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Abstract

A graph is called integral if all eigenvalues of its adjacency matrix consist entirely of integers.
Integral graphs are very rare and difficult to find. In this paper, we introduce some general
methods for constructing such graphs. As a consequence, some infinite families of integral
graphs are obtained.
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1 Introduction

Let G be a graph with the vertex set {v1, . . . , vn}. The adjacency matrix of G is an n × n

matrix A(G) whose (i, j)-entry is 1 if vi is adjacent to vj and is 0, otherwise. The zeros of the
characteristic polynomial of A(G) are called the eigenvalues of G. The graph G is said to be
integral if all the eigenvalues of G are integers. The notion of integral graphs was first introduced
in [8]. Recently, integral graphs have found applications in quantum networks allowing perfect
state transfer [12]. For a survey on integral graphs, we refer the reader to [3].

Integral graphs are very rare and difficult to find. For instance, out of 164,059,830,476
connected graphs on 12 vertices, there exist exactly 325 integral graphs [4]. In general, it seems
impossible to give a complete characterization of integral graphs. This has led researchers to
investigate integral graphs within restricted classes of graphs such as cubic graphs, 4-regular
graphs, complete multipartite graphs and circulant graphs [3, 13, 15]. Meanwhile, some infinite
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families of integral graphs have been acquired through the generalizations of small integral
graphs [14, 16, 17]. In this paper, we introduce some general methods based on the Kronecker
product for constructing integral graphs. Using these methods, we present some infinite families
of integral graphs.

Let us to recall some definitions and notation to be used throughout the paper. For a graph
G, the complement of G, denoted by G, is a graph on the vertex set of G such that two vertices
of G are adjacent if and only if they are not adjacent in G. We denote the complete graph on
n vertices and the complete bipartite graph with two parts of sizes m and n, by Kn and Km, n,
respectively. The n × n identity matrix and the m × n all one matrix will be denoted by In

and Jm×n, respectively, with the convention Jn instead of Jn×n. We also drop the subscripts
whenever there is no danger of confusion. If A = [aij ] is an m × n matrix and B is an r × s

matrix, then the Kronecker product A⊗B is defined as the mr×ns matrix with the block form
a11B · · · a1nB

...
. . .

...
am1B · · · amnB

 .

It is easy to see that there exists a permutation matrix P such that A⊗B = P (B⊗A)P−1. Also,
if λ1, . . . , λm and µ1, . . . , µn are all eigenvalues of two square matrices A and B, respectively,
then λiµj for i = 1, . . . ,m and j = 1, . . . , n, are eigenvalues of A⊗B.

2 A construction using commuting matrices

Some graph operations such as the Cartesian product and the strong product may be used to
generate new integral graphs from given ones [8]. In this section, we give a new general method
for constructing integral graphs using the Kronecker product and commuting sets of matrices
with integral eigenvalues. One may use this construction to obtain some new infinite families of
integral graphs. In the following, we give some examples.

Proposition 1. Let A = {A1, . . . , Ak} be a commuting set of the adjacency matrices of k

mutually edge-disjoint integral graphs on the same vertex set. Let B1, . . . , Bk be symmetric

(0, 1)-matrices with integral eigenvalues such that B = {B1, . . . , Bk} is a commuting set. Then

the graph with the adjacency matrix A1 ⊗B1 + · · ·+ Ak ⊗Bk is integral.

Proof. Obviously, A1⊗B1 + · · ·+Ak⊗Bk is the adjacency matrix of a graph which is integral,
since {A1 ⊗B1, . . . , Ak ⊗Bk} is a commuting set of matrices whose eigenvalues are all integers.
�

The following provides some examples of the sets A and B which satisfy the conditions of
Proposition 1. Applying these examples to Proposition 1, one may obtain numerous infinite
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families of integral graphs. Notice that any instance of A may be used with any instance of B

to find integral graphs.

Example 1. Given a regular integral graph G, one can take {A(G),A(G)} as A in Proposition
1.

Example 2. Given a regular integral graph G, any subset of{
I, J, J − I,A(G),A(G), I +A(G), I +A(G)

}
may be used as B in Proposition 1.

Example 3. In [1, 2], it is shown that Km (Km, m) is decomposable into perfect matchings with
mutually commuting adjacency matrices if and only if m is a power of 2. Using these results,
we find some instances of A in Proposition 1. For an example, if m = 2, then we obtain two
commuting matrices

A1 =

[
0 I2

I2 0

]
and A2 =

[
0 J2 − I2

J2 − I2 0

]
with integral eigenvalues. By Proposition 1, it is easily seen that for any positive integer n,
A1 ⊗ In + A2 ⊗ Jn represents an integral graph which is isomorphic to the Cartesian product of
K2 and Kn, n.

Example 4. Since any two circulant matrices of the same order commute, every set of the
adjacency matrices of integral circulant graphs on the same vertex set is an example of B in
Proposition 1. An explicit criterion for integrality of circulant graphs is given in [13].

3 The form A⊗ I + B ⊗ J

In this section, we study integral graphs whose adjacency matrices have the form A⊗ I +B⊗J ,
where A and B are the adjacency matrices of two edge-disjoint graphs. We first establish a
theorem which has a crucial role in our proofs. For this, we need to recall the following theorem
from linear algebra.

Theorem 1. [10, Theorem 1] Let m and n be two positive integers and for any i, j ∈ {1, . . . , n},
let Aij be m×m matrices over a commutative ring that commute pairwise. Then

det


A11 · · · A1n

...
. . .

...

An1 · · · Ann

 = det

(∑
σ∈Sn

sign(σ)A1σ(1) · · ·Anσ(n)

)
,

where Sn is the set of all permutations of {1, . . . , n}.
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Theorem 2. Let A and B be two real matrices of the same order. Then det(A⊗In +B⊗Jn) =
(detA)n−1 det(A + nB) for all positive integer n.

Proof. Let A = [aij ] and B = [bij ]. We have det(A⊗ In + B ⊗ Jn) = det[aijIn + bijJn]. Since
the block-entries of the matrix [aijIn + bijJn] are commuting matrices, using Theorem 1 and the
equality Jk

n = nk−1Jn for positive integer k, it is not very hard to see that

det[aijIn + bijJn] = det
(

(detA)In +
(

det(A + nB)− det A

n

)
Jn

)
.

Since eigenvalues of Jn are 0 with multiplicity n− 1 and n with multiplicity 1, we conclude that

det(A⊗In+B⊗Jn) = (det A)n−1

(
det A + n

(
det(A + nB)− det A

n

))
= (det A)n−1 det(A+nB),

as required. �

Corollary 1. Let n > 2 and let A and B be two real matrices of the same order. Then all

eigenvalues of A ⊗ In + B ⊗ Jn are integers if and only if all eigenvalues of A and A + nB are

integers.

Proof. By Theorem 2, we have

det
(
xI−(A⊗In+B⊗Jn)

)
= det

(
(xI−A)⊗In−B⊗Jn

)
=
(
det(xI−A)

)n−1 det
(
xI−(A+nB)

)
,

which clearly implies the assertion. �

Example 5. The Seidel matrix of a graph Γ is defined as A(Γ )−A(Γ ). Let G be a graph whose
Seidel matrix has only integral eigenvalues. Then by Corollary 1, A(G)⊗ I2 +A(G)⊗ (J2 − I2)
represents a regular integral graph.

Lemma 1. Let r 6= 1 be an integer and G be a k-regular graph on m vertices. Then all

eigenvalues of the matrix

Mr =

[
A(G) I

I A(G)

]
+ r

[
A(G) 0

0 A(G)

]

are integers if and only if k = (m− 1)/2 and (r − 1)2(2λ + 1)2 + 4 is a perfect square for every

eigenvalue λ of G except k.
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Proof. Applying Theorem 1, we have

det(xI −Mr) =det

[
(x + r)I − rJ + (r − 1)A(G) −I

−I (x + 1)I − J − (r − 1)A(G)

]
=det

((
x2 + (r + 1)x + r − 1

)
I −

(
x(r + 1)− r(m− 2)− k(r − 1)2

)
J

−(r − 1)2
(
A(G) +A(G)2

))
=
(
x2 − (r + 1)(m− 1)x + r − 1 + mr(m− 2)− k(k −m + 1)(r − 1)2

)
×
∏(

x2 + (r + 1)x + r − 1− (r − 1)2(λ + λ2)
)
,

where the product runs over all the eigenvalues of G except k. The polynomial given in the first
parenthesis in the last equality has integral roots if and only if (r−1)2(m−2k−1)2+4 is a perfect
square. This implies that k = (m−1)/2. Also, the roots of x2 +(r+1)x+r−1−(r−1)2(λ+λ2)
are integers if and only if (r − 1)2(2λ + 1)2 + 4 is a perfect square, as desired. �

For a graph G and an integer n > 2, the graphs with the adjacency matrices[
A(G) I

I A(G)

]
and

[
A(G) I

I A(G)

]
⊗ In +

[
A(G) 0

0 A(G)

]
⊗ Jn

are denoted by Φ0(G) and Φn(G), respectively. We mention that Φ0(G) has been studied in [6]
to characterize a family of graphs with specified eigenvalues. Combining Corollary 1 and Lemma
1, we obtain the following result.

Corollary 2. Let n 6= 1 and G be a k-regular graph on m vertices. Then Φn(G) is integral if

and only if k = (m− 1)/2 and the numbers (2λ + 1)2 + 4 and (n− 1)2(2λ + 1)2 + 4 are perfect

squares for every eigenvalue λ of G except k.

A strongly regular graph with parameters (n, k, λ, µ) is a k-regular graph on n vertices such
that any two adjacent vertices have λ common neighbors and any two nonadjacent vertices have
µ common neighbors. A strongly regular graph with parameters (n, (n−1)/2, (n−5)/4, (n−1)/4)
is called a conference graph.

Theorem 3. Let n 6= 1 and G be a connected strongly regular graph. Then Φn(G) is integral

if and only if G is a conference graph on m = 16s2 +24s+5 vertices for some integer s > 0 such

that m(n− 1)2 + 4 is a perfect square.

Proof. We know from [7, p. 219] that the distinct eigenvalues of a conference graph Γ on υ

vertices are (υ− 1)/2 and (−1±
√

υ)/2. Hence for any eigenvalue λ of Γ except the largest one,
we have (2λ + 1)2 = υ. Therefore, if G is a conference graph on m = 16s2 + 24s + 5 vertices
for some s > 0 such that m(n − 1)2 + 4 is a perfect square, then all the necessary conditions
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in Corollary 2 hold and so Φn(G) is an integral graph. Now, we prove the converse. Let k

be the degree of a strongly regular graph G and λ1, λ2 be the other distinct eigenvalues of G.
By Corollary 2, (2λi + 1)2 + 4 is a perfect square, thus λi is not integer, for i = 1, 2. Hence
the multiplicities of λ1 and λ2 are equal and applying [7, Lemma 10.3.2], we deduce that G is
a conference graph. Moreover, Corollary 2 implies that m + 4 and m(n − 1)2 + 4 are perfect
squares, where m is the number of vertices of G. Since m is odd, m + 4 = (2r + 1)2 for some
positive integer r. To end the proof, it suffices to prove that r is odd. From [5], we know that
m is the sum of two perfect squares. Furthermore, it is well known a positive integer a is a sum
of two perfect squares if and only if all prime factors of a congruent to 3 modulo of 4 appear
an even number of times in the factorization of a [9, p. 605]. Now, since m is the product of
two relatively prime integers 2r − 1 and 2r + 3, one can easily conclude that r must be odd, as
required. �

We recall that the Fibonacci sequence is recursively defined as Fn = Fn−1 + Fn−2 for n > 2
with initial terms F0 = F1 = 1.

Example 6. It is well known that 5a2 + 4 for a positive integer a is a perfect square if and
only if a = F2k+1 for some integer k > 0 [9, p. 620]. Hence, if C5 is the 5-cycle and n ∈
{0} ∪ {F2k+1 + 1 | k > 0}, then by Theorem 3, Φn(C5) is integral. Note that Φ0(C5) is the
Petersen graph.

Example 7. Using the fact mentioned in Example 6, it is not hard to see that 45a2 + 4 for a
positive integer a is a perfect square if and only if a = F4k+3/3 for some integer k > 0. Thus, if
G is one of the conference graphs on 45 vertices [11] and n ∈ {0} ∪ {F4k+3/3 + 1 | k > 0}, then
by Theorem 3, Φn(G) is integral.

Remark 1. Note that if G is a conference graph on 16s2 + 24s + 5 vertices for some integer
s > 0, then by Theorem 3, Φ0(G) and Φ2(G) are integral.

4 The form A(G)⊗ I +A(G)⊗ J

For a graph G and an integer n > 2, we denote by Ψn(G) the graph with the adjacency matrix
A(G)⊗In+A(G)⊗Jn. In this section, we investigate some graphs G for which Ψn(G) are integral.
Note that by Corollary 1, Ψn(G) is integral if and only if all eigenvalues of A(G) + kA(G) are
integers for k = 0, n.

Example 8. Let G be any of the two integral graphs depicted in Figure 1. By an easy
calculation, we find that for any integer n, the distinct eigenvalues of A(G1) + nA(G1) and
A(G2) + nA(G2) are

−1, n− 2,−3n + 2,
(2n + 3)±

√
5(2n + 1)2 + 4
2
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and

−1, n− 2,−2n + 1,
(2n + 3)±

√
5(2n + 1)2 + 4
2

,

respectively. It follows from Corollary 1 that Ψn(G) is integral if and only if 5(2n + 1)2 + 4 is
a perfect square. Hence, by the fact mentioned in Example 6, Ψn(G) is integral if and only if
2n + 1 = F2`+1 for some integer ` > 0 and it is not hard to check that this occurs if and only if
n ∈ {(F` − 1)/2 | ` ≡ 1, 3 (mod 6)}.
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Figure 1: Two integral graphs on 7 vertices.

Theorem 4. Let n > 2, r, s be positive integers. Then the graph Ψn(Kr, s) is integral if and

only if rs and n2(r − s)2 + 4rs are perfect squares.

Proof. We have

det
(
xI −

(
A(Kr, s) + kA(Kr, s)

))
=det

[
xI − k(J − I) −Jr×s

−Js×r xI − k(J − I)

]
=(x + k)r+s−2

(
x2 − k(r + s− 2)x + k2(r − 1)(s− 1)− rs

)
.

We mention that in order to compute the above determinant, one can add a suitable multiple
of the sum of the first r rows of the matrix to the last s rows to triangularize the matrix. By
Corollary 1, Ψn(Kr, s) is integral if and only if all the roots of the above polynomial are integers
for k = 0, n. Indeed, this occurs if and only if rs and n2(r − s)2 + 4rs are perfect squares. �

Remark 2. Notice that the numerical conditions of Theorem 4 are fulfilled for infinitely many
integers r, s, n. For instance, if t is an arbitrary positive integer, then taking r = t2, s = (t + 1)2

and

n =


(t + 1)(2t− 1)

2
, if t is odd;

t(2t + 3)
2

, if t is even;

we find an infinite family of non-regular integral graphs.

Theorem 5. Let n > 2, r, s be positive integers. If Hr, s is the graph with the adjacency matrix[
J − I Jr×s

Js×r 0

]
,
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then Ψn(Hr, s) is integral if and only if (r − 1)2 + 4rs and (ns − n − r + 1)2 + 4rs are perfect

squares.

Proof. By Corollary 1, it suffices to determine when all the roots of the polynomial

det
(
xI −

(
A(Hr, s) + kA(Hr, s)

))
=det

[
(x + 1)I − J −Jr×s

−Js×r (x + k)I − kJ

]
=(x + 1)r−1(x + k)s−1

×
(
x2 − (sk − k + r − 1)x + k(r − 1)(s− 1)− rs

)
are integers for k = 0, n. This happens if and only if (r − 1)2 + 4rs and (ns− n− r + 1)2 + 4rs

are perfect squares. �

Remark 3. We state that the numerical conditions of Theorem 5 are satisfied for infinitely
many integers r, s, n. For example, if (r, s, n) = (t, 2t− 1, t + 1) where t is an arbitrary positive
integer, then we find an infinite family {Ht}t>2

of non-regular integral graphs. We recall that
for a graph Γ on υ vertices, the Laplacian matrix of Γ is defined as L(Γ ) = D(Γ )−A(Γ ), where
D(Γ ) denotes the diagonal matrix whose entries are the vertex degrees of Γ . The graph Γ is
called Laplacian integral if all eigenvalues of its Laplacian matrix consist entirely of integers.
With a similar calculation as we do in Theorem 5, one can verify that {Ht}t>2

is also an infinite
family of non-regular Laplacian integral graphs. The graph H2 is indicated in Figure 2.

Figure 2: An integral graph on 15 vertices obtained from Theorem 5.

Remark 4. It is worth to mention that A(Ψn(G)) = (I + A(G)) ⊗ (Jn − In), for every graph
G and any integer n > 2. Hence G is integral if and only if Ψn(G) is integral. In particular, the
complement of any integral graph obtained from Theorems 4 and 5 is also integral.
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5 More block form constructions

In this section, we investigate the existence of more integral graphs whose adjacency matrices
have the form A ⊗ I + B ⊗ J , where A and B have nice block structures. We start with the
following theorem which makes use of the adjacency matrices of the complete graph and the
complete bipartite graph as A and B, respectively.

Theorem 6. Let n > 2, r, s be positive integers. Then the graph with adjacency matrix[
0 Jr×s

Js×r 0

]
⊗ In +

[
Jr − Ir 0

0 0

]
⊗ Jn

is integral if and only if rs and n2(r − 1)2 + 4rs are perfect squares.

Proof. Using Corollary 1, it is enough to determine when all the roots of the polynomial

det

(
xI −

[
k(J − I) Jr×s

Js×r 0

])
= xs−1(x + k)r−1

(
x2 − k(r − 1)x− rs

)
are integers for k = 0, n. Obviously, this holds if and only if rs and n2(r− 1)2 + 4rs are perfect
squares. �

Theorem 7. Let n > 2, r, s be positive integers. Then the graph with adjacency matrix[
0 Jr×s

Js×r 0

]
⊗ In +

[
Ir 0
0 0

]
⊗ (Jn − In)

is integral if and only if 1 + 4rs and (n− 1)2 + 4rs are perfect squares.

Proof. Applying Corollary 1, it suffices to determine when all the roots of the polynomial

det

(
xI −

[
(k − 1)I Jr×s

Js×r 0

])
= xs−1(x− k + 1)r−1

(
x2 − (k − 1)x− rs

)
are integers for k = 0, n. For this, 1 + 4rs and (n− 1)2 + 4rs must be perfect squares. �

Remark 5. It is easily checked that the graph constructed in Theorem 7 whenever n = 2
is integral if and only if rs is the product of two consecutive numbers. The infinite family of
integral graphs obtained from Theorem 7 for n = 2 is first introduced in [17, Corollary 5(1)].

In the following, we present two instances of integral graphs with other variations of block
forms of the adjacency matrices.
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Theorem 8. Let n > 2, r, s be positive integers. Then the graph with adjacency matrix 0 Jr×s 0
Js×r 0 0

0 0 0

⊗ In +

 0r 0 0
0 0 Is

0 Is 0

⊗ Jn

is integral if and only if rs and n2 + rs are perfect squares.

Proof. By Corollary 1, it suffices to determine when all the roots of the polynomial

det

xI −

 0 Jr×s 0
Js×r 0 kI

0 kI 0


 = xr(x2 − k2)s−1(x2 − k2 − rs)

are integers for k = 0, n. This occurs if and only if rs and n2 + rs are perfect squares. �

Theorem 9. Let n > 2, r, s, t be positive integers. Then the graph with adjacency matrix 0 Jr×s 0
Js×r 0 0

0 0 0

⊗ In +

 0 0 0
0 0 Js×t

0 Jt×s 0

⊗ Jn

is integral if and only if rs and n2ts + rs are perfect squares.

Proof. Using Corollary 1, we need to determine when all the roots of the polynomial

det

xI −

 0 Jr×s 0
Js×r 0 kJs×t

0 kJt×s 0


 = xr+s+t−2(x2 − k2ts− rs)

are integers for k = 0, n. This happens if and only if rs and n2ts + rs are perfect squares. �

Remark 6. Notice that in all theorems in this section, if we put n = 1, then we find some
integral graphs if and only if the other parameters satisfy only the second numerical condition.
For example, the stars K1, t2 for any positive integer t and the graphs obtained in Theorem 8
whenever n = r = 1 consist the only integral trees with exactly one vertex of degree more than
two [18].

Remark 7. It is well known that for two integers x and y, x2 + y2 is a perfect square if and
only if one of x and y has form 2abc and the other has form c(a2 − b2) for some integers a, b, c

[9, p. 584]. Using this fact, we can find infinitely many integral graphs through the theorems of
this section.
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As a final result, we give another family of integral graphs whose adjacency matrices have a
more complicated block form. It shows that one can construct new infinite families of integral
graphs by considering similar block form matrices.

Theorem 10. Let n > 2, r, s, t be positive integers. Then the graph with adjacency matrix 0 Jr×sn 0

Jsn×r 0 Js×t ⊗ In

0 Jt×s ⊗ In It ⊗ (Jn − In)


is integral if and only if all roots of the polynomial x3 − (n− 1)x2 − s(rn + t)x + rsn(n− 1) are

integers and 1 + 4st is a perfect square.

Proof. Let A be the matrix given in the statement of the theorem. From Theorem 2, we have

det(xI −A) =xr det

([
xIs −J

−J (x + 1)It

]
⊗ In +

[
− r

xJs 0
0 −It

]
⊗ Jn

)

=xr

(
det

[
xIs −J

−J (x + 1)It

])n−1

det

([
xIs −J

−J (x + 1)It

]
+ n

[
− r

xJs 0
0 −It

])
.

Hence, the graph with the adjacency matrix A is integral if and only if all roots of the polynomial

det

[
xIs − kr

x Js −J

−J (x + 1− k)It

]
= xs−2(x+1−k)t−1

(
x3− (k−1)x2− s(rk + t)x+ rsk(k−1)

)
are integers for k = 0, n. The assertion follows. �

Remark 8. Notice that if (r, s, t, n) = (1, 1, `2 + `, `2 + ` + 1) or (r, s, t, n) = (`− 1, 2, 1, 2`) for
some positive integer `, then the conditions in Theorem 10 are satisfied. The infinite family of
integral graphs corresponding to the first parameters is introduced in [16].
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