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Abstract

In chapter 1 we study Shelah’s strong covering property and its applications to pairs (W,V )

of models of ZFC with V = W [R], R a real. The results in the first section of this chapter

are due to Shelah [14]. The last section presents a result of Vanliere [16].

In chapter 2 we show that it is possible to violate GCH at all infinite cardinals by adding

a single real to a model of GCH. Our assumption is the existence of an H(κ+3)−strong

cardinal κ. By work of Gitik and Mitchell [10] more than an H(κ++)−strong cardinal is

required.

In chapter 3 it is shown that it is possible to force Easton’s theorem by adding a single

real to a model of GCH. Our assumption is the existence of a proper class of measurable

cardinals which is optimal by results of Chapter 1.

In chapter 4 we present a method for coding an arbitrary real by two Cohen reals in

a cofinality preserving way. We use this result to prove another variant of the results of

chapters 2 and 3.

In chapter 5 we study the effects of adding Cohen reals to models of set theory. We show

that it is possible to have a pair (V, V1) of models of ZFC with the same cofinalities so that

adding one Cohen real over V1 adds ℵ1−many Cohen reals over V. We also show that if

V ⊆ V1 have the same cardinals and reals, then below the first fixed point of the ℵ−function

adding ℵδ−many Cohen reals over V1 can not produce more than ℵδ−many Cohen reals

over V.
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Chapter 1

Shelah’s strong covering property

and its applications

1.1 Shelah’s strong covering property

In this chapter we study Shelah’s strong covering property and give some of its applications.

By a pair (W,V ) we always mean a pair (W,V ) of models of ZFC with the same ordinals

such that W ⊆ V.

Let us give the main definition.

Definition 1.1.1. (1) (W,V ) satisfies the strong (λ, α)−covering property, where λ is a

regular cardinal of V and α is an ordinal, if for every model M ∈ V with universe α (in a

countable language) and a ⊆ α, | a |< λ (in V ), there is b ∈ W such that a ⊆ b ⊆ α, b ≺ M,

and | b |< λ (in V ). (W,V ) satisfies the strong λ−covering property if it satisfies the strong

(λ, α)−covering property for every α.

(2) (W,V ) satisfies the strong (λ∗, λ, κ, µ)−covering property, where λ∗ ≥ λ ≥ κ are

regular cardinals of V and µ is an ordinal, if player one has a winning strategy in the

following game, called the (λ∗, λ, κ, µ)−covering game, of length λ:

In the i−th move player I chooses ai ∈ V such that ai ⊆ µ, | ai |< λ∗ (in V ) and⋃
j<i bj ⊆ ai, and player II chooses bi ∈ V such that bi ⊆ µ, | bi |< λ∗ (in V ) and

⋃
j≤i aj ⊆
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bi.

Player I wins if there is a club C ⊆ λ such that for every δ ∈ C ∪ {λ}, cf(δ) = κ ⇒⋃
i<δ ai ∈ W. (W,V ) satisfies the strong (λ∗, λ, κ,∞)−covering property, if it satisfies the

strong (λ∗, λ, κ, µ)−covering property for every µ.

The following theorem shows the importance of the first part of this definition and plays

an important role in the next section.

Theorem 1.1.2. Suppose V = W [R], R a real and (W,V ) satisfies the strong (λ, α)−covering

property for α < ([(2<λ)W ]+)V . Then (2<λ)V = |(2<λ)W |V .

Proof. Cf. [14, Theorem VII.4.5].

It follows from Theorem 1.1.2 that if V = W [R], R a real and (W,V ) satisfies the strong

(λ+, ([(2λ)W ]+)V )−covering property, then (2λ)V = |(2λ)W |V .

We are now ready to give the applications of the strong covering property. For a pair

(W,V ) of models of ZFC consider the following conditions:

(1κ) : • V = W [R], R a real,

• V and W have the same cardinals ≤ κ+,

• W |= p∀λ ≤ κ, 2λ = λ+q,

• V |= p2κ > κ+q.

(2κ) : W |= pGCHq.

(3κ) : V and W have the same cardinals.

Theorem 1.1.3. (1) Suppose there is a pair (W,V ) satisfying (1ℵ0) and (2ℵ0). Then ℵV
2

in inaccessible in L.

(2) Suppose there is a pair (W,V ) as in (1) with V |= p2ℵ0 > ℵ2q. Then 0] ∈ V .

(3) Suppose there is a pair (W,V ) as in (1) with CARDW ∩ (ℵV
1 ,ℵV

2 ) = ∅. Then 0] ∈ V .

(4) Suppose κ > ℵ0 and there is a pair (W,V ) satisfying (1κ). Then 0] ∈ V.

Before we give the proof of Theorem 1.2.1 we state some conditions which imply Shelah’s

strong covering property. Suppose that in V, 0] does not exist. Then:

(α) If λ∗ ≥ ℵV
2 is regular in V , then (W,V ) satisfies the strong λ∗−covering

property.

5



(β) If CARDW ∩ (ℵV
1 ,ℵV

2 ) = ∅ then (W,V ) satisfies the strong ℵV
1 −covering

property.

Remark 1.1.4. For λ∗ ≥ ℵV
3 , (α) follows from [14, Theorem VII.2.6], and (β) follows from

[14, Theorem VII.2.8]. In order to obtain (α) for λ∗ = ℵV
2 we can proceed as follows: As in

the proof of [14, Theorem VII.2.6] proceed by induction on µ to show that (L, V ) satisfies the

strong (ℵV
2 ,ℵV

1 ,ℵV
0 , µ)−covering property. For successor µ (in L) use [14, Lemma VII.2.2]

and for limit µ use [14, Remark VII.2.4](instead of [14, Lemma VII.2.3]). It then follows

that (L, V ) and hence (W,V ) satisfies the strong ℵV
2 −covering property.

Proof of Theorem 1.2.1.

1. We may suppose that 0] /∈ V. Then by (α), (W,V ) satisfies the strong ℵV
2 −covering

property. On the other hand by Jensen’s covering lemma and [14, Claim VII.1.11], W

has squares. By [14, Theorem VII.4.10], ℵV
2 is inaccessible in W , and hence in L.

2. Suppose not. Then by (α), (W,V ) satisfies the strong ℵV
2 −covering property. By

Theorem 1.1.2, (2ℵ0)V ≤ (2ℵ1)V = |(2ℵ1)W |V = |ℵW
2 | = ℵV

2 , which is a contradiction.

3. Suppose not. Then by (β), (W,V ) satisfies the strong ℵV
1 −covering property, hence by

Theorem 1.1.2, (2ℵ0)V = |(2ℵ0)W |V = ℵV
1 , which is a contradiction.

4. Suppose not. Then by (α), (W,V ) satisfies the strong κ+−covering property. By

Theorem 1.1.2, (2κ)V = |(2κ)W |V = κ+, and we get a contradiction.

Theorem 1.1.5. (1) Suppose there is a pair (W,V ) satisfying (1κ), (2κ) and (3κ). Then

there is in V an inner model with a measurable cardinal.

(2) Suppose there is a pair (W,V ) satisfying (1κ), where κ ≥ ℵω. Further suppose that

κ++
W = κ++

V and (W,V ) satisfies the κ+−covering property. Then there is in V an inner

model with a measurable cardinal.

Proof. 1. Suppose not. Then by [14, conclusion VII.4.3(2)], (W,V ) satisfies the strong

κ+−covering property, hence by Theorem 1.1.2, (2κ)V = |(2κ)W |V = κ+, which is a

contradiction.
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2. Suppose not. Let κ = µ+n, where µ is a limit cardinal, and n < ω. By [14, Theorem

VII.2.6, Theorem VII.4.2(2) and Conclusion VII.4.3(3)], we can show that (W,V )

satisfies the strong (κ+, κ,ℵ1, µ)−covering property. On the other hand since (W,V )

satisfies the κ+−covering property and V and W have the same cardinals ≤ κ+, (W,V )

satisfies the µ+i−covering property for each i ≤ n+1. By repeatedly use of [14, Lemma

VII.2.2], (W,V ) satisfies the strong (κ+, κ,ℵ1, κ
++)−covering property, and hence the

strong (κ+, κ++)−covering property. By Theorem 1.1.2, (2κ)V = |(2κ)W |V = κ+,

which is a contradiction.

Remark 1.1.6. In [14] (see also [15]), Theorem 1.2.3(1), for κ = ℵ0, is stated under the

additional assumption 2ℵ0 > ℵω in V .
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1.2 On a theorem of Vanliere

In this section we prove the following result of Vanliere [16]:

Theorem 1.2.1. Assume V = L[X, R] where X ⊆ ωn for some n < ω, and R ⊆ ω. If

L[X] |= pZFC + GCHq and the cardinals of L[X] are the true cardinals, then GCH holds

in V .

Proof. Let κ be an infinite cardinal. We prove the following:

(∗κ) : For any Y ⊆ κ there is an ordinal α < κ+ and

a set Z ∈ L[X], Z ⊆ κ such that Y ∈ Lα[Z,R].

Then it will follow that P(κ) ⊆
⋃

α<κ+

⋃
Z∈PL[X](κ) Lα[Z,R], and hence

2κ ≤
∑

α<κ+

∑
Z∈PL[X](κ) | Lα[Z,R] |≤ κ+.(2κ)L[X].κ = κ+,

which gives the result. Now we return to the proof of (∗κ).

Case 1. κ ≥ ℵn.

Let Y ⊆ κ. Let θ be large enough regular such that Y ∈ Lθ[X, R]. Let N ≺ Lθ[X, R]

be such that | N |= κ, N ∩ κ+ ∈ κ+ and κ ∪ {Y, X,R} ⊆ N . By the condensation lemma

there are α < κ+ and π such that π : N ∼= Lα[X, R]. then Y = π(Y ) ∈ Lα[X, R]. Thus (∗κ)

follows.

Case 2. κ < ℵn.

We note that the above argument does not work in this case. Thus another approach is

needed. To continue the work, we state a general result (again due to Vanliere) which is of

interest in its own sake.

Lemma 1.2.2. Suppose µ ≤ κ < λ ≤ ν are infinite cardinals, λ regular. Suppose that

a ⊆ µ, Y ⊆ κ, Z ⊆ λ, and X ⊆ ν are such that V = L[X, a], Z ∈ L[X], Y ∈ L[Z, a] and

λ+
L[X] = λ+. Then there exists a proper initial segment Z

′
of Z such that Z

′ ∈ L[X] and

Y ∈ L[Z
′
, a].

Proof. Let θ ≥ ν be regular such that Y ∈ Lθ[Z, a]. Let N ≺ Lθ[Z, a] be such that | N |=

λ, N ∩λ+ ∈ λ+ and λ∪{Y,Z, a} ⊆ N . By the condensation lemma we can find δ < λ+ and

π such that π : N ∼= Lδ[Z, a].
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In V , let 〈Mi : i < λ〉 be a continuous chain of elementary submodels of Lδ[Z, a] with

union Lδ[Z, a] such that for each i < λ, Mi ⊇ κ, | Mi |< λ and Mi ∩ λ ∈ λ.

In L[Z] let 〈Wi : i < λ〉 be a continuous chain of elementary submodels of Lδ[Z] with

union Lδ[Z] such that for each i < λ,Wi ⊇ κ, | Wi |< λ and Wi ∩ λ ∈ λ

Now we work in V . Let E = {i < λ : Mi∩Lδ[Z] = Wi}. Then E is a club of λ. Pick i ∈ E

such that Y ∈ Mi, and let M = Mi, and W = Wi. By the condensation lemma let η < λ

and π̄ be such that π̄ : M ∼= Lη[Z
′
, a] where Z

′
= π̄[M ∩Z] = π̄[(M ∩λ)∩Z] = (M ∩λ)∩Z,

a proper initial segment of Z. Then Y = π̄(Y ) ∈ Lη[Z
′
, a] and Z

′ ⊆ η < λ. It remains to

observe that Z
′ ∈ L[X] as Z

′
is an initial segment of Z. The lemma follows.

We are now ready to complete the proof of Case 2. By Lemma 1.3.2 we can find a

bounded subset Xn of ωn such that Xn ∈ L[X] and Y ∈ L[Xn, R]. Now trivially we

can find a subset Zn−1 of ωn−1 such that L[Xn] = L[Zn−1], and hence Zn−1 ∈ L[X] and

Y ∈ L[Zn−1, R]. Again by Lemma 1.3.2 we can find a bounded subset Xn−1 of ωn−1 such

that Xn−1 ∈ L[X] and Y ∈ L[Xn−1, R], and then we find a subset Zn−2 of ωn−2 such that

L[Xn−1] = L[Zn−2]. In this way we can finally find a subset Z of κ such that Z ∈ L[X] and

Y ∈ L[Z,R]. Then as in case 1, for some α < κ+, Y ∈ Lα[Z,R] and (∗κ) follows.
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Chapter 2

Killing the GCH everywhere with

a single real

2.1 Killing the GCH everywhere with a single real

Shelah-Woodin [15] investigate the possibility of violating instances of GCH through the

addition of a single real. In particular they show that it is possible to obtain a failure of

CH by adding a single real to a model of GCH, preserving cofinalities. In this chapter we

bring this work to its natural conclusion by showing that it is possible to violate GCH at

all infinite cardinals by adding a single real to a model of GCH.

Theorem 2.1.1. ([4]) Assume the consistency of an H(κ+3)-strong cardinal κ. Then there

exists a pair (W,V ) of models of ZFC such that

(a) W and V have the same cardinals,

(b) GCH holds in W,

(c) V = W [R] for some real R,

(d) GCH fails at all infinite cardinals in V.

The above Theorem answers an open question from [15]. The rest of this chapter is

devoted to the proof of the above Theorem.
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2.2 Prikry products

Assume GCH and suppose that S is a set of measurable cardinals which is discrete, i.e.,

contains none of its limit points. Fix normal measures Uα on α for α in S. Then PS denotes

the Prikry product of the forcings Pα, α ∈ S, where Pα is the Prikry forcing associated

with the measure Uα. A PS-generic is uniquely determined by a sequence (xα : α ∈ S),

where each xα is an ω-sequence cofinal in α. With a slight abuse of terminology, we say that

(xα : α ∈ S) is PS-generic.

Lemma 2.2.1. (Fuchs [5], Magidor [12]) Suppose that 〈xα : α ∈ S〉 is PS-generic over V .

(a) V and V [〈xα : α ∈ S〉] have the same cardinals.

(b) The sequence 〈xα : α ∈ S〉 obeys the following “geometric property”: If 〈Xα : α ∈ S〉

belongs to V and Xα ∈ Uα for each α ∈ S, then
⋃

α∈S xα \Xα is finite.

(c) Conversely, suppose that 〈yα : α ∈ S〉 is a sequence (in any outer model of V ) satisfying

the geometric property stated above. Then 〈yα : α ∈ S〉 is PS-generic over V .

(d) Suppose α ∈ S, p ∈ PS and 〈Φγ : γ < η〉 is a sequence of statements of the forcing

language for PS where η < α. Then there exists q ≤∗ p such that q � α = p � α and for each

γ < η if r ≤ q and r decides Φγ , then (r � α) ∪ (q � [α, κ)) (where κ = sup(S)) decides Φγ

in the same way.

Theorem 2.2.2. Suppose that κ is H(κ+3)-strong and S is a discrete set of measurable

cardinals less than κ. Then after forcing with PS, κ remains H(κ+3)-strong.

Proof. Suppose that j : V → M ⊇ H(κ+3), crit(j) = κ is an elementary embedding

witnessing the H(κ+3)−strength of κ. We can assume that j is derived from an extender

E = 〈Ea : a ∈ [κ+3]<ω〉. Then for each a ∈ [κ+3]<ω, Ea is a κ−complete ultrafilter on [κ]|a|

and if ja : V → Ma
∼= Ult(V,Ea) is the corresponding elementary embedding then for all

B ⊆ [κ]|a|, we have B ∈ Ea ⇔ a ∈ ja(B). We also have an embedding ka : Ma → M such

that ka ◦ ja = j.

We show that κ remains H(κ+3)−strong in the generic extension by PS . The proof uses

ideas from [11] and [12]. Let G be PS−generic over V . Also let δ = min(j(S)− κ) > κ.

Working in V [G], we define for each a ∈ [κ+3]<ω1 , E∗
a as follows: Let ξ = o.t(a), and let
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ȧ be a PS−name for a such that

‖−pȧ ⊆ κ+3 and o.t(ȧ) = ξq

For p ∈ PS define p‖−pḂ ∈ Ė∗
aq iff

(1) p‖−pḂ ⊆ [κ]ξq,

(2) there exists q ≤∗ j(p) in j(PS) such that q � δ = j(p) � δ = p, and q‖−Mpȧ ∈ j(Ḃ)q.

Let E∗
a = Ė∗

a[G]. It is easily seen that the above definition is well-defined.

Lemma 2.2.3. (a) E∗
a is a κ−complete non-principal ultrafilter on [κ]ξ,

(b) If a ∈ V is finite, then E∗
a extends Ea,

Proof. (a) We just prove that E∗
a is κ−complete. Suppose that p ∈ PS and p‖−p[κ]ξ =⋃

{Ḃγ : γ < η}q where η < κ. Then j(p)‖−Mp[j(κ)]ξ =
⋃
{j(Ḃγ) : γ < η}q.

Working in M consider δ, j(p) and the sequence (Φγ : γ < η) of sentences where for each

γ < η,Φγ is “ ȧ ∈ j(Ḃγ)” It then follows from Lemma 2.1.(d) that there is q ≤∗ j(p) in j(PS)

such that for each γ < η

• q � δ = j(p) � δ = p,

• if r ≤ q and r decides Φγ , then (r � δ) ∪ (q � [δ, j(κ)) decides Φγ in the same way.

Now q‖−Mpȧ ∈ [j(κ)]ξ =
⋃
{j(Ḃγ) : γ < η}q and hence we can find r ≤ q and γ < η such

that r‖−pΦγq. Let t = (r � δ) ∪ (q � [δ, j(κ)). It is now easy to show that t � δ ≤ p and

t � δ‖−pḂγ ∈ Ė∗
aq. This completes the proof of the κ−completeness of E∗

a.

(b) Suppose a ∈ V is finite. Let B ∈ Ea and p ∈ PS . We show that p‖−pB ∈ Ė∗
aq.

Let q = j(p). Then q has the required properties in the definition above which gives the

result.

In V [G], for each a ∈ [κ+3]<ω1 let j∗a : V [G] → M∗
a ' Ult(V [G], E∗

a) be the corresponding

elementary embedding. Also for a ⊆ b let ka,b : M∗
a → M∗

b be the natural induced elementary

embedding. Let

〈M∗, 〈k∗a : a ∈ [κ+3]<ω1〉〉 = dirlim〈〈M∗
a : a ∈ [κ+3]<ω1〉, 〈k∗a,b : a ⊆ b〉〉.

Also let j∗ : V [G] → M∗ be the induced embedding.
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Lemma 2.2.4. M∗ is well-founded

Proof. Suppose not. Then there is a sequence (mi : i < ω) of elements of M∗ such that

... ∈∗ m2 ∈∗ m1 ∈∗ m0

where ∈∗=∈M∗ . For each i < ω choose ai and fi such that mi = k∗ai
([fi]E∗

ai
). Let a =⋃

{ai : i < ω}. Then a ∈ [κ+3]<ω1 and for some gi,mi = k∗a([gi]E∗
a
). It then follows from the

elementarity of k∗a that

... ∈ [g2]E∗
a
∈ [g1]E∗

a
∈ [g0]E∗

a
.

This is in contradiction with Lemma 2.3 which implies M∗
a is well-founded. Thus M∗ is

well-founded and the lemma follows.

If now we restrict ourself to E∗
a for finite a, then the smaller direct limit embeds into

the full direct limit and is therefore well-founded. From now on, let M∗ denote the smaller

direct limit; accordingly each E∗
a is now given by the usual extender definition and j∗ is the

ultrapower embedding.

Note that j∗ : V [G] → M∗ is an elementary embedding with critical point κ. We show

that it is an H(κ+3)−strong embedding. For this it suffices to show that H(κ+3)V [G] ⊆ M∗.

But since H(κ+3)V [G] = H(κ+3)[G], it suffices to show that H(κ+3) ⊆ M∗ and G ∈ M∗.

For this purpose we introduce some special functions in V . Let F : κ → κ be defined by

F (α) = α+3. Then j(F )(κ) = κ+3. Now for each a ∈ [κ+3]<ω with κ ∈ a and |a| = n define

the function Ga : [κ]n → κ by G(α1, ..., αn) = α+3
i where κ is the i−th element of a. It is

clear that j(Ga)(a) = j(F )(κ) = κ+3. Also let r : κ → H(κ) be defined by r(α) = H(α).

Suppose f : [κ]n → H(κ)V [G] is in V [G] and a is a finite subset of κ+3 containing κ. We

say the pair (f, a) has the property (∗) iff

{γ : f(γ) ∈ r ◦Ga(γ)} ∈ E∗
a. 1

We have the following easy lemma.

Lemma 2.2.5. (a) If j∗(f)(a) = j∗(g)(b) where κ is an element of both a and b, then (f, a)

has the property (∗) iff (g, b) has the property (∗),
1It can be shown that (f, a) has property (∗) iff [f ]E∗

a
represents an element of H(κ+3) in M∗

a .
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(b) If (f, a) has the property (∗) and j∗(g)(b) ∈ j∗(f)(a) for some b containing κ, then

(g, b) has the property (∗).

Lemma 2.2.6. If (f, a) has the property (∗), then there is a function h : [κ]m → H(κ) in

V and a finite set b ⊆ κ+3 such that j∗(f)(a) = j∗(h)(b).

Proof. Let B = {γ : f(γ) ∈ r ◦ Ga(γ)}. Since (f, a) has the property (∗), B ∈ E∗
a. Let Ḃ

be a name for B and let p‖−pḂ ∈ Ė∗
aq. This means that there is some q ≤∗ j(p) such that

q � δ = j(p) � δ = p and q‖−Mpa ∈ j(Ḃ)q. Hence we have q‖−Mpj(ḟ)(a) ∈ j(r ◦ Ga)(a) =

H(κ+3)q.

For each c ∈ H(κ+3) let Φc be the sentence “j(ḟ)(a) = c”. By applying Lemma 2.1.(d)

we can find r ≤∗ q such that for every c ∈ H(κ+3)

• r � δ = q � δ = p,

• if s ≤ r and s decides Φc then (s � δ) ∪ (r � [δ, j(κ))) decides Φc in the same way.

Now r‖−Mpj(ḟ)(a) ∈ j(r ◦Ga)(a) = H(κ+3)q, hence there are s ≤ r and c ∈ H(κ+3) such

that s‖−pΦcq. Let t = (s � δ) ∪ (r � [δ, j(κ))). By above, t‖−MpΦcq.

Since c ∈ H(κ+3), there is a function h : [κ]m → H(κ) and a finite b ⊆ κ+3 such that

c = j(h)(b). Thus t‖−Mpj(ḟ)(a) = j(h)(b)q and the result follows.

Define the sets X and X∗ as follows

X = {j(f)(a) : (f, a) is in V and has the property (∗)},

X∗ = {j∗(f)(a) : (f, a) is in V [G] and has the property (∗)}.

It follows from Lemma 2.5 that X and X∗ are transitive.

Lemma 2.2.7. If (f, a) has the property (∗) and f ∈ V, then j∗(f)(a) = j(f)(a).

Proof. Define Φ : X → X∗ by Φ(j(f)(a)) = j∗(f)(a). Then:

(1) Φ is well-defined: To see this suppose that j(f)(a) = j(g)(b). We may further suppose

that a = b. It then follows that j(f)(a) = ka([f ]Ea) = ka([g]Ea) = j(g)(b), and hence

B = {x : f(x) = g(x)} ∈ Ea. By Lemma 2.3(b), B ∈ E∗
a and hence j∗(f)(a) = k∗a([f ]E∗

a
) =

k∗a([g]E∗
a
) = j∗(g)(b).

(2) Φ preserves the ∈ relation: As in (1).
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Thus Φ is an isomorphism, and since both of X and X∗ are transitive, it must be the

identity. The lemma follows.

Lemma 2.2.8. H(κ+3) ⊆ M∗.

Proof. We have H(κ+3) ⊆ X ⊆ X∗ ⊆ M∗.

Lemma 2.2.9. G ∈ M∗

Proof. First note that PS ∈ H(κ+3) ⊆ M∗. Define f : κ → H(κ)V [G] by f(α) = Gα, where

Gα = G∩H(α) is PS ∩H(α)−generic over V . Show that G = j∗(f)(κ), and hence G ∈ M∗.

By maximality of G it suffices to show that G ⊆ j∗(f)(κ).

Let p ∈ G. Choose h : [κ]n → H(κ) in V and a finite set a ⊆ κ+3 containing κ

such that p = j(h)(a). Then by Lemma 2.7 p = j∗(h)(a). Define fa(α1, ..., αn) = f(αi),

where κ is the i−th element of a. Then j∗(fa)(a) = j∗(f)(κ). Now we have to prove that

j∗(h)(a) ∈ j∗(fa)(a).

Let ḟa be a PS−name for fa such that ‖−PS
pḟa(α1, ..., αn) = ˙Gαi

q. Then ‖−j(PS)pj(ḟa)(a) =

Ġq and hence ‖−j(PS)pj(h)(a) ∈ j(ḟa)(a)q. The lemma follows.
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2.3 Coding

Friedman [3] presents a method for creating reals which are class-generic (but not set-generic)

over a sufficiently L-like model, preserving Woodin cardinals. A similar method can be used

to preserve strong cardinals. However the general problem of coding a predicate into a real

while preserving large cardinal properties is open; we show here that this is possible if the

predicate is a sequence which is generic for a discrete Prikry product.

Theorem 2.3.1. Suppose that K is the canonical inner model for an H(κ+3)-strong cardinal

κ. Suppose that S is the discrete set consisting of those measurable cardinals less than κ in

K which are not limits of measurable cardinals in K. Also let (xα : α ∈ S) be PS-generic

over K for the measures (Uα : α ∈ S), where Uα is the unique normal measure on α in K.

Then there is a cofinality-preserving set-forcing P for adding a real R over K[(xα : α ∈ S)]

such that K[(xα : α ∈ S)][R] = K[R] and κ remains H(κ+3)-strong in K[R].

Proof. We will follow the proof of Jensen’s coding theorem from [2], section 4.2, making use

of Lemma 2.2.1 to argue that the relevant Σ1 Skolem hulls taken with respect to certain

initial segments of K are also Σ1 elementary when the Prikry product generic is adjoined.

We must impose some minor changes to the notion of “string s” and to the coding structures

As, Ãs, but for the most part the argument remains the same. The preservation of H(κ+3)-

strength is based on ideas from [3].

We work in L[E][(xα : α ∈ S)] where K = L[E] is a fine-structural inner model built

from the sequence E of (partial) extenders. Abbreviate (xα : α ∈ S) as ~x and for any β let

~x(≤ β) denote (xα : α ∈ S, α ≤ β). We may also assume that for α in S, the min of xα is

greater than the supremum of S ∩ α, using the discreteness of the set S. Let A denote the

union of the xα, α ∈ S.

Card denotes the class of infinite cardinals. For α in Card we define the ordinals µ<η, µη

by induction on η ∈ [α, α+). An ordinal µ is a ZF− ordinal iff Lµ[E, ~x(≤ α)] is a model of

ZF minus Power Set. Define: µ<η = ∪{µξ : ξ < η}∪α, µη = the least limit of ZF− ordinals

µ such that µ is greater than µ<η and, setting Aη = Lµ[E, ~x(≤ α)] we have that Aη |= α is

the largest cardinal.
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Sα, the set of strings at α consists of all s : [α, |s|) → 2, α ≤ |s| < α+, such that |s| is

a multiple of α and s belongs to A|s|. We write s ≤ t when t extends s and s < t when t

properly extends s. For s ∈ Sα we write As for A|s| and µs for µ|s|.

For later use (see “Limit Precoding”) we also define µ̃s < µs to be the least ZF− ordinal

µ greater than µ<|s| such that the structure Lµ[E, ~x(≤ α)] contains s and satisfies that

α is the largest cardinal. The resulting structure Ãs = Lµ̃s [E, x(≤ α)] is a proper initial

segment of As and, like As, each element of Ãs is Σ1 definable in Ãs from parameters in

α ∪ {~x(≤ α), s}. (We say that Ãs, As are Σ1 projectible to α with parameters ~x(≤ α), s.)

To set up the coding we need the functions fs, defined as follows: For α an uncountable

cardinal, s in Sα and i < α let Hs(i) denote the Σ1 Skolem hull of i ∪ {~x(≤ α), s} in As.

Then fs(i) is the ordertype of Hs(i)∩Ord. For α a successor cardinal we define the coding

set bs to be the range of fs � Bs where Bs consists of the successor elements of {i < α : i is

a limit of j such that j = Hs(j) ∩ α}.

We describe a cofinality-preserving forcing which codes K[~x] into K[X] for some X ⊆ ω1,

preserving the H(κ+3)-strength of κ. Then a simple c.c.c forcing can be used to code X into

the desired real R.

We need a partition of the ordinals into four pieces: Let B,C,D, F denote the classes

of ordinals which are congruent to 0, 1, 2, 3 mod 4, respectively (The letters A and E are

already used for other purposes). For any ordinal α, αB denotes the α-th element of B and

for any set Y of ordinals, Y B denotes the set of αB for α in Y (similarly for C,D,F ).

The successor coding: Suppose α ∈ Card and s ∈ Sα+ . A condition in Rs is a pair

(t, t∗) where t ∈ Sα, t∗ ⊆ {bs�η : η ∈ [α+, |s|)} ∪ |t|, card(t∗) ≤ α. Extension is defined by:

(t0, t∗0) ≤ (t1, t∗1) iff t0 extends t1, t∗0 contains t∗1 and:

(1) If |t1| ≤ γB < |t0| and γ ∈ bs�η ∈ t∗1 then t0(γB) = 0 or s(η).

(2) If |t1| ≤ γC < |t0| and γ = 〈γ0, γ1〉 with γ0 ∈ A ∩ t∗1 then t0(γC) = 0 (where 〈·, ·〉 is

Gödel pairing of ordinals).

An Rs-generic over As adds (and is uniquely determined by) a function T : α+ → 2 such

that s(η) = 0 iff T (γB) = 0 for sufficiently large γ ∈ Bs�η and such that for γ0 < α+, γ0 ∈ A

iff T (〈γ0, γ1〉C) = 0 for sufficiently large γ1 < α+.

The limit precoding. Suppose that α is an infinite cardinal and s belongs to Sα. We say
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that X ⊆ α precodes s if X is the Σ1 theory of Ãs with parameters from α ∪ {~x(≤ α), s},

viewed as a subset of α.

The limit coding. Suppose that α is an uncountable limit cardinal, s ∈ Sα and p is a

sequence ((pβ , p∗β) : β ∈ Card ∩ α) where pβ ∈ Sβ for each β ∈ Card ∩ α. We will define

what it means for p to “code s”. First define the sequence (sγ : γ ≤ γ0) of elements of Sα as

follows: Let s0 = ∅. For limit γ ≤ γ0, sγ is the union of the sδ, δ < γ. Now suppose that sγ is

defined and for successor cardinals β less than α let f
sγ
p (β) be the least δ ≥ fsγ (β) such that

pβ(δD) = 1, if such a δ exists. If f
sγ
p (β) is undefined for cofinally many successor cardinals

β < α then set γ0 = γ. Otherwise define X ⊆ α by: δ ∈ X iff pβ((fsγ
p (β) + 1 + δ)D) = 1 for

sufficiently large successor cardinals β < α. If Even(X) = {δ : 2δ ∈ X} precodes an element

t of Sα extending sγ such that At contains X and the function f
sγ
p , then set sγ+1 = t.

Otherwise let sγ+1 be sγ ∗XF (i.e. the concatenation of sγ with XF viewed as a sequence

of length α), provided sγ ∗XF belongs to Sα and f
sγ
p belongs to Asγ∗XF

; if not, then again

set γ0 = γ. Now p exactly codes s if s equals one of the sγ , γ ≤ γ0 and p codes s is an initial

segment of some sγ , γ ≤ γ0.

Finally we define the desired forcing. Let Card′ denote the class of uncountable limit

cardinals. Also fix an extender ultrapower embedding j : V = K[~x] → M = K∗[~x∗]

witnessing that κ is H(κ+3)-strong in K[~x]. I.e., j has critical point κ, H(κ+3) of V is

contained in M and every element of M is of the form j(f)(α) for some f : κ → V in V and

α < κ+3.

The conditions. A condition in P is a sequence p = ((pα, p∗α) : α ∈ Card, α ≤ α(p))

where α(p) ≤ κ+3 in Card and:

(1) pα(p) belongs to Sα(p) and p∗α(p) = ∅.

(2) For α ∈ Card ∩ α(p), (pα, p∗α) belongs to Rpα+ .

(3) For α ∈ Card′, α ≤ α(p), p � α belongs to Apα and exactly codes pα.

(4) For α ∈ Card′, α ≤ α(p), if α is inaccessible in Apα then there exists a closed unbounded

subset C of α, C ∈ Apα , such that for β ∈ C, p∗β = p∗β+ = p∗β++ = pβ+ = pβ++ = ∅.

Conditions are ordered by: p ≤ q iff:

(a) α(p) ≥ α(q).

(b) p(α) ≤ q(α) in Rpα+ for α ∈ Card ∩ α(p) ∩ (α(q) + 1).
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(c) pα(p) extends qα(q) if α(p) = α(q).

(d) If α(q) ≥ κ++, |qκ++ | ≤ γ < |pκ++ |, ξ < |j(q)κ+3 | is of the form j(f)(i) for some

i < |qκ++ | and function f with domain κ, j(q)κ+3(ξ) = 0 and γ belongs to bj(q)κ+3�ξ (as

defined in K∗[~x∗], the ultrapower of K[~x] by j) then pκ++(γB) = 0.

Clause (d) is to ensure that Gκ++ , the subset of κ+3 added by the generic G, codes the

union of the j(p)κ+3 for p in G, a fact needed for the preservation of H(κ+3)-strength (see

below).

This completes the definition of P. The verification of cofinality and GCH preservation

for P is as in [2], section 4.2, following the proofs of the Lemmas 4.3 – 4.6 found there. Here

we only point out the added points to be made, taking into account that we are coding ~x

over K = L[E] and not over L. For this verification, requirement (4) above can be weakened

to only require that p∗β = ∅ for β ∈ C; the stronger form of (4) above is needed for the

preservation of H(κ+3)-strength.

A general fact that is needed throughout the proof is the following.

Lemma 2.3.2. (Condensation) Suppose that α is an uncountable cardinal, s ∈ Sα, i < α

and as before let Hs(i) denote the Σ1 Skolem hull of i ∪ {~x(≤ α), s} in As.

(a) If α is a successor cardinal then for sufficiently large i < α, if i is a limit point of

{j < α : j = Hs(j)∩ j} then the transitive collapse of Hs(i) is of the form K̄[~̄x] where K̄ is

an initial segment of K.

(b) If α is a limit cardinal then for sufficiently large cardinals i < α the transitive collapse

of Hs(i) is of the form K̄[~̄x] where K̄ is an initial segment of K.

The same holds with As replaced by any of its initial segments which contain s and have

height equal to a ZF− ordinal.

Proof. Recall that s belongs to As = Lµ|s| [E, ~x(≤ α)]. Now x(≤ α) is generic over K for

the product PS(≤α) of Prikry forcings at β ≤ α in S. If α is in the closure of S then the

intersection of PS(≤α) with Lµ[E] is a class forcing in Lµ[E] whenever µ is a ZF− ordinal

of size α such that α is the largest cardinal in Lµ[E]. Nevertheless, all definable antichains

in this forcing are sets. An examination of the proof of Lemma 2.2.1 in [5] reveals that any

sequence which satisfies the geometric property of that lemma with respect to Lµ[E] for the
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forcing PS(≤α) ∩ Lµ[E] is in fact generic for this forcing over Lµ[E]. It follows that x(≤ α),

which satisfies the geometric property with respect to the entire L[E], is generic over Lµ[E]

for this forcing. From this we infer the Σ1 definability of the forcing relation for ∆0 formulas

for the forcing PS(≤α) ∩ Lµs [E] and therefore that for i ≤ α, Hs
0(i) = the Σ1 Skolem hull

of i ∪ {ṡ} in As
0 (= Lµ|s| [E]) is equal to the intersection with As

0 of Hs(i) = the Σ1 Skolem

hull of i ∪ {s} in As (where ṡ is a name for s ∈ As). In particular, setting i equal to α, we

see that As
0 is Σ1-projectible to α with parameter ṡ.

If i satisfies the requirements stated in (a) or (b) above, then the Σ1 projectum of the

transitive collapse of Hs
0(i) is equal to i and if i is sufficiently large, then this transitive

collapse is also sound. It follows that K̄ = the transitive collapse of Hs
0(i) is an initial

segment of K for such i. The last statement of the lemma follows by the same argument,

as any initial segment of As which contains s is Σ1 projectible to α with parameter s.

Using Condensation as above, the proofs of Lemmas 4.3 – 4.6 from [2], section 4.2 can

be carried out in the present setting:

In Lemma 4.3, one must take the αi’s to enumerate the first α sufficiently large elements

of {β < α+ : β is a limit of β̄ such that β̄ = α+ ∩ Σ1 Skolem hull of (β̄ ∪ {x}) in A} which

are sufficiently large so that Condensation (a) guarantees that the transitive collapse of the

associated Σ1 hull is of the form K̄[~̄x] with K̄ an initial segment of K. This facilitates the

proof of the Claim in the proof of Lemma 4.3

In Lemma 4.4 one applies Condensation (b) to ensure that the Σ1 Skolem hull Hβ , when

β = α ∩ Hβ , transitively collapses to a structure built from an initial segment of K for

sufficiently large cardinals β < α; this is needed to argue that the resulting sβ is a string at

β. The rest of the proof remains unchanged.

The proof of Lemma 4.5 (a) in the case of β inaccessible also uses Condensation (b) in the

proof of the Claim, to verify that the pλ
γ are strings (in Sγ). Also note that Jensen’s subtle

use of the assumption that 0# does not exist (referred to in the Note) has no counterpart

here, as our structures As
0 = Lµs [E], s ∈ Sα collapse |s| to α without the use of s as an

additional predicate (indeed, s is just a parameter in Lµs [E, ~x(≤ α)]). The proofs of Lemma

4.5 in the case of singular β as well as Lemma 4.6 can be carried out as before.
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We are left with the verification that κ remains H(κ+3)-strong after forcing with P.

Recall that j : V = K[~x] → M = K∗[~x∗] is the extender ultrapower embedding witnessing

that κ is H(κ+3)-strong. Let G be P−generic over V ; in V [G] we must produce a GM which

is j(P)-generic over M and which contains j(p) for each p in G.

If (Di : i < κ) are dense subsets of P and p belongs to P then p has an extension q

which “reduces each Di below i+3”, i.e., any extension r of q can be further extended to

meet Di without changing r(β) for β ≥ i+3. (This is a variant of ∆-distributivity, see page

30 of [2].) From this it follows that if we take the upward closure of j[G], we obtain a

compatible set of conditions which reduces each dense subset of j(P) in M below κ+3, using

the ultrapower representation of M . Moreover, thanks to requirement (4) in the definition

of P, j[G] contains no nontrivial information between κ and κ+3 (except for Gκ, the subset

of κ+ added by G), and therefore j[G] is compatible with G ∩ H(κ+3). Moreover, thanks

to condition (d) in the definition of extension of conditions, Gκ++ will code the union of the

j(p)κ+3 , p ∈ G, and this coding is generic (using the fact that the j(p)κ+3 belong to A∅; see

Lemma 4.8 of [2]). So we can take GM to be generated by the joins of conditions in j[G]

with those in G ∩H(κ+3) to obtain the desired j(P)-generic over M .
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2.4 Killing the GCH everywhere by a cardinal preserving

forcing

In [13] the following is proved.

Theorem 2.4.1. (Merimovich [13]) Suppose that GCH holds and κ is H(κ+4)− strong.

Then there exists a generic extension of the universe in which κ remains inaccessible and

∀λ ≤ κ, 2λ = λ+3.

Unfortunately in the Merimovich model a lot of cardinals are collapsed below κ. We show

that a simple modification of his proof can give us the the total failure of the GCH below

κ without collapsing any cardinals.

Theorem 2.4.2. Suppose that GCH holds and κ is H(κ+4)− strong. Then there exists a

cardinal preserving generic extension of the universe in which κ remains inaccessible and

∀λ ≤ κ, 2λ > λ+.

Proof. We assume the reader has a copy of [13] at hand and we just mention the changes

we need to prove the theorem.

• In page 372: replace RU with Add(κ+4, iU (κ)+3)N∗[G<κ]. The arguments from [13]

show that we can find the generics IU , Iτ and IĒ for this new RU and the corresponding

forcings Rτ and RĒ .

• In page 376, 3.2: in N [IU ] all N−cardinals are preserved and the power function differs

from the power function of N at the following point: 2κ+4
= iU (κ)+3.

• In page 379, 3.4: The forcing notion PĒ , adds a club to κ. For each ν1, ν2 successive

points in the club the cardinal structure and power function in the range [ν+
1 , ν+3

2 ] of

the generic extension is the same as the cardinal structure and power function in the

range [κ+, jĒ(κ)+3] of MĒ [IĒ ].

• In page 411: replace Claim 10.6 with the following: Let G be PĒ-generic with p =

pl ∗ ... ∗ pk ∗ ... ∗ p0 ∈ G and ε̄ be such that pl..k ∈ Pε̄ and l(ε̄) = 0. Let ν = κ(p0
k).
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Then, in V [G], all cardinals in [ν+, κ0(ε̄)+3] are preserved and 2ν+
= ν+4, 2ν++

= ν+5,

2ν+3
= ν+6, 2ν+4

= κ0(ε̄)+3,

• In page 412: replace Col(ℵ0, λ
+)V [G] by Add(ℵ0, λ

+3)V [G] and let H be generic over

V [G] for this new forcing.

Now the proof of the theorem goes as follows: Let p∗ ∈ P∗
Ē

such that κ(p∗0) is inaccessible

and G be PĒ-generic with p∗ ∈ G. Set

M =
⋃
{pĒκ

0 : p ∈ G},

C =
⋃
{κ(pĒκ

0 ) : p ∈ G}.

Note that M is a Radin generic sequence for the extender sequence Ēκ, hence C ⊂ κ

is a club. Also the first ordinal in this club is λ = κ(p∗0). We first investigate the range

(λ, κ) in V [G]. Note that, by [13, Lemma 10.5], for ε̄ ∈ M it is enough to use Pε̄ in order to

understand V
V [G]
κ0(ε̄) . So let µ ∈ (λ, κ).

• µ ∈ limC : Then there is ε̄ ∈ M such that l(ε̄) > 0 and κ(ε̄) = µ. By [13, Claim 10.7]

µ remain a cardinal and by [13, Claim 10.3], 2µ = µ+3,

• µ ∈ C \ limC: Then there is ε̄ ∈ M such that l(ε̄) = 0 and κ(ε̄) = µ. Let µ2 ∈ C

be the C-immediate predecessor of µ. By the above replacement of Claim 10.6 we

have all cardinals in [µ+
2 , µ+3] are preserved and 2µ+

2 = µ+4
2 , 2µ++

2 = µ+5
2 , 2µ+3

2 = µ+6
2 ,

2µ+4
2 = µ+3. In particular 2µ ≥ µ+3.

• µ /∈ C : Then there are µ2 and µ1 two successive points in C such that µ ∈ (µ2, µ1). By

above, if µ ∈ {µ+
2 , µ++

2 , µ+3
2 } then 2µ = µ+3, and if µ ∈ (µ+3

2 , µ1) then 2µ ≥ µ+3
1 > µ+.

We may note that the above argument also shows that all cardinals > λ are preserved in

V [G], and since forcing with PĒ adds no new bounded subsets to λ, hence all cardinals are

preserved in V [G]. It is now clear that in V [G][H] all cardinals are preserved and that GCH

fails everywhere below (and at) κ.

Note that in the above proof, we have a fixed gap 3 on a club of cardinals below κ. It is

possible to weaken the hypotheses of Theorem 2.4.2 to κ being H(κ+3)−strong and get the

same result as above. In this case we will get a fixed gap 2 on a club of cardinals below κ:
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Theorem 2.4.3. Suppose that GCH holds and κ is H(κ+3)− strong. Then there exists a

cardinal preserving generic extension of the universe in which κ remains inaccessible and

∀λ ≤ κ, 2λ > λ+.

See [4] for more details and the proof of the above theorem.

24



2.5 Proof of Theorem 2.1.1

Suppose that K is the canonical inner model for a H(κ+3)-strong cardinal κ. Let S be a

discrete set of measurable cardinals below κ of size κ, and for each α ∈ S fix a normal

measure Uα over α. Consider the forcing PS and let (xα : α ∈ S) be PS-generic over K. By

Theorem 2.2.2, κ remains H(κ+3)−strong in K[(xα : α ∈ S)], thus we can apply Theorem

2.3.1 to find a cofinality-preserving forcing P which adds a real R over K[(xα : α ∈ S)] such

that K[(xα : α ∈ S)][R] = K[R] and κ remains H(κ+3)−strong in K[R]. By Theorem 2.4.3

there exists a cardinal-preserving forcing Q and a subset C ⊆ S, Q−generic over K[R] such

that in K[R][C], κ remains inaccessible and for every λ < κ, 2λ > λ+. We now define a new

sequence (yα : α ∈ S) by

yα =

 xα if α ∈ C,

xα − {min(xα)} otherwise .

By Lemma 2.2.1, (yα : α ∈ S) is PS−generic over K. Let W = V
K[(yα:α∈S)]
κ and V = W [R].

Then

(1) W is a model of ZFC + GCH,

(2) V = V
K[R][C]
κ , and hence V |= p∀λ, 2λ > λ+q.

Theorem 2.1.1 follows.
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Chapter 3

Forcing Easton’s theorem by

adding a real

3.1 Forcing Easton’s theorem by adding a real

In this chapter we show that assuming the existence of a proper class of measurable cardinals,

it is possible to force Easton’s theorem by adding a single real. More precisely:

Theorem 3.1.1. ([4]) Let M be a model of ZFC + GCH+ there exists a proper class of

measurable cardinals. In M let F : REG −→ CARD be an Easton function, i.e a definable

class function such that

• κ ≤ λ −→ F (κ) ≤ F (λ), and

• cf(F (κ)) > κ.

Then there exists a pair (W,V ) of cardinal preserving extensions of M such that

(a) W |= pGCHq,

(b) V = W [R] for some real R,

(c) V |= p∀κ ∈ REG, 2κ ≥ F (κ)q.

The reason that in (c) we do not require equality is that it might be possible that F (κ)

changes its cofinality in V to ω, and then clearly 2κ 6= F (κ) in V . The rest of this chapter

is devoted to the proof of the above Theorem.

26



3.2 A class version of the Prikry product

Let S be a class of measurable cardinals which is discrete. Fix normal measures Uα on α

for α in S. We define a class version of the Prikry product as follows.

Conditions in PS are triples p = (Xp, Sp,Hp) such that

(1) Xp is a subset of S,

(2) Sp ∈
∏

α∈Xp [α \ sup(S ∩ α)]<ω,

(3) Hp ∈
∏

α∈Xp Uα,

(4) supp(p) = {α : Sp(α) 6= ∅} is finite,

(5) ∀α ∈ Xp,maxSp(α) < minHp(α).

Let p, q ∈ PS. Then p ≤ q (p is an extension of q) iff

(1) Xp ⊇ Xq,

(2) ∀α ∈ Xq, Sp(α) is an end extension of Sq(α),

(3) ∀α ∈ Xq, Sp(α) \ Sq(α) ⊆ Hq(α),

(4) ∀α ∈ Xq,Hp(α) ⊆ Hq(α).

We also define an auxiliary relation ≤∗ on PS as follows. Let p, q ∈ PS. Then p ≤∗ q (p

is a direct or Prikry extension of q) iff

(1) Xp ⊇ Xq,

(2) ∀α ∈ Xq, Sp(α) = Sq(α),

(3) ∀α ∈ Xq,Hp(α) ⊆ Hq(α).

For p ≤ q in PS we define the distance function |p − q| to be a function on Xq so that

for α ∈ Xq, |p − q|(α) = l(Sp(α)) − l(Sq(α)). Also let PS � X = {p ∈ PS : Xp ⊆ X}. It is

clear that for any X ⊆ S, PS ' (PS � X)× (PS � S \X).

Lemma 3.2.1. PS is pretame: Given p ∈ PS and a definable sequence (Di : i < α) of dense

classes below p there exist q ≤ p and a sequence (di : i < α) ∈ V such that each di ⊆ Di is

predense below q.

Proof. Let p0 = p and let δ0 > α, δ0 /∈ S be such that Xpo ⊆ δ0. By repeatedly thinning the

measure one sets above δ0 we can find p1 ≤ p0 and δ1 > δ0, δ1 /∈ S such that:

1. Xp1 ⊆ δ1,
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2. p1 agrees with p0 below δ0,

3. for any q ≤ p0, q ∈ PS � δ0 and any i < α if q has an extension r meeting Di which

agrees with q below δ0, then there is such an r ∈ PS � δ1 whose measure one sets

contain those of p1.

Now repeat this ω−times, producing p0, p1, .... Let q be ≤∗ pn’s, n < ω with Xq =
⋃

n<ω Xpn

obtained in the natural way. Also for each i < α set di = Di � δω = {r � δω : r ∈ Di}, where

δω = supn<ωδn. We show that q and the sequence (di : i < α) are as required.

Fix i < α. Suppose r ≤ q, r ∈ Di. Let n be large enough so that supp(r) ∩ δω ⊆ δn. At

stage n + 1 we considered r � δn and saw that it has an extension meeting Di and agreeing

with it below δn, so it must have such an extension whose measure one sets contain those

of pn+1 and therefore those of q. This extension is compatible with r and therefore r has an

extension which meets di, as required.

It follows from [2, Theorem 2.18], and the above Lemma that the forcing relation is

definable. The proof of the following lemma uses ideas from [12].

Lemma 3.2.2. (PS ,≤,≤∗) has the Prikry property, i.e for each sentence φ of the forcing

language of (PS ,≤), and any p ∈ PS there is q ≤∗ p which decides φ.

Proof. Suppose φ is a sentence of the forcing language, p ∈ PS . Let p = (Xp, Sp,Hp), let

φ0 denote ¬φ and φ1 denote φ.

By reflection and by strengthening p in the sense of ≤∗, we may assume that Xp = γ,

where it is dense in PS ∩ Vγ to decide φ.

For α < γ, let Sα denote the set of Sq where q ∈ PXp∩α. For s ∈ Sα, set Fs,α(δ1, . . . , δn) =

i iff there is q ≤ p such that Xq = γ, Sq � (Xp \ {α}) = s, Sq(α) = Sp(α) ∗ (δ1, . . . δn) and

q 
 φi. Set Fs,α(δ1, . . . , δn) = 2 iff no such q exists.

Let H(s, α) ⊆ Hp(α), H(α) ∈ Uα be homogeneous for Fs,α, and let H(α) =
⋂

s∈Sα) H(s, α).

Then H(α) ∈ Uα (as S is discrete) and we can set q = (Xq, Sq,Hq), where Xq = Xp,

Sq = Sp and Hq(α) = H(α) for α ∈ Xq.

It is clear that q ≤∗ p. We show that there is a ≤∗ extension of q which decides φ.

Suppose not. Let r ≤ q be such that r decides φ. Suppose for example that r 
 φ. We may
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further suppose that r is so that |r − q| is minimal, and that Xr = γ. We note that |r − q|

is not the 0-funtion.

Let α < γ be the maximum of supp(r), and let r0 be obtained from r by replacing

Sr(α) with Sp(α). We claim that r0 already decides φ. For let w ≤ r0, such that w 
 ¬φ.

Let n denote |Sr(α)|; We may assume that |Sw(α)| ≥ n. Let s denote Sr0 and δ1, . . . δk

denote Sw(α). Then r witnesses that Fs,α has constant value 1 on [H(s, α)]n. Moreover,

{δ1, . . . δn} ∈ [H(s, α)]n. So there is r1 such that r1 
 φ, Sr1 � (Xp \ {α}) = s and

Sr1(α) = {δ1, . . . , δn}. It is easily checked that Sr1 and Sw � γ are compatible, so r1 and

w are compatible, contradicting that they decide φ differently. Thus, r0 already decides φ,

contradicting the minimality of r.

We can now easily show that PS preserves cardinals and the GCH. Also as in the usual

Prikry product a PS−generic is uniquely determined by a sequence (xα : α ∈ S) where each

xα is an ω−sequence cofinal in α. As before, with a slight abuse of terminology, we say that

(xα : α ∈ S) is PS−generic. The following is an analogue of Lemma 2.2.1 and its proof is

essentially the same.

Lemma 3.2.3. (a) The sequence (xα : α ∈ S) obeys the following “geometric property”: if

(Xα : α ∈ S) is a definable class (in V ) and Xα ∈ Uα for each α ∈ S then
⋃

α∈S xα \Xα is

finite.

(b) Conversely, suppose that (yα : α ∈ S) is a sequence (in any outer model of V )

satisfying the geometric property stated above. Then (yα : α ∈ S) is PS-generic over V .
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3.3 Proof of Theorem 3.1.1

Suppose M is a model of ZFC +GCH+ there exists a proper class of measurable cardinals.

Let S be a discrete class of measurable cardinals and for each α ∈ S fix a normal measure

Uα over α. Consider the forcing PS and let (xα : α ∈ S) be PS-generic over M . By Jensen’s

coding theorem (see [2]) there exists a cofinality-preserving forcing P which adds a real R

over M [(xα : α ∈ S)] such that M [(xα : α ∈ S)][R] = L[R]. In L[R] define the function

F ∗ : REG → CARD by

F ∗(κ) =

 F (κ) if cfF (κ) 6= ω,

F (κ)+ if cfF (κ) = ω.

Let R be the Easton forcing corresponding to F ∗ for blowing up the power of each regular

cardinal κ to F ∗(κ) and let C ⊆ S be R−generic over L[R].

We now define a new sequence (yα : α ∈ S) by

yα =

 xα if α ∈ C,

xα − {min(xα)} otherwise .

Using lemma 3.2.3, (yα : α ∈ S) is PS−generic over M . Let W = M [(yα : α ∈ S)], and

V = M [(yα : α ∈ S), R]. Then the pair (W,V ) is as required.
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Chapter 4

Coding a real by two Cohen reals

in a cofinality preserving way

4.1 Coding a real by two Cohen reals

In this chapter we present a method for coding an arbitrary real by two Cohen reals in a

cofinality preserving way.

Theorem 4.1.1. ([1]) Suppose that R is a real in V. Then there are two reals a and b such

that

(a) a and b are Cohen generic over V,

(b) all of the models V, V [a], V [b] and V [a, b] have the same cofinalities,

(c) R ∈ L[a, b].

Proof. Working in V , let a∗ be Add(ω, 1)−generic over V and let b∗ be Add(ω, 1)−generic

over V [a∗], where Add(ω, 1) is the Cohen forcing for adding a new real. Note that V [a∗]

and V [a∗, b∗] are cofinality preserving generic extensions of V . Working in V [a∗, b∗] let

〈kN : N < ω〉 be an increasing enumeration of {N : a∗(N) = 0} and let a = a∗ and b = {N :

b∗(N) = a∗(N) = 1} ∪ {kN : R(N) = 1}. Then clearly R ∈ L[〈kN : N < ω〉, b] ⊆ L[a, b] as

R = {N : kN ∈ b}.

We show that b is Add(ω, 1)−generic over V . It suffices to prove the following
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For any (p, q) ∈ Add(ω, 1) ∗Add∼ (ω, 1) and any dense

(*) open subset D ∈ V of Add(ω, 1) there exists (p̄, q̄) ≤

(p, q) such that (p̄, q̄)‖− b∼ extends some element of D.

Let (p, q) and D be as above. By extending one of p or q if necessary, we can assume that

lh(p) = lh(q). Let 〈kN : N < M〉 be an increasing enumeration of {N < lh(p) : p(N) = 0}.

Let s : lh(p) → 2 be such that considered as a subset of ω,

s = {N < lh(p) : p(N) = q(N) = 1} ∪ {kN : N < M, R(N) = 1}.

Let t ∈ D be such that t ≤ s. Extend p, q to p̄, q̄ of length lh(t) so that for i in the

interval [lh(s), lh(t))

• p̄(i) = 1,

• q̄(i) = 1 iff i ∈ t.

Then

t = {N < lh(t) : p̄(N) = q̄(N) = 1} ∪ {kN : N < M, R(N) = 1}.

Thus (p̄, q̄)‖−p b∼ extends t q and (∗) follows. The theorem follows.

The following theorems can be proved easily using Theorem 4.1.1 and the main results of

chapters 2 and 3.

Theorem 4.1.2. ([4]) Assume the consistency of an H(κ+3)-strong cardinal κ. Then there

exist a model W of ZFC and two reals a and b such that

(a) The models W,W [a],W [b] and W [a, b] have the same cardinals,

(b) W [a] and W [b] satisfy GCH,

(c) GCH fails at all infinite cardinals in W [a, b].

Theorem 4.1.3. ([4]) Let M be a model of ZFC + GCH+ there exists a proper class of

measurable cardinals. In M let F : REG −→ CARD be an Easton function. Then there

exist a cardinal preserving generic extension W of M and two reals a and b such that

(a) The models W,W [a],W [b] and W [a, b] have the same cardinals,

(b) W [a] and W [b] satisfy GCH,

(c) W [a, b] |= p∀κ ∈ REG, 2κ ≥ F (κ)q.
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Chapter 5

Adding a lot of Cohen reals by

adding a few

5.1 Adding ℵ1−many Cohen reals by adding one

A basic fact about Cohen reals is that adding λ−many Cohen reals cannot produce more than

λ−many of Cohen reals. More precisely, if 〈rα : α < λ〉 are λ−many Cohen reals over V ,

then in V [〈rα : α < λ〉] there are no λ+−many Cohen reals over V .

But if instead of dealing with one universe V we consider two, then the above may no

longer be true. In this section we prove the following:

Theorem 5.1.1. ([8]) Suppose that V satisfies GCH. Then there is a cofinality preserving

generic extension V1 of V satisfying GCH so that adding a Cohen real over V1 produces a

generic for the finite support product of ℵ1−many copies of Cohen forcing over V, and hence

adds ℵ1−many Cohen reals over V.

Proof. The basic idea of the proof will be to split ω1 into ω sets such that none of them

will contain an infinite set of V . It turned out however that just not containing an infinite

set of V is not enough. We will use a stronger property. As a result the forcing turns out

to be more complicated. We are now going to define the forcing sufficient for proving the

theorem. Fix a nonprincipal ultrafilter U over ω.
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Definition 5.1.2. Let (PU ,≤,≤∗) be the Prikry (or in this context Mathias) forcing with

U , i.e.

• PU = {〈s,A〉 ∈ [ω]<ω × U : maxs < minA},

• 〈t, B〉 ≤ 〈s,A〉 ⇐⇒ t end extends s and (t\s) ∪B ⊆ A,

• 〈t, B〉 ≤∗ 〈s,A〉 ⇐⇒ t = s and B ⊆ A.

We call ≤∗ a direct or ∗−extension. The following are the basic facts on this forcing that

will be used further.

Lemma 5.1.3. (1) The generic object of PU is generated by a real,

(2) (PU ,≤) satisfies the c.c.c,

(3) If 〈s,A〉 ∈ PU and b ⊆ ω\(maxs + 1) is finite, then there is a ∗−extension of 〈s,A〉,

forcing the generic real to be disjoint to b.

Proof. 1. If G is PU−generic over V , then let r =
⋃
{s : ∃A, 〈s,A〉 ∈ G}. r is a real and

G = {〈s,A〉 ∈ PU : r end extends s and r\s ⊆ A}.

2. Trivial using the fact that for 〈s,A〉, 〈t, B〉 ∈ PU , if s = t then 〈s,A〉 and 〈t, B〉 are

compatible.

3. Consider 〈s,A\(maxb + 1)〉.

We now define our main forcing notion.

Definition 5.1.4. p ∈ P iff p = 〈p0, p∼1〉 where

(1) p0 ∈ PU ,

(2) p∼1 is a PU−name such that for some α < ω1, p0‖−pp∼1 : α −→ ωq and such that the

following hold

(2a) For every β < α, p∼1(β) ⊆ PU × ω is a PU−name for a natural number such that

• p∼1(β) is partial function from PU into ω,

• for some fixed l < ω, domp∼1(β) ⊆ {〈s, ω\maxs + 1〉 : s ∈ [ω]l},
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• for all β1 6= β2 < α, ranp∼1(β1) ∩ ranp∼1(β2) is finite.

(2b) for every countable I ⊆ α, I ∈ V , p′0 ≤ p0 and finite J ⊆ ω there is a finite set

a ⊆ α such that for every finite set b ⊆ I\a there is p′′0 ≤∗ p′0 such that p′′0‖−p(∀

β ∈ b,∀ κ ∈ J, p∼1(β) 6= k)&(∀β1 6= β2 ∈ b, p∼1(β1) 6= p∼1(β2))q.

Notation 5.1.5. (1) Call α the length of p (or p∼1) and denote it by lh(p) (or lh(p∼1)).

(2) For n < ω let I∼p,n be a PU−name such that p0‖−pI∼p,n = {β < α : p∼1(β) = n}q.

Then we can coincide p∼1 with 〈I∼p,n : n < ω〉.

Remark 5.1.6. (2a) will guarantee that for β < α, p0‖−pp∼1(β) ∈ ωq. The last condition

in (2a) is a technical fact that will be used in several parts of the argument. The condition

(2b) appears technical but it will be crucial for producing numerous Cohen reals.

Definition 5.1.7. For p = 〈p0, p∼1〉, q = 〈q0, q∼1〉 ∈ P, define

• p ≤ q iff

1. p0 ≤PU
q0,

2. lh(q) ≤ lh(p),

3. p0‖−p∀n < ω, I∼q,n = I∼p,n ∩ lh(q)q.

• p ≤∗ q iff

1. p0 ≤∗
PU

q0,

2. p ≤ q.

we call ≤∗ a direct or ∗−extension.

Remark 5.1.8. In the definition of p ≤ q, we can replace (3) by p0‖−p q∼1 = p∼1 � lh(q)q.

Lemma 5.1.9. Let 〈p0, p∼1〉‖−pα is an ordinal q. Then there are PU−names β∼ and q∼1

such that 〈p0, q∼1〉 ≤∗ 〈p0, p∼1〉 and 〈p0, q∼1〉‖−pα∼ = β∼q.

Proof. Suppose for simplicity that 〈p0, p∼1〉 = 〈〈<>,ω〉, φ〉. Let θ be large enough regular

and let 〈Nn : n < ω〉 be an increasing sequence of countable elementary submodes of Hθ

such that P, α∼ ∈ N0 and Nn ∈ Nn+1 for each n < ω. Let N =
⋃

n<ω

Nn, δn = Nn ∩ ω1 for
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n < ω and δ =
⋃

n<ω

δn = N ∩ ω1. Let 〈Jn : n < ω〉 ∈ N0 be a sequence of infinite subsets of

ω\{0} such that
⋃

n<ω

Jn = ω\{0}, Jn ⊆ Jn+1, and Jn+1\Jn is infinite for each n < ω. Also

let 〈αi : 0 < i < ω〉 be an enumeration of δ such that for every n < ω, {αi : i ∈ Jn} ∈ Nn+1

is an enumeration of δn and {αi : i ∈ Jn+1} ∩ δn = {αi : i ∈ Jn}.

We define by induction a sequence 〈ps : s ∈ [ω]<ω〉 of conditions such that

• ps = 〈ps
0, p∼

s
1〉 = 〈〈s,As〉, p∼

s
1〉,

• ps ∈ Ns(lhs−1)+1,

• lh(ps) = δs(lhs−1)+1,

• if t does not contradict ps
0 (i.e if t end extends s and t\s ⊆ AS) then pt ≤ ps.

For s =<>, let p<> = 〈〈<>, ω〉, φ〉. Suppose that <>6= s ∈ [ω]<ω and ps�lhs−1 is defined.

We define ps. First we define ts�lhs−1 ≤∗ ps�lhs−1 as follows: If there is no ∗−extension of

ps�lhs−1 deciding α∼ then let ts�lhs−1 = ps�lhs−1. Otherwise let ts�lhs−1 ∈ Ns(lhs−2)+1 be

such an extension. Note that lh(ts�lhs−1) ≤ δs(lhs−2)+1.

Let ts�lhs−1 = 〈t0, t∼1〉, t0 = 〈s � lhs− 1, A〉. Let C ⊆ ω be an infinite set almost disjoint

to 〈ran t∼1(β) : β < lh( t∼1)〉. Split C into ω infinite disjoint sets Ci, i < ω. Let 〈cij : j < ω〉

be an increasing enumeration of Ci, i < ω. We may suppose that all of these is done in

Ns(lhs−1)+1. Let ps = 〈ps
0, p∼

s
1〉, where

• ps
0 = 〈s,A\(maxs + 1)〉,

• for β < lh( t∼1), p∼
s
1(β) = t∼1(β),

• for i ∈ Js(lhs−1) such that αi ∈ δs(lhs−1)\lh( t∼1)

p∼
s
1(αi) =

{
〈〈s ∗ 〈r1, ..., ri〉, ω\(ri + 1)〉, ciri

〉 : r1 > max s, 〈r1, ..., ri〉 ∈ [ω]i
}

.

Trivially ps ∈ Ns(lhs−1)+1, lh(ps) = δs(lhs−1), and if s(lhs− 1) ∈ A, then ps ≤ ts�lhs−1.

Claim 5.1.10. ps ∈ P.

Proof. We check conditions in Definition 5.1.4.

(1) i.e. ps
0 ∈ PU is trivial.
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(2) It is clear that ps
0‖−pp∼

s
1 : δs(lhs−1) −→ ωq and that (2a) holds. Let us prove (2b).

Thus suppose that I ⊆ δs(lhs−1), I ∈ V , p ≤ ps
0 and J ⊆ ω is finite. First we apply (2b) to

〈p, t∼1〉, I ∩ lh( t∼1), p and J to find a finite set a′ ⊆ lh( t∼1) such that

(*) For every finite set b ⊆ I ∩ lh( t∼1)\a′ there is p′ ≤∗ p such that p′

‖−p(∀β ∈ b,∀k ∈ J, t∼1(β) 6= k)&(∀β1 6= β2 ∈ b, t∼1(β1) 6= t∼1(β2))q.

Let p = 〈s ∗ 〈r1, ..., rm〉, B〉. Suppose that δs(lhs−1)\lh( t∼1) = {αJ1 , ..., αJi , ...} where

J1 < J2 < ... are in Js(lhs−1). Let

a = a′ ∪ {αJ1 , ..., αJm
}.

We show that a is as required. Thus suppose that b ⊆ I\a is finite. Apply (*) to b∩ lh( t∼1)

to find p′ = 〈s ∗ 〈r1, ..., rm〉, B′〉 ≤∗ p such that

p′‖−p(∀β ∈ b ∩ lh( t∼1),∀k ∈ J, t∼1(β) 6= k)&(∀β1 6= β2 ∈ b ∩ lh( t∼1), t∼1(β1) 6= t∼1(β2))q.

Also note that

p′‖−p∀β ∈ b ∩ lh( t∼1), p∼
s
1(β) = t∼1(β)q.

Pick k < ω such that

∀β ∈ b ∩ lh( t∼1),∀αi ∈ b\lh( t∼1), ranp∼
s
1(β1) ∩ (ranp∼

s
1(αi)\k) = φ.

Let q = 〈s ∗ 〈r1, ..., rm〉, B〉 = 〈s ∗ 〈r1, ..., rm〉, B′\(max J + k + 1)〉. Then q ≤∗ p′ ≤∗ p.

We show that q is as required. wee need to show that

1. q‖−p∀β ∈ b\lh( t∼1),∀k ∈ J, p∼
s
1(β) 6= kq,

2. q‖−p∀β1 6= β2 ∈ b\lh( t∼1), p∼
s
1(β1) 6= p∼

s
1(β2)q,

3. q‖−p∀β1 ∈ b ∩ lh( t∼1),∀β2 ∈ b\lh( t∼1), p∼
s
1(β1) 6= p∼

s
1(β2)q.

Now (1) follows from the fact that q‖−pp∼
s
1(αi) ≥ (i −m) − th element of B > max Jq.

(2) follows from the fact that for i 6= j < ω, Ci ∩ Cj = ∅, and ranp∼
s
1(αi) ⊆ Ci. (3) follows

from the choice of k. The claim follows.

This completes our definition of the sequence 〈ps : s ∈ [ω]<ω〉. Let
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q∼1 = {〈ps
0, 〈β, p∼

s
1(β)〉〉 : s ∈ [ω]<ω, β < lh(ps)}.

Then q∼1 is a PU−name and for s ∈ [ω]<ω, ps
0‖−pp∼

s
1 = q∼1 � lh(p∼

s
1)q.

Claim 5.1.11. 〈〈<>, ω〉, q∼1〉 ∈ P.

Proof. We check conditions in Definition 5.1.4.

(1) i.e. 〈<>, ω〉 ∈ PU is trivial.

(2) It is clear from our definition that

〈<>,ω〉‖−p q∼1 is a well-defined function into ωq.

Let us show that lh( q∼1) = δ. By the construction it is trivial that lh( q∼1) ≤ δ. We show

that lh( q∼1) ≥ δ. It suffices to prove the following

(*) For every τ < δ and p ∈ PU there is q ≤ p such that q‖−p q∼1(τ) is defined q.

Fix τ < δ and p = 〈s,A〉 ∈ PU as in (*). Let t be an end extension of s such that t\s ⊆ A

and δt(lht−1) > τ . Then pt
0 and p are compatible and pt

0‖−p q∼1(τ) = p∼
t
1(τ) is defined q. Let

q ≤ pt
0, p. Then q‖−p q∼1(τ) is defined q and (*) follows. Thus lh( q∼1) = δ.

(2a) is trivial. Let us prove (2b). Thus suppose that I ⊆ δ, I ∈ V , p ≤ 〈<>,ω〉 and

J ⊆ ω is finite. Let p = 〈s,A〉.

First we consider the case where s =<>. Let a = ∅. We show that a is as required.

Thus let b ⊆ I be finite. Let n ∈ A be such that n > max J + 1 and b ⊆ δn. Let t = s ∗ 〈n〉.

Note that

∀β1 6= β2 ∈ b, ranp∼
t
1(β1) ∩ ranp∼

t
1(β2) = ∅.

Let q = 〈<>,B〉 = 〈<>, A\(max J + 1)〉. Then q ≤∗ p and q is compatible with pt
0. We

show that q is as required. We need to show that

1. q‖−p∀β ∈ b,∀k ∈ J, q∼1(β) 6= kq,

2. q‖−p∀β1 6= β2 ∈ b, q1∼
(β1) 6= q∼1(β2)q.

For (1), if it fails, then we can find 〈r, D〉 ≤ q, pt
0, β ∈ b and k ∈ J such that 〈r, D〉 ≤∗ pr

0

and 〈r, D〉‖−p q∼1(β) = kq. But 〈r, D〉‖−p q∼1(β) = p∼
r
1(β) = p∼

t
1(β)q, hence 〈r, D〉‖−pp∼

t
1(β) =

kq. This is impossible since minD ≥ minB > maxJ . For (2), if it fails, then we can find
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〈r, D〉 ≤ q, pt
0 and β1 6= β2 ∈ b such that 〈r, D〉 ≤∗ pr

0 and 〈r, D〉‖−p q∼1(β1) = q∼1(β2)q. As

above it follows that 〈r, D〉‖−pp∼
t
1(β1) = p∼

t
1(β2)q. This is impossible since for β1 6= β2 ∈ b,

ranp∼
t
1(β1) ∩ ranp∼

t
1(β2) = ∅. Hence q is as required and we are done.

Now consider the case s 6=<>. First we apply (2b) to ts, I ∩ lh(ts), p and J to find a

finite set a′ ⊆ lh(ts) such that

(**) For every finite set b ⊆ I ∩ lh(ts)\a′ there is p′ ≤∗ p such that p′

‖−p(∀β ∈ b,∀k ∈ J , p∼
s
1(β) 6= k)&(∀β1 6= β2 ∈ b, p∼

s
1(β1) 6= p∼

s
1(β2))q

Let ts = 〈t0, t∼1〉, δs(lhs−1)+1\δs(lhs−1) = {αJ1 , αJ2 , ...}, where J1 < J2 < ... are in

Js(lhs−1)+1. Define

a = a′ ∪ {α1, α2, ..., αJlhs+1}.

We show that a is as required. First apply (**) to b ∩ lh(ts) to find p′ = 〈s,A′〉 ≤∗ p

such that

p′‖−p(∀β ∈ b ∩ lh(ts),∀k ∈ J, t∼1(β) 6= k)&(∀β1 6= β2 ∈ b ∩ lh(ts), t∼1(β1) 6= t∼1(β2))q.

Pick n ∈ A′ such that n > maxJ + 1 and b ⊆ δn and let r = s ∗ 〈n〉. Then

∀β1 6= β2 ∈ b\lh(ts), ranp∼
r
1(β1) ∩ ranp∼

r
1(β2) = ∅.

Pick k < ω such that k > n and

∀β1 ∈ b ∩ lh(ts),∀β2 ∈ b\lh(ts), ranp∼
r
1(β1) ∩ (ranp∼

r
1(β2)\k) = ∅.

Let q = 〈s,B〉 = 〈s,A′\(maxJ + k + 1) ∪ {n}〉. Then q ≤∗ p′ ≤∗ p and q is compatible

with pr
0 (since n ∈ B). We show that q is as required. We need to prove the following

1. q‖−p∀β ∈ b,∀k ∈ J, q∼1(β) 6= kq,

2. q‖−p∀β1 6= β2 ∈ b\lh(ts), q∼1(β1) 6= q∼1(β2)q,

3. q‖−p∀β1 ∈ b ∩ lh(ts),∀β2 ∈ b\lh(ts), q∼1(β1) 6= q∼1(β2)q.

The proofs of (1) and (2) are as in the case s =<>. Let us prove (3). Suppose that (3) fails.

Thus we can find 〈u, D〉 ≤ q, pr
0, β1 ∈ b ∩ lh(ts) and β2 ∈ b\lh(ts) such that 〈u, D〉 ≤∗ pu

0

39



and 〈u, D〉‖−p q∼1(β1) = q∼1(β2)q. But 〈u, D〉‖−p q∼1(β) = p∼
u
1 (β) = p∼

r
1(β)q for β ∈ b, hence

〈u, D〉‖−pp∼
r
1(β1) = p∼

r
1(β2)q. Now note that β2 = αi for some i > lhs + 1, minD ≥ n and

min(D\{n}) > k, hence by the construction of pr

〈u, D〉‖−pp∼
r
1(β2) ≥ (i− lhs)−th element of D > kq.

By our choice of k, ranp∼
r
1(β1) ∩ (ranp∼

r
1(β2)\k) = ∅ and we get a contradiction. (3)

follows. Thus q is as required, and the claim follows.

Let

β∼ = {〈ps
0, δ〉 : s ∈ [ω]<ω,∃γ(δ < γ, ps‖−pα∼ = γq)}.

Then β∼ is a PU−name of an ordinal.

Claim 5.1.12. 〈〈<>,ω〉, q∼1〉‖−pα∼ = β∼q.

Proof. Suppose not. There are two cases to be considered.

Case 1. There are 〈r0, r∼1〉 ≤ 〈〈<>, ω〉, q∼1〉 and δ such that 〈r0, r∼1〉‖−pδ ∈ α∼ and

δ 6∈ β∼q. We may suppose that for some ordinal α, 〈r0, r∼1〉‖−pα∼ = αq. Then δ < α.

Let r0 = 〈s,A〉. Consider ps = 〈ps
0, p∼

s
1〉. Then ps

0 is compatible with r0 and there is a

∗−extension of ps deciding α∼. Let t ∈ Ns(lhs−1)+1 be the ∗−extension of ps deciding α∼
chosen in the proof of Claim 5.1.10. Let t = 〈t0, t∼1〉, t0 = 〈s,B〉, and let γ be such that

〈t0, t∼1〉‖−pα∼ = γq. Let n ∈ A ∩B. Then

• p
s∗〈n〉
0 , t0 and ps

0 are compatible and 〈s ∗ 〈n〉, A ∩B ∩As∗〈n〉〉 extends them,

• ps∗〈n〉 ≤ t.

Thus ps∗〈n〉‖−pα∼ = γq. Let u = 〈s ∗ 〈n〉, A ∩B ∩As∗〈n〉\(n + 1)〉.

Then u ≤ p
s∗〈n〉
0 and u‖−p r∼1 extends p∼

s∗〈n〉
1 which extends t∼1q. Thus 〈u, r∼1〉 ≤

t, 〈r0, r∼1〉, ps∗〈n〉. It follows that α = γ. Now δ < γ and ps∗〈n〉‖−pα∼ = γq. Hence

〈ps∗〈n〉
0 , δ〉 ∈ β∼ and ps∗〈n〉‖−pδ ∈ β∼q. This is impossible since 〈r0, r∼1〉‖−pδ 6∈ β∼q.

Case 2. There are 〈r0, r∼1〉 ≤ 〈〈<>, ω〉, q∼1〉 and δ such that 〈r0, r∼1〉‖−pδ ∈ β∼ and

δ 6∈ α∼q. We may further suppose that for some ordinal α, 〈r0, r∼1〉‖−pα∼ = αq. Thus

δ ≥ α. Let r = 〈s,A〉. Then as above ps
0 is compatible with r and there is a ∗−extension
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of ps deciding α∼. Choose t as in Case 1, t = 〈t0, t∼1〉, t0 = 〈s,B〉 and let γ be such that

〈t0, t∼1〉‖−pα∼ = γq. Let n ∈ A ∩ B. Then as in Case 1, α = γ and ps∗〈n〉‖−pα∼ = γq.

On the other hand since 〈r0, r∼1〉‖−pδ ∈ β∼q, we can find s̄ such that s̄ does not contradict

p
s∗〈n〉
0 , 〈ps̄

0, p
s̄
1〉‖−pα∼ = γ̄q for some γ̄ > δ and 〈ps̄

0, δ〉 ∈ β∼. Now γ̄ = γ = α > δ which is in

contradiction with δ ≥ α. The claim follows.

This completes the proof of Lemma 5.1.9.

Lemma 5.1.13. Let 〈p0, p∼1〉‖−pf∼ : ω −→ 0nq. Then there are PU−names g∼ and q∼1 such

that 〈p0, q∼1〉 ≤∗ 〈p0, p∼1〉 and 〈p0, q∼1〉‖−pf∼ = g∼q.

Proof. For simplicity suppose that 〈p0, p∼1〉 = 〈〈<>, ω〉, ∅〉. Let θ be large enough regular

and let 〈Nn : n < ω〉 be an increasing sequence of countable elementary submodels of Hθ

such that P, f∼ ∈ N0 and Nn ∈ Nn+1 for every n < ω. Let N =
⋃

n<ω

Nn, δn = Nn ∩ ω1 for

n < ω and δ =
⋃

n<ω

δn = N ∩ ω1. Let 〈Jn : n < ω〉 ∈ N0 and 〈αi : 0 < i < ω〉 be as in

Lemma 5.1.9.

We define by induction a sequence 〈ps : s ∈ [ω]<ω〉 of conditions and a sequence 〈β∼s :

s ∈ [ω]<ω〉 of PU−names for ordinals such that

• ps = 〈ps
0, p∼

s
1〉 = 〈〈s, ω\(max s + 1)〉, p∼

s
1〉,

• ps ∈ Ns(lhs−1)+1,

• lh(ps) ≥ δs(lhs−1),

• ps‖−pf∼(lhs− 1) = β∼sq,

• if t end extends s, then pt ≤ ps.

For s =<>, let p<> = 〈〈<>,ω〉, ∅〉. Now suppose that s 6=<> and ps�lhs−1 is defined.

We define ps. Let Cs�lhs−1 be an infinite subset of ω almost disjoint to 〈ranp∼
s�lhs−1
1 (β) :

β < lh(ps�lhs−1)〉. Split Cs�lhs−1 into ω infinite disjoint sets 〈Cs�lhs−1,t : t ∈ [ω]<ω and t

end extends s � lhs− 1〉. Again split Cs�lhs−1,s into ω infinite disjoint sets 〈Ci : i < ω〉. Let

〈cij : j < ω〉 be an increasing enumeration of Ci, i < ω. We may suppose that all of these

is done in Ns(lhs−1)+1. Let qs = 〈qs
0, q∼

s
1〉, where

41



• qs
0 = 〈s, ω\(max s + 1)〉,

• for β < lh(ps�lhs−1), q∼
s
1(β) = p∼

s�lhs−1
1 (β),

• for i ∈ Js(lhs−1) such that αi ∈ δs(lhs−1)\lh(ps�lhs−1)

q∼
s
1(αi) = {〈〈s ∗ 〈r1, ..., ri〉, ω\(ri + 1)〉, ciri

〉 : r1 > max s, 〈r1, ..., ri〉 ∈ [ω]i}.

Then qs ∈ Ns(lhs−1)+1 and as in the proof of claim 5.1.10, qs ∈ P. By Lemma 5.1.9,

applied inside Ns(lhs−1)+1, we can find PU−names β∼s and p∼
s
1 such that 〈qs

0, p∼
s
1〉 ≤ 〈qs

0, q∼
s
1〉

and 〈qs
0, p∼

s
1〉‖−pf∼(lhs − 1) = β∼sq. Let ps = 〈ps

0, p∼
s
1〉 = 〈qs

0, p∼
s
1〉. Then ps ≤ ps�lhs−1 and

ps‖−pf∼ � lhs = {〈i, β∼s�i+1〉 : i < lhs}q.

This completes our definition of the sequences 〈ps : s ∈ [ω]<ω〉 and 〈β∼s : s ∈ [ω]<ω〉. Let

q∼1 = {〈ps
0, 〈β, p∼

s
1(β)〉〉 : s ∈ [ω]<ω, β < lh(ps)},

g∼ = {〈ps
0, 〈i, β∼s�i+1〉〉 : s ∈ [ω]<ω, i < lhs}.

Then q∼1 and g∼ are PU−names.

Claim 5.1.14. 〈〈<>, ω〉, q∼1〉 ∈ P.

Proof. We check conditions in Definition 5.1.4.

(1) i.e 〈<>,ω〉 ∈ PU is trivial.

(2) It is clear by our construction that

〈<>,ω〉‖−p q∼1 is a well-defined function q

and as in the proof of claim 5.1.11, we can show that lh( q∼1) = δ. (2a) is trivial. Let us prove

(2b). Thus suppose that I ⊆ δ, I ∈ V , p ≤ 〈<>,ω〉 and J ⊆ ω is finite. Let p = 〈s,A〉. If

s =<>, then as in the proof of 5.1.11, we can show that a = ∅ is a required. Thus suppose

that s 6=<>. First we apply (2b) to ps, I ∩ lh(ps), p and J to find a′ ⊆ lh(ps) such that

(*) For every finite b ⊆ I ∩ lh(ps)\a′ there is p′ ≤∗ p such that p′

‖−p(∀β ∈ b,∀k ∈ J, p∼
s
1(β) 6= k)&(∀β1 6= β2 ∈ b, p∼

s
1(β1) 6= p∼

s
1(β2))q.

Let δs(lhs−1)+1\δs(lhs−1) = {αJ1 , ..., αJi
, ...} where J1 < J2 < ... are in Js(lhs−1)+1. Let

a = a′ ∪ {α1, α2, ..., αJlhs
}.
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We show that a is as required. Let b ⊆ I\a be finite. First we apply (*) to b ∩ lh(ps) to

find p′ = 〈s,A′〉 ≤∗ p such that

p′‖−p(∀β ∈ b ∩ lh(ps),∀k ∈ J, p∼
s
1(β) 6= k)&(∀β1 6= β2 ∈ b ∩ lh(ps), p∼

s
1(β1) 6= p∼

s
1(β2))q.

Also note that for β ∈ b ∩ lh(ps), p′‖−p q∼1(β) = p∼
s
1(β))q. Pick m such that max s +

max J + 1 < m < ω and if t end extends s and m < max t, then Cs,t is disjoint to J and to

ranp∼
s
1(β) for β ∈ b ∩ lh(ps). Then pick n > m, n ∈ A′ such that b ⊆ δn, and let t = s ∗ 〈n〉.

Then

• ∀β1 6= β2 ∈ b\lh(ps), ranp∼
t
1(β1) ∩ ranp∼

t
1(β2) = ∅,

• ∀β1 ∈ b ∩ lh(ps),∀β2 ∈ b\lh(ps), ranp∼
t
1(β1) ∩ ranp∼

t
1(β2) = ∅,

• ∀β ∈ b\lh(ps), ranp∼
t
1(β) ∩ J = ∅.

Let q = 〈s,B〉 = 〈s,A′\(n + 1)〉. Then q ≤∗ p′ ≤∗ p and using the above facts we can

show that

q‖−p(∀β ∈ b,∀k ∈ J, q∼1(β) = p∼
t
1(β) 6= k)&(∀β1 6= β2 ∈ b, q∼1(β1) = p∼

t
1(β1) 6= p∼

t
1(β2) =

q∼1(β2))q.

Thus q is as required and the claim follows.

Claim 5.1.15. 〈〈<>,ω〉, q∼1〉‖−pf∼ = g∼q.

Proof. Suppose not. Then we can find 〈r0, r∼1〉 ≤ 〈〈<>, ω〉, q∼1〉 and i < ω such that

〈r0, r∼1〉‖−pf∼(i) 6= g∼(i)q. Let r0 = 〈s,A〉. Then r0 is compatible with ps
0 and r0‖−p r∼1

extends ps
1q. Hence 〈r0, r∼1〉 ≤ 〈ps

0, p∼
s
1〉 = ps. Now ps‖−pg∼(i) = β∼s�i+1 = f∼(i)q and we get

a contradiction. The claim follows.

This completes the proof of Lemma 5.1.13.

The following is now immediate.

Lemma 5.1.16. The forcing (P,≤) preserves cofinalities.

Proof. By Lemma 5.1.13, P preserves cofinalities ≤ ω1. On the other hand by a ∆−system

argument, P satisfies the ω2−c.c and hence it preserves cofinalities ≥ ω2.
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Lemma 5.1.17. Let G be (P,≤)−generic over V . Then V [G] |= GCH.

Proof. By Lemma 5.1.13, V [G] |= CH. Now let κ ≥ ω1. Then

(2κ)V [G] ≤ ((|P|ω1)κ)V ≤ (2κ)V = κ+.

The result follows.

Now we return to the proof of Theorem 5.1.1. Suppose that G is (P,≤)−generic over V ,

and let V1 = V [G]. Then V1 is a cofinality and GCH preserving generic extension of V .

We show that adding a Cohen real over V1 produces ℵ1−many Cohen reals over V . Thus

force to add a Cohen real over V1. Split it into ω Cohen reals over V1. Denote them by

〈rn,m : n, m < ω〉. Also let 〈fi : i < ω1〉 ∈ V be a sequence of almost disjoint functions from

ω into ω. First we define a sequence 〈sn,i : i < ω1〉 of reals by

∀k < ω, sn,i(k) = rn,fi(k)(0).

Let 〈In : n < ω〉 be the partition of ω1 produced by G. For α < ω1 let

• n(α) = that n < ω such that α ∈ In,

• i(α) = that i < ω1 such that α is the i−th element of In(α).

We define a sequence 〈tα : α < ω1〉 of reals by tα = sn(α),i(α). The following lemma

completes the proof of Theorem 5.1.1.

Lemma 5.1.18. 〈tα : α < ω1〉 is a sequence of ℵ1−many Cohen reals over V .

Notation 5.1.19. For each set I, let C(I) be the Cohen forcing notion for adding I−many

Cohen reals. Thus C(I) = {p : p is a finite partial function from I × ω into 2 }, ordered by

reverse inclusion.

Proof. First note that 〈rn,m : n, m < ω〉 is C(ω × ω)−generic over V1. By c.c.c of C(ω1) it

suffices to show that for every countable I ⊆ ω1, I ∈ V , 〈tα : α ∈ I〉 is C(I)−generic over

V . Thus it suffices to prove the following

For every 〈〈p0, p∼1〉, q〉 ∈ P ∗ C(ω × ω) and every open dense subset

(*) D ∈ V of C(I), there is 〈〈q0, q∼1〉, r〉 ≤ 〈〈p0, p∼1〉, q〉 such that 〈〈q0, q∼1〉
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, r〉‖−p〈 t∼ν : ν ∈ I〉 extends some element of Dq

Let 〈〈p0, p∼1〉, q〉 and D be as above. Let α = supI. We may suppose that lh(p∼1) ≥ α.

Let J = {n : ∃m, k, 〈n, m, k〉 ∈ domq}. We apply (2b) to 〈p0, p∼1〉, I, p0 and J to find a finite

set a ⊆ I such that:

(**) For every finite b ⊆ I\a there is p′0 ≤∗ p0 such that p′0‖−p(∀β

∈ b,∀k ∈ J, p∼1(β) 6= k)&(∀β1 6= β2 ∈ b, p∼1(β1) 6= p∼1(β2))q.

Let

S = {〈ν, k, j〉 : ν ∈ a, k < ω, j < 2, 〈n(ν), fi(ν)(k), 0, j〉 ∈ q}.

Then S ∈ C(ω1). Pick k0 < ω such that for all ν1 6= ν2 ∈ a, and k ≥ k0, fi(ν1)(k) 6= fi(ν2)(k).

Let

S∗ = S ∪ {〈ν, k, 0〉 : ν ∈ a, k < κ0, 〈ν, k, 1〉 6∈ S}.

The reason for defining S∗ is to avoid possible collisions. Then S∗ ∈ C(ω1). Pick S∗∗ ∈ D

such that S∗∗ ≤ S∗. Let b = {ν : ∃k, j, 〈ν, k, j〉 ∈ S∗∗}\q. By (∗∗) there is p′0 ≤∗ p0 such

that

p′0‖−p(∀ν ∈ b,∀k ∈ J, p∼1(ν) 6= k)&(∀ν1 6= ν2 ∈ b, p∼1(ν1) 6= p∼1(ν2))q.

Let p′′0 ≤ p′0 be such that 〈p′′0 , p∼1〉 decides all the colors of elements of a ∪ b. Let

q∗ = q ∪ {〈n(ν), fi(ν)(k), 0, S∗∗(ν, k)〉 : (ν, k) ∈ domS∗∗}.

Then q∗ is well defined and q∗ ∈ C(ω × ω). Now q∗ ≤ q, 〈〈p′′0 , p∼1〉, q∗〉 ≤ 〈〈p0, p∼1〉, q〉 and

for 〈ν, k〉 ∈ domS∗∗

〈〈p′′0 , p∼1〉, q∗〉‖−pS∗∗(ν, k) = q∗(n(ν), fi(ν)(k), 0) = r∼n(ν),fi(ν)(k)(0) = t∼ν(k)q.

It follows that

〈〈p′′0 , p∼1〉, q∗〉‖−p〈 t∼ν : ν ∈ I〉 extends S∗∗q.

(∗) and hence Lemma 5.1.18 follows.

This completes the proof of Theorem 5.1.1.
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5.2 An impossibility result

In this section we prove the following result.

Theorem 5.2.1. ([9]) Suppose that V1 ⊇ V are such that V1 and V have the same cardinals

and reals. Suppose ℵδ < the first fixed point of the ℵ−function. Then adding ℵδ−many

Cohen reals over V1 can not produce ℵδ+1−many Cohen reals over V.

The above Theorem answers an open question from [6]. The proof follows from the next

two lemmas.

Lemma 5.2.2. Suppose that V1 ⊇ V are such that V1 and V have the same cardinals and

reals. Suppose ℵδ < the first fixed point of the ℵ−function, X ⊆ ℵδ, X ∈ V1 and |X| ≥ δ+

(in V1). Then X has a countable subset which is in V .

Proof. By induction on δ < the first fixed point of the ℵ−function.

Case 1. δ = 0. Then X ∈ V by the fact that V1 and V have the same reals.

Case 2. δ = δ
′
+ 1. We have δ

′
< ℵδ′ , hence δ+ < ℵδ, thus we may suppose that

|X| ≤ ℵδ′ . Let η = sup(X) < ℵδ. Pick fη : ℵδ′ ↔ η, fη ∈ V. Set Y = f−1′′

η X. Then

Y ⊆ ℵδ′ , δ
′
< ℵδ′ and |Y | ≥ δ+ = δ

′+. Hence by induction there is a countable set B ∈ V

such that B ⊆ Y. Let A = f
′′

η B. Then A ∈ V is a countable subset of X.

Case 3. limit(δ). Let 〈δξ : ξ < cfδ〉 be increasing and cofinal in δ. Pick ξ < cfδ such

that |X∩ℵδξ
| ≥ δ+. By induction there is a countable set A ∈ V such that A ⊆ X∩ℵδξ

⊆ X.

The lemma follows.

Lemma 5.2.3. Suppose that V1 ⊇ V are such that

(a) V1 and V have the same cardinals and reals,

(b) κ < λ are infinite cardinals of V1 and cfV1(λ) 6= cfV1(κ),

(c) there is no C ∈ V1 such that C ⊆ λ, |C| = λ and |C ∩A| < ℵ0 for every countable set

A ∈ V.

Then adding κ−many Cohen reals over V1 can not produce λ−many Cohen reals over V.

Proof. Suppose not. Let 〈rα : α < λ〉 be a sequence of λ−many Cohen reals over V added

after forcing with C(κ) over V1. Let G be C(κ)−generic over V1. For each p ∈ C(κ) set
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Cp = {α < λ : p decides r∼α(0)}.

Then by genericity λ =
⋃

p∈G Cp. Hence as cfV1(λ) 6= cfV1(κ) we can find p ∈ G such that

|Cp| = λ. Suppose for simplicity that ∀α ∈ Cp, p‖−p r∼α(0) = 0q. By (c) there is a countable

set A ∈ V such that A ⊆ Cp. Let q ∈ C(λ) be such that

q‖−V pA ∈ V is countable and ∀α ∈ A, r∼α(0) = 0q.

Pick 〈0, α〉 ∈ ω×A such that 〈0, α〉 /∈ supp(q). Let q̄ = q∪{〈〈0, α〉, 1〉}. Then q̄ ∈ C(λ), q̄ ≤ q

and q̄‖−p r∼α(0) = 1q which is a contradiction.
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وترریاضی و کامپی دانشکده  

ریاضی بخش  

ریاضی رشتهدکتری دریافت درجه  برایرساله   

و نظریه مجموعه ها گرایش منطق  

 

اضافه کردن یک عدد حقیقی به مدل های  راتاث

 نظریه مجموعه ها

 

: مؤلف   

قریه علی محمد گلشنی   

: استاد راهنما  

  اسفندیار اسلامی دکتر

: استاد  مشاور   

دمنیدکتر سای دیوید فر  

 

 

١٣٩٠اسفند   


	0
	1
	2

