ℵω (with
2ℵω = ℵω+2) (using large cardinals much stronger that
supercompact cardinals),
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Consistent failure of SCH

(Silver-1974) GCH can not first fail at a singular
cardinal of uncountable cofinality (the first unexpected
ZFC result),

(Magidor-1977) SCH can fail at ℵω (with
2ℵω < ℵω+ω) (using one supercompact cardinal),

(Magidor-1977) GCH can first fail at ℵω (with
2ℵω = ℵω+2) (using large cardinals much stronger that
supercompact cardinals),

(Shelah-1983) SCH can fail at ℵω (with 2ℵω < ℵω1)
(using one supercompact cardinal),



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Consistent failure of SCH

(Silver-1974) GCH can not first fail at a singular
cardinal of uncountable cofinality (the first unexpected
ZFC result),

(Magidor-1977) SCH can fail at ℵω (with
2ℵω < ℵω+ω) (using one supercompact cardinal),

(Magidor-1977) GCH can first fail at ℵω (with
2ℵω = ℵω+2)(using large cardinals much stronger that
supercompact cardinals),

(Shelah-1983) SCH can fail at ℵω (with 2ℵω < ℵω1)
(using one supercompact cardinal),

(Gitik-Magidor-1992 ) GCH can first fail at ℵω (with
2ℵω = ℵα+1, for any α < ω1)(using a strong cardinal).
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Do we need large cardinals to get the failure of
SCH?

Do we need large cardinals to get the failure of SCH?
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Do we need large cardinals to get the failure of
SCH?

Do we need large cardinals to get the failure of SCH?

If yes, how large they should be?
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Do we need large cardinals to get the failure of
SCH?

Do we need large cardinals to get the failure of SCH?

If yes, how large they should be?

And how can we prove this?
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Core model theory comes into play!
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Core models

Core model theory comes into play!

A core model K for a large cardinal is an inner model
such that:
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Core models

Core model theory comes into play!

A core model K for a large cardinal is an inner model
such that:

1 K is an L-like model,
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Core models

Core model theory comes into play!

A core model K for a large cardinal is an inner model
such that:

1 K is an L-like model,
2 K attempts to approximate that large cardinal,
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Core models

Core model theory comes into play!

A core model K for a large cardinal is an inner model
such that:

1 K is an L-like model,
2 K attempts to approximate that large cardinal,
3 If that large cardinal does not exist, then K

approximates V nicely.
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Core models

Core model theory comes into play!

A core model K for a large cardinal is an inner model
such that:

1 K is an L-like model,
2 K attempts to approximate that large cardinal,
3 If that large cardinal does not exist, then K

approximates V nicely.

Core models can be used to show that large cardinals
are needed to get the failure of SCH!!!
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The first result is Jensen’s covering lemma, which says:
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Core models

The first result is Jensen’s covering lemma, which says:

If 0] does not exist, then V is close to L, Godel’s
universe.
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Core models

The first result is Jensen’s covering lemma, which says:

If 0] does not exist, then V is close to L, Godel’s
universe.

It follows immediately that if SCH fails, then 0] exists
(and hence there is a proper class of inaccessible
cardinals in L).



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Core models

The first result is Jensen’s covering lemma, which says:

If 0] does not exist, then V is close to L, Godel’s
universe.

It follows immediately that if SCH fails, then 0] exists
(and hence there is a proper class of inaccessible
cardinals in L).

The work of Dodd-Jensen has started the theory of core
models.
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Core models

The first result is Jensen’s covering lemma, which says:

If 0] does not exist, then V is close to L, Godel’s
universe.

It follows immediately that if SCH fails, then 0] exists
(and hence there is a proper class of inaccessible
cardinals in L).

The work of Dodd-Jensen has started the theory of core
models.

In particular they showed that if SCH fails, then there is
an inner model with a measurable cardinal.
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Core models

The most important subsequent results are due to
Jensen, Dodd, Gitik and Mitchell.
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Core models

The most important subsequent results are due to
Jensen, Dodd, Gitik and Mitchell.

Theorem(Gitik-Woodin): The following are
equiconsistent:
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Core models

The most important subsequent results are due to
Jensen, Dodd, Gitik and Mitchell.

Theorem(Gitik-Woodin): The following are
equiconsistent:

1 SCH fails,
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Core models

The most important subsequent results are due to
Jensen, Dodd, Gitik and Mitchell.

Theorem(Gitik-Woodin): The following are
equiconsistent:

1 SCH fails,
2 SCH fails at ℵω,
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Core models

The most important subsequent results are due to
Jensen, Dodd, Gitik and Mitchell.

Theorem(Gitik-Woodin): The following are
equiconsistent:

1 SCH fails,
2 SCH fails at ℵω,
3 GCH first fails at ℵω,
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Core models

The most important subsequent results are due to
Jensen, Dodd, Gitik and Mitchell.

Theorem(Gitik-Woodin): The following are
equiconsistent:

1 SCH fails,
2 SCH fails at ℵω,
3 GCH first fails at ℵω,
4 There exists a measurable cardinals κ with o(κ) = κ++.



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Global failure of GCH

In all of the above constructions, just one singular
cardinal is considered.
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Global failure of GCH

In all of the above constructions, just one singular
cardinal is considered.

What if we consider the power function on all cardinals?
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Global failure of GCH

In all of the above constructions, just one singular
cardinal is considered.

What if we consider the power function on all cardinals?

The problem becomes very complicated, and there are
very few general results.
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Global failure of GCH

(Foreman-Woodin (1990)) GCH can fail everywhere
(i.e., ∀κ, 2κ > κ+) (using a supercompact cardinal, and
a little more),
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Global failure of GCH

(Foreman-Woodin (1990)) GCH can fail everywhere
(i.e., ∀κ, 2κ > κ+) (using a supercompact cardinal, and
a little more),

(James Cummings (1992)) GCH can hold at successors
but fail at limits (using a strong cardinals),
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Global failure of GCH

(Foreman-Woodin (1990)) GCH can fail everywhere
(i.e., ∀κ, 2κ > κ+) (using a supercompact cardinal, and
a little more),

(James Cummings (1992)) GCH can hold at successors
but fail at limits (using a strong cardinals),

(Carmi Merimovich (2006)) We can have ∀κ, 2κ = κ+n,
for any fixed natural number n ≥ 2 (using a strong
cardinals),
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Global failure of GCH

In all of the above models cofinalities are changed (and
in the last two models cardinals are also collapsed),
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Global failure of GCH

In all of the above models cofinalities are changed (and
in the last two models cardinals are also collapsed),

(Sy Friedman) Can we force GCH to fail everywhere
without collapsing cardinals and changing cofinalities?
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Global failure of GCH

In all of the above models cofinalities are changed (and
in the last two models cardinals are also collapsed),

(Sy Friedman) Can we force GCH to fail everywhere
without collapsing cardinals and changing cofinalities?

Theorem(Friedman-G (2013)) Starting from a strong
cardinal, we can find a pair (V1, V2) of models of ZFC
with the same cardinals and cofinalities, such that GCH
holds in V1 and fails everywhere in V2,
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Global failure of GCH

In all of the above models cofinalities are changed (and
in the last two models cardinals are also collapsed),

(Sy Friedman) Can we force GCH to fail everywhere
without collapsing cardinals and changing cofinalities?

Theorem(Friedman-G (2013)) Starting from a strong
cardinal, we can find a pair (V1, V2) of models of ZFC
with the same cardinals and cofinalities, such that GCH
holds in V1 and fails everywhere in V2,

Thus answer to Friedman’s question is yes.
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Adding a single real

Given V and a real R, let V [R ] be the smallest model
of ZFC which includes V and has R as an element (if
such a model exists).
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Adding a single real

Given V and a real R, let V [R ] be the smallest model
of ZFC which includes V and has R as an element (if
such a model exists).

Question( R. Jensen- R. Solovay (1967)) Can we force
the failure of CH just by adding a single real, i.e., can
we have V and R as above such that V |= CH but CH
fails in V [R ]?
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Adding a single real

Given V and a real R, let V [R ] be the smallest model
of ZFC which includes V and has R as an element (if
such a model exists).

Question( R. Jensen- R. Solovay (1967)) Can we force
the failure of CH just by adding a single real, i.e., can
we have V and R as above such that V |= CH but CH
fails in V [R ]?
Theorem( Shelah-Woodin (1984)) Assuming the
existence of λ-many measurable cardinals, we can find
V and a real R such that V |= GCH and
V [R ] |= 2ℵ0 ≥ λ!!!
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Adding a single real

Question( Shelah- Woodin (1984)) Can we force total
failure of GCH just by adding a single real?
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Adding a single real

Question( Shelah- Woodin (1984)) Can we force total
failure of GCH just by adding a single real?

Theorem(Friedman-G (2013)) Assuming the existence
of a strong cardinal, we can find a model V and a real
R such that V |= GCH and V [R ] |= ∀κ, 2κ > κ+,
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Adding a single real

Question( Shelah- Woodin (1984)) Can we force total
failure of GCH just by adding a single real?

Theorem(Friedman-G (2013)) Assuming the existence
of a strong cardinal, we can find a model V and a real
R such that V |= GCH and V [R ] |= ∀κ, 2κ > κ+,
Thus the answer to the question is yes!!!
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Getting ZFC results

Silver’s theorem says that there are some non-trivial
ZFC results for singular cardinals of uncountable
cofinality.
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Getting ZFC results

Silver’s theorem says that there are some non-trivial
ZFC results for singular cardinals of uncountable
cofinality.

After Silver, Galvin-Hajnal proved more ZFC results
about power of singular cardinals of uncountable
cofinality.



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Getting ZFC results

Silver’s theorem says that there are some non-trivial
ZFC results for singular cardinals of uncountable
cofinality.

After Silver, Galvin-Hajnal proved more ZFC results
about power of singular cardinals of uncountable
cofinality.

For example, they showed that: if ∀α < ω1, 2ℵα < ℵω1 ,
then 2ℵω1 < ℵ(2ω1 )+ .
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Getting ZFC results

Silver’s theorem says that there are some non-trivial
ZFC results for singular cardinals of uncountable
cofinality.

After Silver, Galvin-Hajnal proved more ZFC results
about power of singular cardinals of uncountable
cofinality.

For example, they showed that: if ∀α < ω1, 2ℵα < ℵω1 ,
then 2ℵω1 < ℵ(2ω1 )+ .
None of the above results work for singular cardinals of
countable cofinality.
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Getting ZFC results

In early 1980, Shelah proved the first non-trivial ZFC
result for singular cardinals of countable cofinality.



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

Getting ZFC results

In early 1980, Shelah proved the first non-trivial ZFC
result for singular cardinals of countable cofinality.

For example, he proved a result similar to Galvin-Hajnal
for ℵω: if ℵω is strong limit, then 2ℵω < ℵ(2ℵ0 )+ .
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PCF theory

In late 1980th, Shelah created a technique, called PCF
theory which shows that ZFC is very strong!!!
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PCF theory

In late 1980th, Shelah created a technique, called PCF
theory which shows that ZFC is very strong!!!

He used the method to prove many unexpected results
just in ZFC .
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PCF theory

In late 1980th, Shelah created a technique, called PCF
theory which shows that ZFC is very strong!!!

He used the method to prove many unexpected results
just in ZFC .

Given a set of A of regular cardinals, let:
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PCF theory

In late 1980th, Shelah created a technique, called PCF
theory which shows that ZFC is very strong!!!

He used the method to prove many unexpected results
just in ZFC .

Given a set of A of regular cardinals, let:

PCF (A) = {cf (∏ A/U) : U is an ultrafilter on A}.
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PCF theory

A set A of regular cardinals is progressive, if
|A| < min(A).
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PCF theory

A set A of regular cardinals is progressive, if
|A| < min(A).
PCF (A) is a closure operator:
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PCF theory

A set A of regular cardinals is progressive, if
|A| < min(A).
PCF (A) is a closure operator:

1 A ⊆ PCF (A),
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PCF theory

A set A of regular cardinals is progressive, if
|A| < min(A).
PCF (A) is a closure operator:

1 A ⊆ PCF (A),
2 PCF (A∪ B) = PCF (A) ∪ PCF (B),
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PCF theory

A set A of regular cardinals is progressive, if
|A| < min(A).
PCF (A) is a closure operator:

1 A ⊆ PCF (A),
2 PCF (A∪ B) = PCF (A) ∪ PCF (B),
3 A ⊆ B ⇒ PCF (A) ⊆ PCF (B),
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PCF theory

A set A of regular cardinals is progressive, if
|A| < min(A).
PCF (A) is a closure operator:

1 A ⊆ PCF (A),
2 PCF (A∪ B) = PCF (A) ∪ PCF (B),
3 A ⊆ B ⇒ PCF (A) ⊆ PCF (B),
4 If PCF (A) is progressive, then

PCF (PCF (A)) = PCF (A).
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PCF theory

How PCF theory is related to cardinal arithmetic?
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How PCF theory is related to cardinal arithmetic?

(Shelah) Suppose κ is a strong limit singular cardinal
which is not a cardinal fixed point, and let A be a
progressive tail of the successor cardinals below κ. Then:
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How PCF theory is related to cardinal arithmetic?

(Shelah) Suppose κ is a strong limit singular cardinal
which is not a cardinal fixed point, and let A be a
progressive tail of the successor cardinals below κ.
Then:

1 max(PCF (A)) exists and is in PCF (A),



Singular Cardinals
Problem

Mohammad
Golshani

Introductory notes

Inner models:
Consistency of
GCH

Forcing

Power function on
regular cardinals

Singular cardinals
problem

Large cardinals

Forcing and large
cardinals

Core model theory

Global failure of
GCH

Coding into a real

PCF theory:
getting ZFC
results

PCF theory

How PCF theory is related to cardinal arithmetic?

(Shelah) Suppose κ is a strong limit singular cardinal
which is not a cardinal fixed point, and let A be a
progressive tail of the successor cardinals below κ.
Then:

1 max(PCF (A)) exists and is in PCF (A),
2 max(PCF (A)) = 2κ .
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How PCF theory is related to cardinal arithmetic?

(Shelah) Suppose κ is a strong limit singular cardinal
which is not a cardinal fixed point, and let A be a
progressive tail of the successor cardinals below κ.
Then:

1 max(PCF (A)) exists and is in PCF (A),
2 max(PCF (A)) = 2κ .

(Shelah) If A is a progressive set of regular cardinals,
then |PCF (A)| < |A|+4!!!
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It follows that if ℵω is a strong limit cardinal, then:
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It follows that if ℵω is a strong limit cardinal, then:

2ℵω < ℵω4 .
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It follows that if ℵω is a strong limit cardinal, then:

2ℵω < ℵω4 .
(Shelah’s PCF conjecture) If A is a progressive set of
regular cardinals, then |PCF (A)| ≤ |A|.
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It follows that if ℵω is a strong limit cardinal, then:

2ℵω < ℵω4 .
(Shelah’s PCF conjecture) If A is a progressive set of
regular cardinals, then |PCF (A)| ≤ |A|.
The conjecture implies if ℵω is a strong limit cardinal,
then 2ℵω < ℵω1 .
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It follows that if ℵω is a strong limit cardinal, then:

2ℵω < ℵω4 .
(Shelah’s PCF conjecture) If A is a progressive set of
regular cardinals, then |PCF (A)| ≤ |A|.
The conjecture implies if ℵω is a strong limit cardinal,
then 2ℵω < ℵω1 .
So by previous results we will have a complete solution
of the power function at ℵω.
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(Gitik-201?) Assuming the existence of suitably large
cardinals, it is consistent that the PCF conjecture fails.
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(Gitik-201?) Assuming the existence of suitably large
cardinals, it is consistent that the PCF conjecture fails.

Gitik’s result holds for some very large singular cardinal.
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(Gitik-201?) Assuming the existence of suitably large
cardinals, it is consistent that the PCF conjecture fails.

Gitik’s result holds for some very large singular cardinal.

It is not known if we can extend his proof for ℵω.
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(Gitik-201?) Assuming the existence of suitably large
cardinals, it is consistent that the PCF conjecture fails.

Gitik’s result holds for some very large singular cardinal.

It is not known if we can extend his proof for ℵω.
The following is one of the most important open
questions in set theory:
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(Gitik-201?) Assuming the existence of suitably large
cardinals, it is consistent that the PCF conjecture fails.

Gitik’s result holds for some very large singular cardinal.

It is not known if we can extend his proof for ℵω.
The following is one of the most important open
questions in set theory:

Is it consistent that ℵω is strong limit and 2ℵω > ℵω1?
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Thank you for your attention!!!
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