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Abstract

In chapter 1 we study Shelah’s strong covering property and its applications to pairs (W, V)
of models of ZFC with V' = WIR], R a real. The results in the first section of this chapter
are due to Shelah [14]. The last section presents a result of Vanliere [16].

In chapter 2 we show that it is possible to violate GC'H at all infinite cardinals by adding
a single real to a model of GCH. Our assumption is the existence of an H(x*3)—strong
cardinal k. By work of Gitik and Mitchell [10] more than an H(x™")—strong cardinal is
required.

In chapter 3 it is shown that it is possible to force Easton’s theorem by adding a single
real to a model of GCH. Our assumption is the existence of a proper class of measurable
cardinals which is optimal by results of Chapter 1.

In chapter 4 we present a method for coding an arbitrary real by two Cohen reals in
a cofinality preserving way. We use this result to prove another variant of the results of
chapters 2 and 3.

In chapter 5 we study the effects of adding Cohen reals to models of set theory. We show
that it is possible to have a pair (V, V1) of models of ZFC with the same cofinalities so that
adding one Cohen real over V; adds N;—many Cohen reals over V. We also show that if
V' C V4 have the same cardinals and reals, then below the first fixed point of the N—function
adding Ns—many Cohen reals over V7 can not produce more than Rs—many Cohen reals

over V.
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Chapter 1

Shelah’s strong covering property

and its applications

1.1 Shelah’s strong covering property

In this chapter we study Shelah’s strong covering property and give some of its applications.
By a pair (W, V) we always mean a pair (W, V) of models of ZFC with the same ordinals
such that W C V.

Let us give the main definition.

Definition 1.1.1. (1) (W,V) satisfies the strong (A, a)—covering property, where A is a
reqular cardinal of V' and « is an ordinal, if for every model M € V with universe o (in a
countable language) and a C o, | a |< A (in V'), there is b € W such that a Cb C a,b < M,
and | b|< A (in V). (W, V) satisfies the strong \— covering property if it satisfies the strong
(A, @) —covering property for every a.

(2) (W,V) satisfies the strong (A\*, \, k, u)—covering property, where A\* > X > k are
reqular cardinals of V. and p is an ordinal, if player one has a winning strategy in the
following game, called the (\*, \, k, 1) — covering game, of length A:

In the i—th move player I chooses a; € V such that a; C u,| a; |[< N (in V) and

Uj<i b; C ai, and player II chooses b; € V' such that b; C u,| b; |[< A* (in' V) and Ujgia’j C



Player I wins if there is a club C C X such that for every 6 € C U {\},ef(d) = k =
Uicsai € W. (W, V) satisfies the strong (A, \, k,00)—covering property, if it satisfies the

strong (A", \, k, 1) — covering property for every .

The following theorem shows the importance of the first part of this definition and plays

an important role in the next section.

Theorem 1.1.2. Suppose V.= W|[R], R a real and (W, V') satisfies the strong (A, a)—covering

property for a < ([(2MW]HV. Then (2<2)V = [(2<MHW|V.
Proof. Cf. [14, Theorem VIL.4.5]. O

It follows from Theorem 1.1.2 that if V= W[R], R a real and (W, V) satisfies the strong
(X, ([(2)W]*)") —covering property, then (2)" = |(24)"|V.
We are now ready to give the applications of the strong covering property. For a pair
(W, V) of models of ZFC' consider the following conditions:
(1,) : ¢ V.=WIR], R a real,
e V and W have the same cardinals < k™,
o W ETVA< kK, 22 =217,
oV =28 > kT
(2,): WETGCH™.

(3x) : V and W have the same cardinals.

Theorem 1.1.3. (1) Suppose there is a pair (W, V) satisfying (1x,) and (2,). Then VY
in inaccessible in L.

(2) Suppose there is a pair (W, V) as in (1) with V =728 > Ry7. Then 0F € V.

(3) Suppose there is a pair (W, V) as in (1) with CARD™ N(RY ,RY) = (. Then 0f € V.

(4) Suppose k > Vg and there is a pair (W, V) satisfying (1.). Then 0% € V.

Before we give the proof of Theorem 1.2.1 we state some conditions which imply Shelah’s
strong covering property. Suppose that in V, 0% does not exist. Then:
(o) If \* > XY is regular in V, then (W, V) satisfies the strong \*—covering

property.



(B) If CARDY N (XY, RY) = 0 then (W, V) satisfies the strong R} —covering

property.

Remark 1.1.4. For \* > XY (a) follows from [14, Theorem VII.2.6], and (3) follows from
[14, Theorem VIL.2.8]. In order to obtain (a) for \* = XY we can proceed as follows: As in
the proof of [14, Theorem VII.2.6] proceed by induction on p to show that (L, V') satisfies the
strong (XY RY XY 11)—covering property. For successor p (in L) use [14, Lemma VII.2.2]
and for limit p use [14, Remark VIIL.2.4](instead of [14, Lemma VIIL.2.3]). It then follows

that (L, V) and hence (W, V) satisfies the strong NY — covering property.
Proof of Theorem 1.2.1.

1. We may suppose that 0f ¢ V. Then by (), (W, V) satisfies the strong R} —covering
property. On the other hand by Jensen’s covering lemma and [14, Claim VIL.1.11], W

has squares. By [14, Theorem VIL.4.10], XY is inaccessible in W, and hence in L.

2. Suppose not. Then by («), (W, V) satisfies the strong RY —covering property. By

Theorem 1.1.2, (2%0)V < (28)V = |(28)W |V = |R}V| = RY, which is a contradiction.

3. Suppose not. Then by (), (W, V) satisfies the strong R} —covering property, hence by

Theorem 1.1.2, (2%0)V = |(2%)W |V = XY which is a contradiction.

4. Suppose not. Then by (), (W, V) satisfies the strong x*—covering property. By

Theorem 1.1.2, (2%)V = [(25)"|V = k¥, and we get a contradiction.

Theorem 1.1.5. (1) Suppose there is a pair (W,V) satisfying (15), (2x) and (3,). Then
there is in V an inner model with a measurable cardinal.
(2) Suppose there is a pair (W, V) satisfying (1,), where k > N,,. Further suppose that
++

Ky = /<$+ and (W, V) satisfies the k+—covering property. Then there is in V an inner

model with a measurable cardinal.

Proof. 1. Suppose not. Then by [14, conclusion VIL.4.3(2)], (W, V) satisfies the strong
kT —covering property, hence by Theorem 1.1.2, (2%)V = |(2%)"|V = kT, which is a

contradiction.



2. Suppose not. Let x = pu*™, where p is a limit cardinal, and n < w. By [14, Theorem
VII.2.6, Theorem VII.4.2(2) and Conclusion VII.4.3(3)], we can show that (W,V)
satisfies the strong (x7, k, Ny, 1) —covering property. On the other hand since (W, V)
satisfies the s ™ —covering property and V and W have the same cardinals < %, (W, V)
satisfies the T —covering property for each i < n+1. By repeatedly use of [14, Lemma
VIL.2.2|, (W, V) satisfies the strong (kT, k, Ny, kT )—covering property, and hence the
strong (kT,x*T+)—covering property. By Theorem 1.1.2, (2%)V = |25)V |V = &*,
which is a contradiction.

O

Remark 1.1.6. In [14] (see also [15]), Theorem 1.2.3(1), for k = Ny, is stated under the

additional assumption 280 > R, in V.



1.2 On a theorem of Vanliere

In this section we prove the following result of Vanliere [16]:

Theorem 1.2.1. Assume V = L[X, R] where X C w, for some n < w, and R C w. If
LIX]|ETZFC 4+ GCH™ and the cardinals of L[X| are the true cardinals, then GCH holds

mV.

Proof. Let k be an infinite cardinal. We prove the following:
(#4) : For any Y C & there is an ordinal o < T and
aset Z € L[X],Z C k such that Y € L,[Z, R].

Then it will follow that P(x) € U, .+ Uzeprixi(y) LalZ, R], and hence
25 <3t D geprixi(y | LalZ, R]|< kH(29) X g = gt

which gives the result. Now we return to the proof of (x,).

Case 1. kK > N,,.

Let Y C k. Let 0 be large enough regular such that Y € Ly[X, R]. Let N < Ly[X, R]
be such that | N |= k, NN kT € s and k U{Y, X, R} C N. By the condensation lemma
there are @ < kT and 7 such that 7 : N 2 L,[X, R]. then Y = 7(Y) € L,[X, R]. Thus (x,)
follows.

Case 2. kK < N,,.

We note that the above argument does not work in this case. Thus another approach is
needed. To continue the work, we state a general result (again due to Vanliere) which is of

interest in its own sake.

Lemma 1.2.2. Suppose p < k < A < v are infinite cardinals, \ reqular. Suppose that
a CuY CkK ZCAN and X C v are such that V = L[X,a],Z € L[X],Y € L[Z,a] and
)\JLF[X] = \t. Then there exists a proper initial segment Z of Z such that Z' € L|X] and
Y e L|Z',a).

Proof. Let 0 > v be regular such that Y € Ly[Z,a]. Let N < Lg[Z, a] be such that | N |=
ANNAT e AT and AU{Y, Z,a} C N. By the condensation lemma we can find § < A* and

m such that 7 : N = Ls[Z, a.



In V, let (M; : i < A) be a continuous chain of elementary submodels of Ls[Z, a] with
union Ls[Z,a] such that for each ¢ < A\, M; D &, | M; |[< A and M; N A € A

In L[Z] let (W; : ¢ < A) be a continuous chain of elementary submodels of Ls[Z] with
union Ls[Z] such that for each i < A\, W; Dk, | W; |[< A and W; N A €A

Now we work in V. Let E = {i < A\: M;NLs[Z] = W,;}. Then Eisaclubof \. Picki € E
such that Y € M;, and let M = M;, and W = W,. By the condensation lemma let n < A
and 7 be such that 7 : M = L,[Z’, a] where Z =7[MNZ) =a(MNANNZ] = (MNA\NZ,
a proper initial segment of Z. Then Y = #(Y) € L,[Z ,a] and Z' C n < A. It remains to

observe that Z' € L[X] as Z is an initial segment of Z. The lemma follows. O

We are now ready to complete the proof of Case 2. By Lemma 1.3.2 we can find a
bounded subset X,, of w, such that X,, € L[X] and Y € L[X,,R]. Now trivially we
can find a subset Z,,_1 of w,—1 such that L[X,] = L[Z,,_1], and hence Z,,_; € L[X] and
Y € L[Z, -1, R]. Again by Lemma 1.3.2 we can find a bounded subset X,,_; of w,_1 such
that X,,—1 € L[X] and Y € L[X,,_1, R], and then we find a subset Z,_2 of w,_o such that
L[X,_1] = L[Z,_2]. In this way we can finally find a subset Z of  such that Z € L[X] and

Y € L[Z, R]. Then as in case 1, for some a < k™, Y € L,[Z, R] and (*,) follows. O



Chapter 2

Killing the GCH everywhere with

a single real

2.1 Killing the GCH everywhere with a single real

Shelah-Woodin [15] investigate the possibility of violating instances of GCH through the
addition of a single real. In particular they show that it is possible to obtain a failure of
CH by adding a single real to a model of GC'H, preserving cofinalities. In this chapter we
bring this work to its natural conclusion by showing that it is possible to violate GCH at

all infinite cardinals by adding a single real to a model of GCH.

Theorem 2.1.1. ([4]) Assume the consistency of an H(k*3)-strong cardinal k. Then there
exists a pair (W, V) of models of ZFC' such that
(a) W and V' have the same cardinals,
(b) GCH holds in W,
(
(

)
¢) V.= WI|R] for some real R,

d) GCH fails at all infinite cardinals in V.

The above Theorem answers an open question from [15]. The rest of this chapter is

devoted to the proof of the above Theorem.

10



2.2 Prikry products

Assume GCH and suppose that S is a set of measurable cardinals which is discrete, i.e.,
contains none of its limit points. Fix normal measures U, on « for o in S. Then Pg denotes
the Prikry product of the forcings P,, a € S, where P, is the Prikry forcing associated
with the measure U,. A Pg-generic is uniquely determined by a sequence (z, : @ € 5),
where each x,, is an w-sequence cofinal in . With a slight abuse of terminology, we say that

(o : o € 8) is Pg-generic.

Lemma 2.2.1. (Fuchs [5], Magidor [12]) Suppose that (zo : a € S) is Pg-generic over V.
(a) V and V(x4 : « € S)] have the same cardinals.
(b) The sequence (x4 : o € S) obeys the following “geometric property” If (X, : a € S)

belongs to V and X, € Uy for each a € S, then | T \ Xa 1 finite.

a€s
(c) Conversely, suppose that (y, : « € S) is a sequence (in any outer model of V') satisfying
the geometric property stated above. Then (yo : a € S) is Pg-generic over V.

(d) Suppose o € S, p € Pg and (P, : v < 1) is a sequence of statements of the forcing
language for Ps where n < a. Then there exists ¢ <* p such that ¢ [ o = p | a and for each
v <nifr<qandr decides ®., then (r | a)U (q | [a,k)) (where k = sup(S)) decides .,

in the same way.

Theorem 2.2.2. Suppose that r is H(k3)-strong and S is a discrete set of measurable

cardinals less than k. Then after forcing with Ps, k remains H(k+3)-strong.

Proof. Suppose that j : V. — M D H(k™3), crit(j) = s is an elementary embedding
witnessing the H(k+3)—strength of k. We can assume that j is derived from an extender
E = (E, :ac [x3]<¥). Then for each a € [s13]<“ E, is a k—complete ultrafilter on [x]!®!
and if j, : V — M, = Ult(V, E,) is the corresponding elementary embedding then for all
B C [x]!“l, we have B € E, < a € j,(B). We also have an embedding k, : M, — M such
that kg 0 jo = j.

We show that x remains H(x*3)—strong in the generic extension by Pg. The proof uses
ideas from [11] and [12]. Let G be Pg—generic over V. Also let § = min(j(S) — k) > k.

Working in V[G], we define for each a € [kT3]<“1 E* as follows: Let £ = 0.t(a), and let

11



a be a Pg—name for a such that
|[-"a € kT3 and o.t(a) = &7

For p € Pg define p|-"B € E*7 iff
(1) pll-"B < [+,
(2) there exists ¢ <* j(p) in j(Ps) such that ¢ [ 6 = j(p) | § = p, and ¢|-""a € j(B).

Let Ef = EX[G]. Tt is easily seen that the above definition is well-defined.

Lemma 2.2.3. (a) E? is a k—complete non-principal ultrafilter on [k,

(b) If a € V is finite, then E extends E,,

Proof. (a) We just prove that E* is k—complete. Suppose that p € Pg and p|-"[k]* =
U{B, : ¥ <} where n < k. Then j(p)[-"'"[j(r)]¢ = U{i(B,) : v < n}™.

Working in M consider 6, j(p) and the sequence (®, : v < 1) of sentences where for each
v < n,®, is“a € j(B,)” It then follows from Lemma 2.1.(d) that there is ¢ <* j(p) in j(Ps)

such that for each v < n

*qld=3jl)1d=p
e if r < ¢ and r decides ., then (r [ §) U (¢ | [0,j(x)) decides @, in the same way.

Now ¢|-"a € [j(r)]¢ = U{4(B,) : v < 7} and hence we can find r < g and v < 7 such
that 7||-"®,7. Let t = (r [ 0) U (q | [d,7(x)). It is now easy to show that ¢ | § < p and
t]é ||—'_BAY € E;T This completes the proof of the k—completeness of E.

(b) Suppose a € V is finite. Let B € E, and p € Pg. We show that p|-"B € E*.
Let ¢ = j(p). Then ¢ has the required properties in the definition above which gives the

result. O

In V[G], for each a € [T3]<%1 let 5 : V[G] — M} ~ Ult(V[G], E}) be the corresponding
elementary embedding. Also fora C blet k., : M — M, be the natural induced elementary

embedding. Let

(M*, (k! : a € [sT3]<91)) = dirlim{(M} : a € [T3]<%1) (k¥ , : a Cb)).

a * a,b *

Also let j* : V[G] — M* be the induced embedding.

12



Lemma 2.2.4. M* is well-founded

Proof. Suppose not. Then there is a sequence (m; : i < w) of elements of M* such that
... E*my € mq €" myg

where €*=¢c - . For each i < w choose a; and f; such that m; = &} ([fi]g: ). Let a =
U{a; : i <w}. Then a € [s+3]<“1 and for some g;,m; = k([gs]£:)- It then follows from the

elementarity of k% that

. € [g2]E: € l1]E: € [90]E:-

This is in contradiction with Lemma 2.3 which implies M/ is well-founded. Thus M* is

well-founded and the lemma follows. O

If now we restrict ourself to E; for finite a, then the smaller direct limit embeds into
the full direct limit and is therefore well-founded. From now on, let M* denote the smaller
direct limit; accordingly each E is now given by the usual extender definition and j* is the
ultrapower embedding.

Note that j* : V[G] — M* is an elementary embedding with critical point k. We show
that it is an H(k3)—strong embedding. For this it suffices to show that H(x+3)VI¢] C M+,
But since H(x13)VI¢] = H(k13)[G], it suffices to show that H(k*3) C M* and G € M*.

For this purpose we introduce some special functions in V. Let F' : kK — & be defined by
F(a) = a3, Then j(F)(x) = k. Now for each a € [73]<% with k € a and |a| = n define
the function G, : [k]" — & by G(ay,...,an) = a® where & is the i—th element of a. Tt is
clear that j(G,)(a) = j(F)(k) = k™. Also let r : kK — H(k) be defined by r(a) = H().

Suppose f : [k]* — H(x)V1¢ is in V[G] and a is a finite subset of x> containing x. We

say the pair (f,a) has the property () iff
{(v:f(y) eroGa(m)}eE;.?
We have the following easy lemma.

Lemma 2.2.5. (a) If 7*(f)(a) = 7*(g9)(b) where k is an element of both a and b, then (f,a)

has the property (x) iff (g,b) has the property (x),

1Tt can be shown that (f,a) has property (%) iff [f] Ex represents an element of H(kt3) in M},

13



(b) If (f,a) has the property (x) and j*(g)(b) € 7°(f)(a) for some b containing &, then

(g,b) has the property (x).

Lemma 2.2.6. If (f,a) has the property (x), then there is a function h : [k]™ — H(k) in

V and a finite set b C k3 such that 5*(f)(a) = j*(h)(b).

Proof. Let B = {y: f(y) € 70 Gq4(y)}. Since (f,a) has the property (x), B € E*. Let B
be a name for B and let p|—"B € E;7. This means that there is some ¢ <* j(p) such that
q16=3(p)d=pandq|-"""a € j(B)". Hence we have q|-"""j(f)(a) € j(r o Ga)(a) =
H(k*3)7.

For each ¢ € H(kT3) let ®, be the sentence “j(f)(a) = ¢’. By applying Lemma 2.1.(d)

we can find r <* ¢ such that for every ¢ € H(k3)
er[d=q[d=p,
o if s <r and s decides @, then (s [ §) U (r [ [4,j(k))) decides @, in the same way.

Now r|-"7j(f)(a) € j(r o Ga)(a) = H(k3)7, hence there are s < r and ¢ € H(x13) such
that s|—"®.7. Let t = (s [ §) U (r | [6,5(k))). By above, t||-""®,.
Since ¢ € H(k™3), there is a function h : [k]™ — H(k) and a finite b C x such that

¢ = j(h)(). Thus t|—""j(f)(a) = j(h)(b)" and the result follows. O
Define the sets X and X™* as follows

X ={j(f)(a): (f,a) is in V and has the property (x)},

X*={j*(f)(a) : (f,a) is in V[G] and has the property (x)}.
It follows from Lemma 2.5 that X and X™* are transitive.

Lemma 2.2.7. If (f,a) has the property (x) and f € V, then j*(f)(a) = j(f)(a).

Proof. Define @ : X — X* by ®(j(f)(a)) = j*(f)(a). Then:
(1) @ is well-defined: To see this suppose that j(f)(a) = j(g)(b). We may further suppose
that a = b. It then follows that j(f)(a) = ko([fle,) = ka(lg]e,) = j(g)(b), and hence
B={z: f(z) = g(x)} € E,. By Lemma 2.3(b), B € E: and hence j*(f)(a) = k([f]g:) =
ka(lgle;) = 57 (9)(b).

(2) ® preserves the € relation: As in (1).

14



Thus ® is an isomorphism, and since both of X and X* are transitive, it must be the

identity. The lemma follows. O
Lemma 2.2.8. H(k™3) C M*.

Proof. We have H(k*3) C X C X* C M*. O
Lemma 2.2.9. G € M*

Proof. First note that Pg € H(k3) C M*. Define f : k — H(r)VI% by f(a) = G4, where
Go = GNH(«) is Ps N H(a)—generic over V. Show that G = j*(f)(k), and hence G € M*.
By maximality of G it suffices to show that G C j*(f)(x).

Let p € G. Choose h : [k]|® — H(k) in V and a finite set a C x™ containing &
such that p = j(h)(a). Then by Lemma 2.7 p = j*(h)(a). Define f,(a1,....,an) = f(a;),
where £ is the i—th element of a. Then j*(f,)(a) = j*(f)(x). Now we have to prove that
3*(h)(a) € 5" (fa)(a).

Let f, be a Pg—name for f, such that H—Psrfa(al, woyay) = Gy, 7. Then ||—j(]ps)rj(fa)(a)

G and hence = sy i (h)(a) € 3(fa)(a)7. The lemma follows. O

15



2.3 Coding

Friedman [3] presents a method for creating reals which are class-generic (but not set-generic)
over a sufficiently L-like model, preserving Woodin cardinals. A similar method can be used
to preserve strong cardinals. However the general problem of coding a predicate into a real
while preserving large cardinal properties is open; we show here that this is possible if the

predicate is a sequence which is generic for a discrete Prikry product.

Theorem 2.3.1. Suppose that K is the canonical inner model for an H(k+3)-strong cardinal
K. Suppose that S is the discrete set consisting of those measurable cardinals less than k in
K which are not limits of measurable cardinals in K. Also let (xo : @ € S) be Pg-generic
over K for the measures (U, : a € S), where U, is the unique normal measure on o in K.
Then there is a cofinality-preserving set-forcing P for adding a real R over K[(zq : « € S)]

such that K[(z, : a € S)|[R] = K[R] and k remains H(k3)-strong in K[R].

Proof. We will follow the proof of Jensen’s coding theorem from [2], section 4.2, making use
of Lemma 2.2.1 to argue that the relevant 3; Skolem hulls taken with respect to certain
initial segments of K are also X; elementary when the Prikry product generic is adjoined.
We must impose some minor changes to the notion of “string s” and to the coding structures
A?, ,le, but for the most part the argument remains the same. The preservation of H(x+3)-
strength is based on ideas from [3].

We work in L[E][(z4 : a € S)] where K = L[E] is a fine-structural inner model built
from the sequence E of (partial) extenders. Abbreviate (x, : @ € S) as Z and for any (3 let
Z(< B) denote (x4 : @ € S, @ < 3). We may also assume that for « in S, the min of z,, is
greater than the supremum of S N «, using the discreteness of the set S. Let A denote the
union of the x,, a € S.

Card denotes the class of infinite cardinals. For a in Card we define the ordinals p<", u"
by induction on n € [o,a™). An ordinal p is a ZF~ ordinal iff L,[E,#(< «)] is a model of
ZF minus Power Set. Define: u<" = U{u¢ : £ < n}Ua, u" = the least limit of ZF~ ordinals
o such that p is greater than £<" and, setting A” = L,[E, Z(< )] we have that A" = « is

the largest cardinal.
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Sa, the set of strings at « consists of all s : [, [s]) — 2, a < |s| < a™, such that |s| is
a multiple of a and s belongs to Al*l. We write s < t when ¢ extends s and s < t when ¢
properly extends s. For s € S, we write A® for Al*l and p* for pl*l.

For later use (see “Limit Precoding”) we also define i* < p® to be the least ZF~ ordinal
p greater than p<I*! such that the structure L,[F,#(< «)] contains s and satisfies that
o is the largest cardinal. The resulting structure A° = Lys[E,z(< )] is a proper initial
segment of A® and, like A®, each element of A® is ¥, definable in A* from parameters in
aU{Z(< a),s}. (We say that A%, A® are &1 projectible to o with parameters Z(< ), s.)

To set up the coding we need the functions f?, defined as follows: For a an uncountable
cardinal, s in S, and ¢ < « let H*(7) denote the ¥; Skolem hull of i U {Z#(< «), s} in A°.
Then f#(4) is the ordertype of H®(i) N Ord. For a a successor cardinal we define the coding
set b® to be the range of f* | B® where B® consists of the successor elements of {i < a: 7 is
a limit of j such that j = H*(j) Na}.

We describe a cofinality-preserving forcing which codes K[Z] into K[X] for some X C wy,
preserving the H(kT3)-strength of k. Then a simple c.c.c forcing can be used to code X into
the desired real R.

We need a partition of the ordinals into four pieces: Let B,C, D, F denote the classes
of ordinals which are congruent to 0,1,2,3 mod 4, respectively (The letters A and E are
already used for other purposes). For any ordinal a, a” denotes the a-th element of B and
for any set Y of ordinals, Y'Z denotes the set of a for a in Y (similarly for C, D, F).

The successor coding: Suppose a € Card and s € Sy,+. A condition in R® is a pair
(t,t*) where t € S,, t* C {b°1" : € [a™T, |s])} U|t|, card(t*) < a. Extension is defined by:
(to,t5) < (t1,t7) iff to extends ¢, ¢ contains ¢} and:

(1) If |t1] < B < |to| and v € b1 € #§ then to(7vP) = 0 or s(n).
(2) If [t1] < 79 < |to| and ¥ = (y0,m1) with 7o € ANt} then to(y®) = 0 (where (-,-) is
Godel pairing of ordinals).

An Ré-generic over A° adds (and is uniquely determined by) a function T': ™ — 2 such
that s(n) = 0 iff T(v®) = 0 for sufficiently large v € B*!" and such that for vy < a™, 7o € A
iff T({(70,71)¢) = 0 for sufficiently large y; < a™.

The limit precoding. Suppose that « is an infinite cardinal and s belongs to S,. We say
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that X C « precodes s if X is the ¥; theory of A® with parameters from a U {Z(< a), s},
viewed as a subset of .

The limit coding. Suppose that a is an uncountable limit cardinal, s € S, and p is a
sequence ((pg,pj) : 3 € Card N a) where pg € Sp for each § € Card N a. We will define
what it means for p to “code s”. First define the sequence (s, : v < ) of elements of S, as
follows: Let sg = (. For limit v < 7, s is the union of the s, § < 7. Now suppose that s is
defined and for successor cardinals /3 less than « let f,” (3) be the least § > £°(3) such that
ps(6P) =1, if such a § exists. If f57(3) is undefined for cofinally many successor cardinals
B < a then set 79 = 7. Otherwise define X C a by: § € X iff ps((f»" (8) +1+6)P) =1 for
sufficiently large successor cardinals 8 < a. If Even(X) = {6 : 26 € X} precodes an element
t of S, extending s, such that A’ contains X and the function fp”, then set Sy41 = t.
Otherwise let 5,41 be s, * X (i.e. the concatenation of s, with X" viewed as a sequence
of length «), provided s, * X" belongs to S, and 1" belongs to ASW*XF; if not, then again
set 79 = 7. Now p exactly codes s if s equals one of the s, v < vy and p codes s is an initial
segment of some s, v < 7.

Finally we define the desired forcing. Let Card’ denote the class of uncountable limit
cardinals. Also fix an extender ultrapower embedding j : V = K[Z] —» M = K*[7¥
witnessing that & is H(k*3)-strong in K[Z]. Le., j has critical point s, H(xk3) of V is
contained in M and every element of M is of the form j(f)(«) for some f : x — V in V and
a < kT3,

The conditions. A condition in P is a sequence p = ((pa,p)) : @ € Card, a < «a(p))
where a(p) < k73 in Card and:

(1) pa(p) belongs to S () and Pp) = 0.

(2) For o € Card N a(p), (pa,pl) belongs to RPa+.

(3) For a € Card’, a < a(p), p | a belongs to AP= and exactly codes p,.

(4) For a € Card’, o < a(p), if a is inaccessible in AP= then there exists a closed unbounded

subset C of a, C' € AP, such that for g € C, pj = Pht = Djst = Pp+ = Pp++ = 0.
Conditions are ordered by: p < ¢ iff:

(a) a(p) = a(q).

(b) p(a) < ¢(@) in RPat for w € Card Na(p) N (alq) + 1).
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(€) Pa(p) extends qq(q) if a(p) = a(q).

(d) If alq) > ¥, Jgerr] < v < |patt]s € < 15(@)w+s] is of the form j(f)(i) for some
i < |ge++] and function f with domain &, j(q).+s(¢) = 0 and + belongs to b/(@Dx+31¢ (as
defined in K*[#*], the ultrapower of K[Z] by j) then p,++(v®) = 0.

Clause (d) is to ensure that G,.++, the subset of k™3 added by the generic G, codes the
union of the j(p),+s for p in G, a fact needed for the preservation of H(x*3)-strength (see
below).

This completes the definition of P. The verification of cofinality and GCH preservation
for P is as in [2], section 4.2, following the proofs of the Lemmas 4.3 — 4.6 found there. Here
we only point out the added points to be made, taking into account that we are coding &
over K = L[E] and not over L. For this verification, requirement (4) above can be weakened
to only require that pj = () for 8 € C; the stronger form of (4) above is needed for the
preservation of H(x+3)-strength.

A general fact that is needed throughout the proof is the following.

Lemma 2.3.2. (Condensation) Suppose that « is an uncountable cardinal, s € Sy, i < «
and as before let H*(i) denote the X1 Skolem hull of i U{Z(< «), s} in A°.

(a) If « is a successor cardinal then for sufficiently large i < «, if i is a limit point of
{j <a:j=H*(j)Nj} then the transitive collapse of H*(i) is of the form K[Z] where K is
an initial segment of K.

(b) If « is a limit cardinal then for sufficiently large cardinals i < « the transitive collapse
of H*(i) is of the form K[Z] where K is an initial segment of K.

The same holds with A® replaced by any of its initial segments which contain s and have

height equal to a ZF~ ordinal.

Proof. Recall that s belongs to A®* = L, .[E,#(< a)]. Now z(< «a) is generic over K for

pls]
the product Pg(<q) of Prikry forcings at 8 < o in S. If a is in the closure of S then the
intersection of Pg(<,) with L,[E] is a class forcing in L,[E] whenever p is a ZF~ ordinal
of size a such that o is the largest cardinal in L,[E]. Nevertheless, all definable antichains

in this forcing are sets. An examination of the proof of Lemma 2.2.1 in [5] reveals that any

sequence which satisfies the geometric property of that lemma with respect to L, [E] for the
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forcing Pg(<q) N Ly [E] is in fact generic for this forcing over L,[E]. It follows that z(< ),
which satisfies the geometric property with respect to the entire L[E], is generic over L, [E]
for this forcing. From this we infer the 3; definability of the forcing relation for Ag formulas
for the forcing Pg(<q) N Lys[E] and therefore that for i < a, H{(i) = the ¥; Skolem hull
of iU {3} in Aj (= L, [E]) is equal to the intersection with Aj of H*(i) = the X; Skolem
hull of 4 U {s} in A% (where $ is a name for s € A®). In particular, setting i equal to «, we
see that A§ is ¥;-projectible to o with parameter s.

If 4 satisfies the requirements stated in (a) or (b) above, then the ¥; projectum of the
transitive collapse of H{(i) is equal to ¢ and if ¢ is sufficiently large, then this transitive
collapse is also sound. It follows that K = the transitive collapse of H(i) is an initial
segment of K for such i. The last statement of the lemma follows by the same argument,

as any initial segment of A° which contains s is %1 projectible to a with parameter s. O

Using Condensation as above, the proofs of Lemmas 4.3 — 4.6 from [2], section 4.2 can
be carried out in the present setting:

In Lemma 4.3, one must take the o;’s to enumerate the first « sufficiently large elements
of {8 < at : Bis a limit of 3 such that 3 = a* N ¥; Skolem hull of (3 U {z}) in A} which
are sufficiently large so that Condensation (a) guarantees that the transitive collapse of the
associated ¥; hull is of the form K[Z] with K an initial segment of K. This facilitates the
proof of the Claim in the proof of Lemma 4.3

In Lemma 4.4 one applies Condensation (b) to ensure that the X1 Skolem hull Hg, when
B = a N Hpg, transitively collapses to a structure built from an initial segment of K for
sufficiently large cardinals 5 < «; this is needed to argue that the resulting sg is a string at
8. The rest of the proof remains unchanged.

The proof of Lemma 4.5 (a) in the case of 8 inaccessible also uses Condensation (b) in the
proof of the Claim, to verify that the pfy‘ are strings (in S,). Also note that Jensen’s subtle
use of the assumption that 0% does not exist (referred to in the Note) has no counterpart
here, as our structures A§ = L,s[E], s € S, collapse |s| to o without the use of s as an
additional predicate (indeed, s is just a parameter in L, [E, Z(< «)]). The proofs of Lemma

4.5 in the case of singular 3 as well as Lemma 4.6 can be carried out as before.
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We are left with the verification that » remains H(x73)-strong after forcing with P.
Recall that j : V = K[#] - M = K*[#*] is the extender ultrapower embedding witnessing
that x is H(k*3)-strong. Let G be P—generic over V; in V[G] we must produce a GM which
is j(PP)-generic over M and which contains j(p) for each p in G.

If (D; :i < k) are dense subsets of P and p belongs to P then p has an extension ¢
which “reduces each D; below it3”, i.e., any extension 7 of ¢ can be further extended to
meet D; without changing r(3) for 8 > i*3. (This is a variant of A-distributivity, see page
30 of [2].) From this it follows that if we take the upward closure of j[G], we obtain a
compatible set of conditions which reduces each dense subset of j(IP) in M below x*3, using
the ultrapower representation of M. Moreover, thanks to requirement (4) in the definition
of P, j[G] contains no nontrivial information between x and k™3 (except for G,;, the subset
of kT added by G), and therefore j[G] is compatible with G N H(x*3). Moreover, thanks
to condition (d) in the definition of extension of conditions, G ++ will code the union of the
§(p)u+s, p € G, and this coding is generic (using the fact that the j(p),+s belong to A?; see
Lemma 4.8 of [2]). So we can take GM to be generated by the joins of conditions in j[G]

with those in G N H(k3) to obtain the desired j(IP)-generic over M. O
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2.4 Killing the GCH everywhere by a cardinal preserving
forcing

In [13] the following is proved.

Theorem 2.4.1. (Merimovich [13]) Suppose that GCH holds and r is H(k**)— strong.
Then there exists a generic extension of the universe in which k remains inaccessible and

YA < K, 20 = 2\13,

Unfortunately in the Merimovich model a lot of cardinals are collapsed below . We show
that a simple modification of his proof can give us the the total failure of the GCH below

k without collapsing any cardinals.

Theorem 2.4.2. Suppose that GCH holds and k is H(kT*)— strong. Then there exists a
cardinal preserving generic extension of the universe in which k remains inaccessible and

VA < K, 20 > AT

Proof. We assume the reader has a copy of [13] at hand and we just mention the changes

we need to prove the theorem.

e In page 372: replace Ry with Add(k™™,iy(k)™)n+(g.,). The arguments from [13]
show that we can find the generics Iy, I and Iz for this new Ry and the corresponding

forcings R, and Rj.

e In page 376, 3.2: in N[[y] all N—cardinals are preserved and the power function differs

from the power function of N at the following point: ot — iv(k)T3.

e In page 379, 3.4: The forcing notion Pz, adds a club to . For each 14, vy successive
points in the club the cardinal structure and power function in the range [v;", vy ®] of
the generic extension is the same as the cardinal structure and power function in the

range [k, jp(k) T3] of Mp[I5].

e In page 411: replace Claim 10.6 with the following: Let G be Pg-generic with p =

PL* ... % P % ... xpg € G and € be such that p; € Pz and I(€) = 0. Let v = x(p)).

22



Then, in V[G], all cardinals in [v+, k°(¢)*3] are preserved and 2" = 4, 2" = 5,

+3 6 +4 0/=\+3
2V =pth v = kO(e) T3

e In page 412: replace Col(No, \T)y (g by Add(Ro, A*3)yg) and let H be generic over

V|G] for this new forcing.

Now the proof of the theorem goes as follows: Let p* € P, such that k(p*?) is inaccessible
and G be Pgz-generic with p* € G. Set

M =U{pt~ :pe G},

C=U{s(pg") :p € G}

Note that M is a Radin generic sequence for the extender sequence E,, hence C' C &
is a club. Also the first ordinal in this club is A = k(p*?). We first investigate the range
(A, k) in V[G]. Note that, by [13, Lemma 10.5], for € € M it is enough to use P¢ in order to
understand V;gg. So let € (A k).

e i € limC : Then there is € € M such that [(€) > 0 and x(€) = p. By [13, Claim 10.7]

p remain a cardinal and by [13, Claim 10.3], 2# = p*3,

e 1 € C\limC: Then there is € € M such that I(€) = 0 and k(€) = pu. Let us € C
be the C-immediate predecessor of u. By the above replacement of Claim 10.6 we
have all cardinals in [ug, 3] are preserved and M3 = @'4, ons " = ué"5, ond’ = ugﬁ,

213" = 1 +3. In particular 2¢ > p+3.

e 1 ¢ C : Then there are ug and p1 two successive points in C such that p € (ug, p11). By

above, if € {ug, pug *, ug 3} then 2¢ = pt3 and if p € (ug®, ) then 2¢ > pf3 > pt.

We may note that the above argument also shows that all cardinals > X\ are preserved in
V[G], and since forcing with Pz adds no new bounded subsets to A, hence all cardinals are
preserved in V[G]. It is now clear that in V[G][H] all cardinals are preserved and that GCH
fails everywhere below (and at) .

O

Note that in the above proof, we have a fixed gap 3 on a club of cardinals below . It is
possible to weaken the hypotheses of Theorem 2.4.2 to k being H(k3)—strong and get the

same result as above. In this case we will get a fixed gap 2 on a club of cardinals below k:
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Theorem 2.4.3. Suppose that GCH holds and k is H(k3)— strong. Then there exists a
cardinal preserving generic extension of the universe in which k remains inaccessible and
VA <K, 20 > AT

See [4] for more details and the proof of the above theorem.
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2.5 Proof of Theorem 2.1.1

Suppose that K is the canonical inner model for a H(k*3)-strong cardinal . Let S be a
discrete set of measurable cardinals below k of size k, and for each a € S fix a normal
measure U, over a. Consider the forcing Pg and let (x4 : o € S) be Pg-generic over K. By
Theorem 2.2.2, r remains H(kT3)—strong in K|(z4 : a € S)], thus we can apply Theorem
2.3.1 to find a cofinality-preserving forcing P which adds a real R over K[(x, : a € S)] such
that K|(zo : a € S)|[R] = K[R] and k remains H(k+3)—strong in K[R]. By Theorem 2.4.8
there exists a cardinal-preserving forcing Q and a subset C C S,Q—generic over K[R] such
that in K[R][C], x remains inaccessible and for every A < k,2* > A*. We now define a new

sequence (Yo : € S) by

To ifa € C,
Ya =
ZTo — {min(zy)} otherwise .

By Lemma 2.2.1, (yo : a« € S) is Pg—generic over K. Let W = VK wae€S] g v = WIR].
Then

(1) W is a model of ZFC + GCH,

2) V = VEEIC and hence V = VA, 28 > AT

Theorem 2.1.1 follows.

25



Chapter 3

Forcing Easton’s theorem by

adding a real

3.1 Forcing Easton’s theorem by adding a real

In this chapter we show that assuming the existence of a proper class of measurable cardinals,

it 1s possible to force FEaston’s theorem by adding a single real. More precisely:

Theorem 3.1.1. ([{]) Let M be a model of ZFC + GCH+ there exists a proper class of
measurable cardinals. In M let F : REG — CARD be an Easton function, i.e a definable
class function such that
ok <\— F(rk) <F(X), and
o cf(F(K)) > k.
Then there exists a pair (W, V') of cardinal preserving extensions of M such that
(a) WETGCH™,
(b) V. =WIR] for some real R,

(¢) V E"VK € REG,2" > F(k)™.

The reason that in (c) we do not require equality is that it might be possible that F (k)
changes its cofinality in V to w, and then clearly 2 # F (k) in V. The rest of this chapter

18 devoted to the proof of the above Theorem.
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3.2 A class version of the Prikry product

Let S be a class of measurable cardinals which is discrete. Fix normal measures U, on «
for a in S. We define a class version of the Prikry product as follows.
Conditions in Pg are triples p = (XP, SP, HP) such that
(1) X? is a subset of S,
(2) 57 € [Laexrlo\ sup(S N a)]=*,
(3) H? € [laex» Uas
(4) supp(p) = {c: SP(a) # O} is finite,
(5) Yo € XP, maxSP(a) < minHP(a).
Let p,q € Pg. Thenp < q (p is an extension of q) iff
(1) XP D X1,
(2) Yo € X, 5P(a) is an end extension of S (w),
(3) Vo€ X9, 57(a) \ §%(a) € H(a),
(4)Va € X1, HP(a)) C HY ().
We also define an auxiliary relation <* on Pg as follows. Let p,q € Ps. Thenp <* q (p
is a direct or Prikry extension of q) iff
(1) XP D X1,
(2) Vo € X7, 5P(a) = S(a),
(3) Ya € X9, H?(a) € H(a).
For p < q in Ps we define the distance function |p — q| to be a function on X9 so that
fora € X% |p — q|(a) = 1(SP()) — (S cx)). Also let Pg | X = {p e Pg: XP C X}. Itis

clear that for any X C S,Pg ~ (Ps | X) x (Ps | S\ X).

Lemma 3.2.1. Pg is pretame: Given p € Pg and a definable sequence (D; : i < «) of dense
classes below p there exist ¢ < p and a sequence (d; : i < «) € V' such that each d; C D; is

predense below q.

Proof. Let pop = p and let g > «, dp ¢ S be such that XPe C §y. By repeatedly thinning the

measure one sets above §y we can find p; < pg and §; > g, 61 ¢ S such that:

1. X7 C 4,

27



2. py agrees with py below dg,

3. for any g < pg,q € Ps | dp and any i < « if ¢ has an extension r meeting D; which
agrees with ¢ below dg, then there is such an r € Pg | §; whose measure one sets

contain those of p;.

Now repeat this w—times, producing pg, p1, .... Let ¢ be <* p,,’s, n < w with X9 = XPn

n<w
obtained in the natural way. Also for each i < aset d; = D; [ 6, = {r | 0, : r € D;}, where
0w = SUPn<wdyn. We show that g and the sequence (d; : i < «) are as required.

Fix ¢ < a. Suppose r < ¢, € D;. Let n be large enough so that supp(r) Né, C §,. At
stage n + 1 we considered r | §,, and saw that it has an extension meeting D; and agreeing
with it below §,,, so it must have such an extension whose measure one sets contain those

of p,11 and therefore those of q. This extension is compatible with r and therefore r has an

extension which meets d;, as required. O

It follows from [2, Theorem 2.18], and the above Lemma that the forcing relation is

definable. The proof of the following lemma uses ideas from [12].

Lemma 3.2.2. (Pg, <,<*) has the Prikry property, i.e for each sentence ¢ of the forcing

language of (Pg, <), and any p € Pg there is ¢ <* p which decides ¢.

Proof. Suppose ¢ is a sentence of the forcing language, p € Pg. Let p = (XP,SP, HP), let
¢° denote ¢ and ¢' denote ¢.

By reflection and by strengthening p in the sense of <*, we may assume that X? = =,
where it is dense in Pg NV, to decide ¢.

For o < 7, let S, denote the set of S9 where g € Px nq. For s € Sq, set Fs o(d1,...,0,) =
¢ iff there is ¢ < p such that X9 =+, S? [ (X?\ {a}) = s, S9(a) = SP(a) * (01, ...0,) and
ql- ¢ Set Fs (61,...,6,) = 2 iff no such ¢ exists.

Let H(s,a) € H?(at), H(a) € Uy be homogeneous for Fi o, and let H(o) = ;s ) H(s, ).
Then H(a) € U, (as S is discrete) and we can set ¢ = (X9?,5% HY), where X? = XP,
S =S5P and HY(a) = H(a) for o € X9.

It is clear that ¢ <* p. We show that there is a <* extension of ¢ which decides ¢.

Suppose not. Let r < ¢ be such that r decides ¢. Suppose for example that r IF ¢. We may
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further suppose that r is so that |r — ¢| is minimal, and that X" = . We note that |r — ¢|
is not the O-funtion.

Let o < v be the maximum of supp(r), and let 7o be obtained from r by replacing
S™(e) with SP(«). We claim that 7 already decides ¢. For let w < rg, such that w IF —¢.
Let n denote |S"(a)|; We may assume that |S*(«)| > n. Let s denote S™ and d1,...d
denote S¥(«). Then r witnesses that Fs , has constant value 1 on [H(s,«)]™. Moreover,
{01,...0,} € [H(s,)]™. So there is r; such that r; - ¢, S™ | (X?\ {a}) = s and
S™(a) = {d1,...,0n}. It is easily checked that S™ and S* [ ~ are compatible, so r; and
w are compatible, contradicting that they decide ¢ differently. Thus, o already decides ¢,

contradicting the minimality of 7. O

We can now easily show that Pg preserves cardinals and the GCH. Also as in the usual
Prikry product a Pg—generic is uniquely determined by a sequence (x, : « € S) where each
To 18 an w—sequence cofinal in a. As before, with a slight abuse of terminology, we say that
(o : a € 8S) is Ps—generic. The following is an analogue of Lemma 2.2.1 and its proof is

essentially the same.

Lemma 3.2.3. (a) The sequence (x4 : « € S) obeys the following “geometric property” if

(Xo:a€8) is a definable class (in' V) and X, € Uy, for each a € S then |, cq%a \ Xa s

acs
finite.
(b) Conversely, suppose that (yo : a € S) is a sequence (in any outer model of V')

satisfying the geometric property stated above. Then (yo, : o € S) is Pg-generic over V.
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3.3 Proof of Theorem 3.1.1

Suppose M is a model of ZFC + GCH+ there exists a proper class of measurable cardinals.
Let S be a discrete class of measurable cardinals and for each o € S fix a normal measure
U, over a. Consider the forcing Ps and let (x4 : o € S) be Pg-generic over M. By Jensen’s
coding theorem (see [2]) there exists a cofinality-preserving forcing P which adds a real R
over M[(zo : @ € S)] such that M[(xy : o € S)|[R] = L[R]. In L[R] define the function
F*: REG — CARD by

F(r) if fF(w) £ o,
F(k)™ if cfF(k) = w.
Let R be the Faston forcing corresponding to F* for blowing up the power of each reqular
cardinal  to F*(k) and let C C S be R—generic over L[R].

We now define a new sequence (Yo, : o € S) by

Ty ifa e C,
Yo =
ZTo — {min(zq)} otherwise .

Using lemma 3.2.3, (Yo : « € S) is Ps—generic over M. Let W = M[(yq : « € S)], and
V = M[(yo : @« € S), R]. Then the pair (W,V) is as required.
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Chapter 4

Coding a real by two Cohen reals

in a cofinality preserving way

4.1 Coding a real by two Cohen reals

In this chapter we present a method for coding an arbitrary real by two Cohen reals in a

cofinality preserving way.

Theorem 4.1.1. ([1]) Suppose that R is a real in V. Then there are two reals a and b such
that

(a) a and b are Cohen generic over V,

(b) all of the models V,V[a],V[b] and V]a,b] have the same cofinalities,

(¢) R € Lla,bl.

Proof. Working in V', let a* be Add(w,1)—generic over V and let b* be Add(w, 1)—generic
over V[a*], where Add(w,1) is the Cohen forcing for adding a new real. Note that V]a*]
and V]a*,b*] are cofinality preserving generic extensions of V. Working in V]a*,b*] let
(kn : N < w) be an increasing enumeration of {N : a*(N) =0} and let a = a* and b= {N :
b*(N) =a*(N) =1}y U{kn : R(N) = 1}. Then clearly R € L[{ky : N < w),b] C L[a,b] as
R={N:kyeb).

We show that b is Add(w, 1)—generic over V. It suffices to prove the following
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For any (p, q) € Add(w, 1) * Add(w,1) and any dense
*) open subset D € V of Add(w,1) there exists (p, q) <
(p,q) such that (p,q)|—b extends some element of D.
Let (p, q) and D be as above. By extending one of p or ¢ if necessary, we can assume that
Ih(p) = lh(q). Let (kx : N < M) be an increasing enumeration of {N < lh(p) : p(N) = 0}.

Let s : lh(p) — 2 be such that considered as a subset of w,
s={N <lh(p):p(N)=q(N)=1}U{kny : N < M,R(N) = 1}.

Let t € D be such that ¢t < s. Extend p,q to p,q of length (A(t) so that for ¢ in the
interval [lh(s),lh(t))

o Gli)=1iffict.
Then
t={N <h(t): p(N)=q(N)=1}U{kn : N < M,R(N) = 1}.
Thus (p, q)||-" b extends t " and (*) follows. The theorem follows. O

The following theorems can be proved easily using Theorem 4.1.1 and the main results of

chapters 2 and 3.

Theorem 4.1.2. ([4]) Assume the consistency of an H(k*3)-strong cardinal k. Then there
exist a model W of ZFC and two reals a and b such that

(a) The models W, Wa], W[b] and Wla,b] have the same cardinals,

(b) Wla] and Wb] satisfy GCH,

(¢) GCH fails at all infinite cardinals in Wa,b).

Theorem 4.1.3. ([4/) Let M be a model of ZFC + GCH+ there exists a proper class of
measurable cardinals. In M let F : REG — CARD be an Easton function. Then there
exist a cardinal preserving generic extension W of M and two reals a and b such that

(a) The models W, Wa], W[b] and Wa,b] have the same cardinals,

(b) Wla] and Wb] satisfy GCH,

(c) Wla,b] E"Vk € REG,2" > F(k)™.
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Chapter 5

Adding a lot of Cohen reals by

adding a few

5.1 Adding X;—many Cohen reals by adding one

A basic fact about Cohen reals is that adding A—many Cohen reals cannot produce more than
A—many of Cohen reals. More precisely, if (ro : @ < A) are A—many Cohen reals over V,
then in V[(rq : a < \)] there are no \T—many Cohen reals over V.

But if instead of dealing with one universe V. we consider two, then the above may no

longer be true. In this section we prove the following:

Theorem 5.1.1. (/8]) Suppose that V satisfies GCH. Then there is a cofinality preserving
generic extension V1 of V satisfying GCH so that adding a Cohen real over Vi produces a
generic for the finite support product of Ny —many copies of Cohen forcing over V, and hence

adds Xy —many Cohen reals over V.

Proof. The basic idea of the proof will be to split w; into w sets such that none of them
will contain an infinite set of V. It turned out however that just not containing an infinite
set of V' is not enough. We will use a stronger property. As a result the forcing turns out
to be more complicated. We are now going to define the forcing sufficient for proving the

theorem. Fix a nonprincipal ultrafilter U over w.
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Definition 5.1.2. Let (Py,<,<*) be the Prikry (or in this context Mathias) forcing with
U, ie.

o Py ={(s,4) € [w]~ x U : maxs < min A},
o (t,B) < (s,A) <1t end extends s and (t\s) UB C A,
o (t,B) <* (s,A) <= t=s and B C A.

We call <* a direct or *—extension. The following are the basic facts on this forcing that

will be used further.

Lemma 5.1.3. (1) The generic object of Py is generated by a real,
(2) (Py, <) satisfies the c.c.c,
(8) If (s, A) € Py and b C w\(maxs + 1) is finite, then there is a x—extension of (s, A),

forcing the generic real to be disjoint to b.

Proof. 1. If G is Py—generic over V, then let r = |J{s: 34, (s, A) € G}. r is a real and
G ={(s,A) € Py : r end extends s and r\s C A}.

2. Trivial using the fact that for (s, A), (¢, B) € Py, if s = t then (s, A) and (¢, B) are

compatible.

3. Consider (s, A\(mazb+ 1)).

We now define our main forcing notion.

Definition 5.1.4. p € P iff p = (po, p1) where
(1) po € Py,
(2) p1 is a Py—name such that for some a < wy, pol—"p1 : @« — w™ and such that the

following hold

(2a) For every B < a, p1(B) C Py X w is a Py—name for a natural number such that
e p1(f) is partial function from Py into w,

o for some fized | < w, domgl(ﬁ) C {(s,w\mazs +1): s € [w]'},
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o for all B # P2 < a,rangl(ﬁl) N rangl(ﬁg) 18 finite.

(2b) for every countable I C o, I € V, py < po and finite J C w there is a finite set

a C « such that for every finite set b C I\a there is p{j <* p{, such that p{||-"(V

Be€bV kK€ J,£1(ﬁ) # k) &(VB # B2 € b>£1(ﬁ1) # £1(ﬁ2))7-

Notation 5.1.5. (1) Call a the length of p (or p1) and denote it by lh(p) (or lh(p1)).

(2) Forn < w let I,, be a Py—name such that pol|-"1,n = {8 < a: p1(B) = n}".

~

Then we can coincide py with (I, n :n < w).

Remark 5.1.6. (2a) will guarantee that for 8 < «, po||-"p1(8) € w™. The last condition
in (2a) is a technical fact that will be used in several parts of the argument. The condition

(2b) appears technical but it will be crucial for producing numerous Cohen reals.

Definition 5.1.7. Forp = (p0,£1>,q = (qo,gﬁ € P, define
e p<qiff
1. po <py qo;
2. 1h(q) < lh(p),
3. pol="Vn <w, Lyn=1,nNIh(q)"
e p <t qiff
1. po <p, qo;
2. p<gq.
we call <* a direct or *—extension.
Remark 5.1.8. In the definition of p < q, we can replace (3) by p0||—rg1 =p1 Ilh(g)™.

Lemma 5.1.9. Let (pg, p1)|~"« is an ordinal 7. Then there are Py—names § and g1

such that (po, 21> <* <p07£1> and <P0,gl>||*'_g =pn

Proof. Suppose for simplicity that (pg, p1) = ({(<>,w), ¢). Let 0 be large enough regular
and let (N, : n < w) be an increasing sequence of countable elementary submodes of Hy

such that P, o € Ny and N,, € Ny, 41 for each n < w. Let N = U N,, 6, = N, Nw; for

n<w
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n<wandd = U 0p = NNuw;. Let (J, : n <w) € Ny be a sequence of infinite subsets of
n<w
w\{0} such that U Jn = w\{0}, J,, C Jpt1, and Jp41\J, is infinite for each n < w. Also

n<w
let (o; : 0 < i < w) be an enumeration of § such that for every n < w, {a; : i € J,} € Npja

is an enumeration of §,, and {a; : ¢ € J,11} N, ={a; i € J,}.
We define by induction a sequence (p® : s € [w]<“) of conditions such that
o p* = (g, p1) = ({5, 4s), p1),
® p° € Ny(ihs—1)+1
® [h(p®) = Os(ths—1)+1;

e if ¢ does not contradict p§ (i.e if ¢ end extends s and t\s C Ag) then p' < p*.

For s =<>, let p<> = ((<>,w), ¢). Suppose that <># s € [w]<* and p*!""*~1 is defined.
We define p*. First we define 511751 <* pslths—1 a9 follows: If there is no *—extension of

p!ths=1 deciding o then let ¢*1hs=1 = pstths=1  Otherwise let t51"~1 € Njps_0)41 be

such an extension. Note that [A(t51"57) < 6 ps—2)11.

Let tsths=1 = (¢, t1),to= (s [lhs—1,A). Let C C w be an infinite set almost disjoint
to (rant 1(B): B <Ih(t1)). Split C into w infinite disjoint sets Cj, i < w. Let (¢ : j < w)
be an increasing enumeration of C;, i < w. We may suppose that all of these is done in
Ngns—1)+1- Let p* = (pg,g‘l"’), where

o pi = (s, A\(mazxs + 1)),

o for 3 <Ih(t1), pi(B) = t1(8),

e for i € J,ps—1) such that a; € dns—1)\l( 1)
g?(ai) = {((s (11, i), W\ (1 + 1)), Cir, ) 1 71 > max s, (11, ..., 1) € [w]z} )

Trivially p* € Nyns—1)+1, 1h(p®) = dsns—1), and if s(lhs — 1) € A, then p* < ¢slths=1,
Claim 5.1.10. p® € P.
Proof. We check conditions in Definition 5.1.4.

(1) i.e. p§ € Py is trivial.
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(2) It is clear that pg||—’_£‘1q : 0s(ths—1) — w ' and that (2a) holds. Let us prove (2b).
Thus suppose that I C §,qns—1), I €V, p < pj and J C w is finite. First we apply (2b) to
(p, t1),INIh(t1), pand J to find a finite set a’ C Ih(t 1) such that

(*) For every finite set b € I N1h(L1)\a’ there is p’ <* p such that p’

[="(VB € b,Vk € J, t1(B) # k)&(VB1 # B2 € b, £1(51) # t1(B2))™.
Let p = (s * (r1,...,rm), B). Suppose that d;qns—1)\lh(11) = {ay,,...,ay,,...} where

J1 < Jp < ...arein Jyqps—1). Let
a=d U{ag,..,ay }.

We show that a is as required. Thus suppose that b C I'\a is finite. Apply (*) to bNIh(t 1)

to find p/ = (s % (r1, ..., 7m), B') <* p such that
PI="(VB €bNIh(t1), Yk € J, 11(B) # k)&(VB1 # B2 € bNIA(L1), L1(B1) # L1(B2))
Also note that
P8 ebnih(ty), pi(B) = £1(B)™

Pick k£ < w such that
VBebNIh(t1), Yoy € B\IA(L1),ranpi(B1) N (ranpi(ci)\k) = ¢.

Let ¢ = (s % (r1,.cc,rm), B) = (s % (r1,...,;rm), B'\(max J + k + 1)). Then ¢ <* p’ <* p.

We show that ¢ is as required. wee need to show that
1. ql="98 € \h(21), 9k € J, pi(8) # k™,
2. q|-"VBy # B2 € WNIR(L1). pi(1) # pi(B2)
3. gV € bIA(£1). Y02 € NA(L1), pi(B1) # pi(B2).

Now (1) follows from the fact that ¢||-"p§(a;) > (i — m) — th element of B > maxJ™.
(2) follows from the fact that for i # j < w, C;NC; =0, and ranp;(a;) C C;. (3) follows

from the choice of k. The claim follows. O

This completes our definition of the sequence (p® : s € [w]<*). Let
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a1 =15, (B, pi(B)) : s € W], B < Ih(p*)}-
Then g, is a Py—name and for s € [w]<¥, p8||—'_£§ =0 [lh(gf)_‘.
Claim 5.1.11. <<<>,w>,g1> eP.
Proof. We check conditions in Definition 5.1.4.

(1) ie. (<>, w) € Py is trivial.

(2) It is clear from our definition that
(<>,w)|—"¢q1 is a well-defined function into w™.

Let us show that Ih(g1) = d. By the construction it is trivial that (h(g1) < . We show

that {h(q1) > 4. It suffices to prove the following
(*)  For every 7 < d and p € Py there is ¢ < p such that ¢||-"¢1(7) is defined ™.

Fix 7 < d and p = (s,A) € Py as in (*). Let ¢t be an end extension of s such that t\s C A
and dy(pe—1) > 7. Then pfy and p are compatible and pf)H—'—gl(T) = gﬁ(T) is defined 7. Let
q < p,p. Then q||—rg1(7') is defined 7 and (*) follows. Thus lh(gl) =4.

(2a) is trivial. Let us prove (2b). Thus suppose that I C §, I € V, p < (<>,w) and
J C w is finite. Let p = (s, A).

First we consider the case where s =<>. Let a = (). We show that a is as required.
Thus let b C I be finite. Let n € A be such that n > maxJ+ 1 and b C §,,. Let t = s x (n).

Note that

VB # B2 €D, mngﬁ(ﬁﬂ N mngﬁ(ﬂz) = 0.

Let ¢ = (<>, B) = (<>, A\(max J + 1)). Then ¢ <* p and ¢ is compatible with pf. We

show that ¢ is as required. We need to show that
1. q|-"VB e b, Vk € J, q1(B) # k7,

2. q||-"VBL # Be € bagvl(ﬂl) # q1(02)7

For (1), if it fails, then we can find (r, D) < q,pf), 3 € b and k € J such that (r, D) <* pf,
and {r, D) |-~ q1(8) = k™. But (r, D)= q1(8) = p1(8) = p'(8)", hence (r, D)™ p}(8) =

k7. This is impossible since minD > minB > maxJ. For (2), if it fails, then we can find
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(r,D) < q,p}y and 31 # (B2 € b such that (r, D) <* pj and <r7D>||—’_21(51) = gl(ﬂg)—'. As
above it follows that {(r, D)Hf'—!\)ﬁ(ﬂl) = 35(62)—'. This is impossible since for 51 # B2 € b,
ra,ngﬁ(ﬂl) N rangﬁ (B2) = (. Hence q is as required and we are done.

Now consider the case s #<>. First we apply (2b) to ¢*, I NIh(t%), p and J to find a
finite set o’ C [h(t®) such that

(**) For every finite set b C I NIh(t%)\a’ there is p’ <* p such that p’
[-"(Y8 € b,k € J, pi(8) # K)&e(¥Br # B2 € b, pi(B) # pi(52))”
Let t° = (to, £1);Os(ths—1)+1\Os(ihs—1) = {1Q1; Ay, ...}, Where Jp < Jo < ... are in

Js(lh8—1)+1' Define
/
a=a U {0(1, g, ..., O‘ths+1}'

We show that a is as required. First apply (**) to b N Ih(t?) to find p’ = (s, A’) <* p

such that
PI-"(VB e bNIh(t®),Vk € J,Ll(ﬂ) # k)&(Vp1 # B2 €bN lh(ts)7L1(51) #* L](ﬁQ))j.

Pick n € A’ such that n > maxzJ + 1 and b C §,, and let » = s* (n). Then
VB #£ Br € b\lh(ts),rangg(ﬁl) Nranpi(fa) = 0.
Pick k < w such that £ > n and
VB € bNIR(t%),V53: € b\lh(ts),rang’{(ﬁl) N (rang’{(ﬁg)\k) =.

Let ¢ = (s, B) = (s, A’\(mazJ + k + 1) U{n}). Then ¢ <* p’ <* p and ¢ is compatible
with pf (since n € B). We show that ¢ is as required. We need to prove the following

1. qH_rVﬁ S b7Vk S J7 Ql(ﬁ) 75 k—|7

2. q|I="VBy # B2 € B\IA(E%), q1(Br) # q1(B2)7,

3. qll="VB1 € bNVIA(E7), VP2 € D\IA(E®), q1(B1) # q1(F2)™.

The proofs of (1) and (2) are as in the case s =<>. Let us prove (3). Suppose that (3) fails.

Thus we can find (u, D) < ¢,pj, f1 € bNIA(t*) and By € b\Ih(¢®) such that (u, D) <* py
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and {u, D" q1(81) = q1(%)". But {u, D)= q:(8) = p3(8) = pi(8)7 for § € b, hence
(u, DY||-"p%(61) = pi(B2)". Now note that 8 = «; for some ¢ > lhs + 1, minD > n and

min(D\{n}) > k, hence by the construction of p”
(u, D>||—r£{'(ﬁg) > (i — lhs)—th element of D > k™.

By our choice of k, ranpi(51) N (ranpi(B2)\k) = @ and we get a contradiction. (3)

follows. Thus g is as required, and the claim follows. O

Let

B ={(p5,0) 5 € W<, (6 < 7. p*|-"@ =77}

Then [ is a Py—name of an ordinal.

~

Claim 5.1.12. ({(<>,w), q1)[-"a = "

~

Proof. Suppose not. There are two cases to be considered.

Case 1. There are (rg,r1) < <<<>,w>,g1> and 0 such that (ro, r1)||-"0 € o and
0 ¢ g—l' We may suppose that for some ordinal «, (7o, 71)[-"a = a”. Then 0 < a.
Let rg = (s, A). Consider p* = (pj, £§> Then p§ is compatible with 7o and there is a
x—extension of p® deciding a. Let t € Nyps—1)41 be the x—extension of p® deciding o
chosen in the proof of Claim 5.1.10. Let t = (to, £1),t0 = (s, B), and let v be such that

(to, t1)[-"a =~". Let n € AN B. Then

s#(n)

e py ', to and p§ are compatible and (s * (n), AN BN Ag,y,)) extends them,
° ps*(n> <t

Thus p**™|~"a =~7. Let u = (s * (n), AN BN Agm\(n+1)).

*(n)

Then u < pi*™ and ul[~"r1 extends pj which extends ¢:7. Thus (u, r1)

IN

t, <r0,£1>,p5*<">. It follows that @ = 7. Now § < v and p5*<”>|\—'—g = ~7. Hence
<p8*<n>,5) € E and p**(™||-"§ € ET This is impossible since (rq, 7 1)|[~"0 & g—‘.

Case 2. There are (rg,r1) < <<<>7w),g1> and § such that (rg, 71)||-"0 € £ and
d ¢ a'. We may further suppose that for some ordinal a, (ro,r1)|-"¢ = a. Thus

d > a. Let r = (s, A). Then as above p§ is compatible with r and there is a *—extension
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of p* deciding ¢. Choose t as in Case 1, t = (to, t1),to = (s, B) and let v be such that
(to, t1)|-"a = 7. Let n € AN B. Then as in Case 1, & = v and p>*W||-Ta = 47

On the other hand since (rg, 71)[~"0 € $7, we can find 5 such that 5 does not contradict

p8*<n>, (05, P) =" = 77 for some ¥ > 0 and (p§,d) € . Now 7 = v = a > § which is in
contradiction with § > a. The claim follows. O
This completes the proof of Lemma 5.1.9. O

Lemma 5.1.13. Let (po, p1)|-" f : w — On"'. Then there are Py—names g and q1 such

that (po, 1) <" (po, p1) and (po, ¢1)[I-"f = g™

Proof. For simplicity suppose that (pg, p1) = ((<>,w),d). Let 6 be large enough regular
and let (IV,, : n < w) be an increasing sequence of countable elementary submodels of Hy

such that P, f € Ny and N,, € N,,41 for every n < w. Let N = U N, 0, = N, Nw; for
n<w
n <wandd = U§n:Nﬂw1. Let (J, : n < w) € Np and (o; : 0 < ¢ < w) be as in

n<w

Lemma 5.1.9.

S

We define by induction a sequence (p* : s € [w]<*) of conditions and a sequence (3 :

s € [w]<¥) of Py—names for ordinals such that

o p* =5 p1) = ({8, w\(maxs + 1)), p1),

~

p°E Ns(lhsfl)Jrla

i lh(ps) > 5s(lhs—1)7

Pl f (s —1) = 3.7,

if ¢ end extends s, then p* < p°.

For s =<>, let p<> = ((<>,w),0). Now suppose that s <> and p*/""*~1 is defined.
We define p°. Let Csps—1 be an infinite subset of w almost disjoint to <ran£§”hsfl(ﬁ) :
B < Lh(p*1hs=1)). Split Cypps—1 into w infinite disjoint sets (Cgpns—14 ¢ t € [W]<¥ and ¢
end extends s [ lhs —1). Again split Csps—1,5 into w infinite disjoint sets (C; : ¢ < w). Let
(¢ij : j < w) be an increasing enumeration of C;, ¢ < w. We may suppose that all of these

is done in Nyps—1)+1- Let ¢° = (g5, gi}, where
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e g5 = (s,w\(maxs + 1)),
o for < lh(psuhsq)’ﬁ(ﬁ) _ pelths=1(g)
o for i € Jyps—1) such that o; € G5qps—1)\lR(p*I"*71)
gj(ai) = {{(s % (r1,....,ri),w\(ri + 1)), ¢ip,) : 11 > maxs, (r1,...,73) € [w]'}.

Then ¢° € Nygns—1)41 and as in the proof of claim 5.1.10, ¢° € P. By Lemma 5.1.9,
1) < (%, 1)

ps[lhs—l and

applied inside Ny(ps—1)41, we can find Py —names ES and £i such that (g, 3
<

and (g3, p7)[="f (lhs — 1) = B, Let p* = (pj, p7) = (g5, pi). Then p°

PI="f Tihs = {(G, Bapivr) i <lhs}™.

This completes our definition of the sequences (p® : s € [w]<¥) and (s : s € [w]<¥). Let

~

q1 = {<p8’ <ﬂv£‘i(ﬂ)>> HERS [w]<w7ﬂ < lh(ps)}v

g = A6 (G, Bsrir1)) s € [w]<¢,i < lhs}.

Then ¢; and g are Py—names.
Claim 5.1.14. ((<>,w), ¢1) € P.

Proof. We check conditions in Definition 5.1.4.
(1) i.e (<>, w) € Py is trivial.

(2) It is clear by our construction that

(<>,w)||~" ¢1 is a well-defined function

and as in the proof of claim 5.1.11, we can show that lh(gl) = ¢. (2a) is trivial. Let us prove
(2b). Thus suppose that I C 4§, I € V, p < (<>,w) and J C w is finite. Let p = (s, A). If
s =<>, then as in the proof of 5.1.11, we can show that a = () is a required. Thus suppose
that s £<>. First we apply (2b) to p*, I Nlh(p®), p and J to find @’ C lh(p®) such that
(*)  For every finite b C I Nlh(p®)\a’ there is p’ <* p such that p’
=798 € b,k € 7, pi(8) # WY1 # 2 € b pi(50) # pi(5))"

Let 0s(hs—1)+1\0s(ths—1) = {1y, -y gy, ...} where Jy < Jp < ... are in Jygps—1)4+1. Let
a=dU{ay,ay,..,ay, }
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We show that a is as required. Let b C I'\a be finite. First we apply (*) to bNih(p®) to

find p’ = (s, A’) <* p such that

PII="(Y8 € bNih(p®), Yk € J, pi(B) # k)&(VB1 # B2 € bNIA(P®), pi(B1) # pi(B2)) ™

Also note that for 8 € bNih(p®), P'||-"¢1(8) = p5(B))". Pick m such that maxs +
maxJ +1 <m < w and if ¢t end extends s and m < maxt, then C,, is disjoint to J and to
ranp$(0) for § € bNih(p®). Then pick n > m,n € A’ such that b C d,, and let t = s * (n).

Then
o Y # B € D\IA(p®), ranp! (B1) N ranpt (52) = 0,
o VA1 € b IA(p*),YB2 € D\IA(p®), ranp|(Br) Nranp|(Ba) =0,
o V3 € W\Ih(p*), ranp}(B) N.J = 0.

Let ¢ = (s, B) = (s, A"\(n + 1)). Then ¢ <* p’ <* p and using the above facts we can

show that

qll-" (VB € b,Vk € J721(5) = gﬁ(ﬁ) # k) &(VB1 # B2 € b,g1(ﬁ1) = fljﬁ(&) # }ﬁ(ﬁQ) =
q1(82))"

Thus ¢ is as required and the claim follows. O
Claim 5.1.15. ((<>,w), q)|-"f=g".

Proof. Suppose not. Then we can find (ro, r1) < ((<>,w), ¢1) and i < w such that
(ro, T )" f (i) # g(i)". Let ro = (s,A). Then ry is compatible with pj and ro[~" 11

extends p7. Hence (ro, 71) < (pg, p3) = p°. Now p5||f'—g(i) = ESHH = i(z)_‘ and we get

~

a contradiction. The claim follows. U
This completes the proof of Lemma 5.1.13. O

The following is now immediate.

Lemma 5.1.16. The forcing (P, <) preserves cofinalities.

Proof. By Lemma 5.1.13, P preserves cofinalities < w;. On the other hand by a A—system

argument, P satisfies the wy—c.c and hence it preserves cofinalities > ws. O
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Lemma 5.1.17. Let G be (P, <)—generic over V. Then V|G| = GCH.

Proof. By Lemma 5.1.13, V[G] = CH. Now let £ > wy. Then
@V < (IPf1))” < (297 = &7

The result follows. O

Now we return to the proof of Theorem 5.1.1. Suppose that G is (P, <)—generic over V,
and let Vi = V[G]. Then Vi is a cofinality and GCH preserving generic extension of V.
We show that adding a Cohen real over Vi produces ¥i—many Cohen reals over V. Thus
force to add a Cohen real over Vy. Split it into w Cohen reals over Vi. Denote them by
(Toym :my,m < w). Also let (f; i <wi) €V be a sequence of almost disjoint functions from

w into w. First we define a sequence (s, :1 < wi) of reals by
Vk <w, sn,i(k) =1, 1,a)(0).
Let (I, : n < w) be the partition of wy produced by G. For a < wy let

o n(a) = that n < w such that a € I,,,

e i(a) = that i < wy such that « is the i—th element of I,(a)-

We define a sequence (to : o < wi) of reals by to = Sp(a)i(a). The following lemma

completes the proof of Theorem 5.1.1.
Lemma 5.1.18. (t, : a < wi) is a sequence of Xy—many Cohen reals over V.

Notation 5.1.19. For each set I, let C(I) be the Cohen forcing notion for adding I—many
Cohen reals. Thus C(I) = {p : p is a finite partial function from I x w into 2}, ordered by

reverse inclusion.

Proof. First note that (ry, ., : n,m < w) is C(w x w)—generic over Vi. By c.c.c of C(w) it
suffices to show that for every countable I C wy, I € V, (t, : o € I) is C(I)—generic over
V. Thus it suffices to prove the following

For every {(po, £1>, q) € P+ C(w x w) and every open dense subset

() D eV of C(I), there is {{(go, 21>7r> < {{po, £1>,q> such that {{qo, g1>
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,M)|[="(t, s v € I) extends some element of D™
Let <<p0,£1>,q> and D be as above. Let a = supl. We may suppose that lh(gl) > a.
Let J = {n:3Im,k, (n,m, k) € domq}. We apply (2b) to (po, £1>, 1,pg and J to find a finite
set a C I such that:
(**)  For every finite b C I'\a there is pj <* pg such that p{||—" (V3

€b,Vk € J, p1(B) # k)&(Y # B2 € b, p1(B1) # p1(B2)"

Let
S={{wkj):veak<w,j<2(nw),fiu(k),0,j) € q}.

Then S € C(wy). Pick ko < w such that for all vy # v2 € a, and k > ko, fiw,)(k) # fiwo) (k)

Let
S*=SU{{v,k,0):ve€ak<krg, (vk,1) ¢ S}.

The reason for defining S* is to avoid possible collisions. Then S* € C(wy). Pick S** € D
such that §** < S*. Let b = {v : 3k, j, (v, k,j) € S**}\g. By (xx) there is p{, <* py such

that
poll-" (Vv € b, Vk € J,gl(v) # k)& (Vv £ 1y € b,gl(ul) + 21(1/2))—'.
Let pj < p be such that (py, P 1) decides all the colors of elements of a Ub. Let
q" = qU{(n), fiw)(k),0,57 (v, k)) : (v, k) € domS™}.
Then ¢* is well defined and ¢* € C(w x w). Now ¢* < g, <<p8,£1>,q*> < <<p07£1>,q> and
for (v, k) € domS**
(PG> p1) a)="S™ (v k) = ¢ (n(v), fi) (), 0) = L) fi () (0) = Lo (R)™.
It follows that
({5 £1>,q*>”_r<LV ;v € I) extends S**7.
(*) and hence Lemma 5.1.18 follows. O

This completes the proof of Theorem 5.1.1. O
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5.2 An impossibility result

In this section we prove the following result.

Theorem 5.2.1. ([9]) Suppose that Vi DV are such that Vi and V' have the same cardinals
and reals. Suppose W5 < the first fized point of the N—function. Then adding Ns—many

Cohen reals over V1 can not produce Ns11—many Cohen reals over V.

The above Theorem answers an open question from [6]. The proof follows from the next

two lemmas.

Lemma 5.2.2. Suppose that Vi OV are such that V1 and V have the same cardinals and
reals. Suppose Vs < the first fized point of the R—function, X C N5, X € V4 and |X| > 6T

(in V1). Then X has a countable subset which is in V.

Proof. By induction on § < the first fixed point of the N—function.

Case 1. 6 =0. Then X € V by the fact that V] and V have the same reals.

Case 2. § = 4§ + 1. We have § < N, , hence 67 < Nj, thus we may suppose that
|X| < Ry Let n = sup(X) < Rs. Pick f, : Ry < n,f, € V. Set Y = f-1"X. Then
Y C Ry, <Ny and |Y| > 6+ = §'*+. Hence by induction there is a countable set B € V
such that BCY. Let A = f;B. Then A € V is a countable subset of X.

Case 3. limit(5). Let (¢ : & < cfd) be increasing and cofinal in d. Pick { < ¢fd such
that |X0N5£| > 6. By induction there is a countable set A € V such that A C XN, C X

The lemma follows. O

Lemma 5.2.3. Suppose that Vi OV are such that

(a) Vi and V have the same cardinals and reals,

(b) k < X are infinite cardinals of Vi and cf¥1(X) # cfV1(k),

(c) there is no C € Vi such that C C A, |C| = X and [CNA| < Xg for every countable set
AeV.

Then adding k—many Cohen reals over Vi can not produce A\—many Cohen reals over V.

Proof. Suppose not. Let (r, : & < A) be a sequence of A—many Cohen reals over V' added

after forcing with C(x) over Vi. Let G be C(x)—generic over V;. For each p € C(k) set
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Cp = {a < X:pdecides 74(0)}.

Then by genericity A = Cp. Hence as c¢fV1(\) # c¢fV1 (k) we can find p € G such that

peG

|Cp| = . Suppose for simplicity that Vo € Cp, p||="14(0) = 07. By (c) there is a countable

set A € V such that A C Cp. Let ¢ € C(\) be such that
q|-""A € V is countable and Vo € A, T7a(0) =07

Pick (0, ) € w x A such that (0, a) ¢ supp(q). Let § = qU{{(0, ), 1)}. Then § € C()A),q <

q
and q||-"14(0) = 17 which is a contradiction. O
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