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Abstract
Using a backtracking algorithm along with an essential change to the rows of repre-
sentatives of known 13710027 equivalence classes of Hadamard matrices of order 32,
we make an exhaustive computer search feasible and show that there are exactly 6662
inequivalent skew-Hadamard matrices of order 32. Two skew-Hadamard matrices are
considered SH-equivalent if they are similar by a signed permutation matrix. We
determine that there are precisely 7227 skew-Hadamard matrices of order 32 up to
SH-equivalence. This partly settles a problem posed by Kim and Solé. As a conse-
quence, we provide the classification of association schemes of order 31.
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1 Introduction

A Hadamard matrix of order n is an n × n matrix H with entries in {−1, 1} such that
HH> = nI, where H> is the transpose of H and I is the identity matrix. It is well known
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that the order of a Hadamard matrix is 1, 2, or a multiple of 4 [15]. It is a longstanding open
question whether Hadamard matrices of order n exist for any n divisible by 4. The smallest
order for which there is no known Hadamard matrix is 668 [12]. Hadamard matrices have
been extensively investigated and have found many applications in several diverse fields.

A Hadamard matrix H is said to be skew-Hadamard if H+H> = 2I. Skew-Hadamard
matrices, being equivalent to doubly regular tournaments [3], form a class of Hadamard
matrices, which has been widely studied. They are used to construct several combinatorial
objects, such as association schemes, self-dual codes, strongly regular graphs, and more.
As with Hadamard matrices, it is an open question whether skew-Hadamard matrices of
order n exist for any n divisible by 4. The smallest unknown order of a skew-Hadamard
matrix is 276 [5].

A permutation matrix (respectively, signed permutation matrix) is a matrix with entries
in {0, 1} (respectively, {−1, 0, 1}) which has exactly one nonzero entry in each row and
each column. Two Hadamard matrices H and K are said to be H-equivalent if there
exist two signed permutation matrices P and Q such that K = PHQ, otherwise, they
are called H-inequivalent. All H-inequivalent Hadamard matrices of orders up to 32 have
been classified [11]. Two skew-Hadamard matrices H and K are said to be SH-equivalent
if there exists a signed permutation matrix P such that K = P−1HP , otherwise, they are
called SH-inequivalent. All H-inequivalent and SH-inequivalent skew-Hadamard matrices
of orders up to 28 have been classified [1, 18].

In 2008, Kim and Solé proposed the problem to find exhaustive lists of H-inequivalent
skew-Hadamard matrices of orders 32 and 64 [13]. In this paper, we determine the number
of H-inequivalent and SH-inequivalent skew-Hadamard matrices of order 32. It turns out
that there are exactly 6662 skew-Hadamard matrices of order 32 up to H-equivalence, and
there are exactly 7227 skew-Hadamard matrices of order 32 up to SH-equivalence. The
resulting classification is shown in Table 1.

order 1 2 4 8 12 16 20 24 28 32
# H-inequivalent Hadamard matrices 1 1 1 1 1 5 3 60 487 13710027

# H-inequivalent skew-Hadamard matrices 1 1 1 1 1 2 2 16 54 6662
# SH-inequivalent skew-Hadamard matrices 1 1 1 1 1 2 2 16 65 7227

Table 1. The number of H-inequivalent Hadamard matrices, H-inequivalent skew-Hadamard matrices,
and SH-inequivalent skew-Hadamard matrices of orders up to 32.

2 Skew-Hadamard matrices of order 32

All H-equivalence classes of Hadamard matrices of order 32 were classified in [11]. It turned
out that the number of H-inequivalent Hadamard matrices of order 32 is exactly 13710027.
To find which of the classes contains a skew-Hadamard matrix, we use the following simple
yet important observation from [14]. A Hadamard matrix H is H-equivalent to a skew-
Hadamard matrix if and only if there exists a signed permutation matrix P such that
HP is a skew-Hadamard matrix. So, instead of multiplying H from the left and the
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right by signed permutation matrices, we need only to consider multiplication from the
right. Also, one can see that the signs of nonzero entries of P is uniquely determined
since the diagonal entries of HP are all 1. Let R be the set of representatives of 13710027
H-inequivalent Hadamard matrices of order 32. For each Hadamard matrix H ∈ R, the
following procedure is applied. We try to find a signed permutation matrix P such that
HP is a skew-Hadamard matrix. The matrix P is constructed column by column through
a backtracking algorithm. At step i, when the column i of P is chosen, it is checked that
the principal submatrix of HP on the first i rows and columns to be skew with diagonal
entries being 1. If not, then we backtrack. The procedure is ended if either all columns of P
are chosen, which in this case HP will be a skew-Hadamard matrix or no such P is found.
The experiment with some randomly chosen elements of R shows that it would take a long
time to check all elements of R. We guessed that the reason for this is the high symmetry
hidden in the first rows of elements of R, which prohibits the algorithm from backtracking
in earlier steps. In order to resolve this problem and make the computation feasible, we
chose a random permutation on the rows and applied it to every element of R. The trick
worked, and the time was reasonably reduced so that we could run the algorithm on the
whole set R. The computation time was about one week on a 2.6 GHz PC. The same code
was run twice on two different machines with different operating systems, and we received
similar results. Therefore, the probability of any hardware error is extremely small. We
also implemented some parts of the algorithm twice with different codes. Another test for
the correctness of the program was the confirmation of all the numbers given in Table 1
for orders up to 28. We summarize our results in the following theorem.

Theorem 2.1. There are exactly 6662 H-inequivalent skew-Hadamard matrices of order
32.

Now we turn our attention to SH-equivalence. We run the algorithm described above
on the set S of representatives of 6662 H-inequivalent skew-Hadamard matrices of order 32
and, for each Hadamard matrix H ∈ S, we find all signed permutation matrices P1, . . . , P`

such that HPi is a skew-Hadamard matrix for all i. If K is a skew-Hadamard matrix in
the H-equivalence class of H, then K = PHQ for some signed permutation matrices P
and Q and so P−1KP = H(QP ) which means that K is SH-equivalent to HPi for some
i. Therefore, it suffices to check SH-equivalence in the set {HP1, . . . ,HP`}. Our program
shows that ` is at most 16 and ` = 1 for most of the cases. Hence, it is fast and easy to
perform SH-equivalence. We obtain the following theorem.

Theorem 2.2. There are exactly 7227 SH-inequivalent skew-Hadamard matrices of order
32.

The complete lists of skew-Hadamard matrices of order 32 are available electronically
at [19]. Similar lists for orders up to 32 have been posted on [21].

3 Association schemes of order 31

As a corollary of the classification of skew-Hadamard matrices of order 32, we can achieve
the classification of association schemes of order 31. First, we give a definition of association
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schemes in matrix form. An association scheme of order n and class d is a set of nonzero
n× n matrices S = {A0, A1, . . . , Ad} with entries in {0, 1} such that

(i) A0 = I;

(ii) Every entry of
∑d

i=0Ai is 1;

(iii) For any i, j ∈ {0, 1, . . . , d}, A>i and AiAj are linear combinations of A0, A1, . . . , Ad.

It is well known that, for any i ∈ {0, 1, . . . , d}, all row and column sums of Ai are the
same. We call this number the valency of Ai and denote by ki. Indeed, k0 which is
called the trivial valency is equal to 1. An association scheme is said to be symmetric
if all its elements are symmetric matrices. An association scheme is called Schurian if it
forms a basis for the centralizer algebra of a transitive group of permutation matrices. Two
association schemes S and T are said to be isomorphic if there exists a permutation matrix
P such that T = P−1SP .

We now consider the case n = 31. It is proved that the nontrivial valencies of association
schemes of prime orders are the same [10]. Letting k1 = · · · = kd = k, we have 1 +
dk = 31 and thus d ∈ {1, 2, 3, 5, 6, 10, 15, 30}. It is known that there exists exactly one
Schurian association scheme of order 31 and class d for any d ∈ {1, 2, 3, 5, 6, 10, 15, 30} [16,
Theorem7.3]. This result along with a method similar to the ones in [8, 9] and a computer
calculation by backtracking implies the next lemma.

Lemma 3.1. For each d ∈ {1, 3, 5, 6, 10, 15, 30}, there is a unique association scheme of
order 31 and class d.

The following is devoted to the case d = 2. In this case, association schemes are
nonsymmetric. There is a known correspondence between skew-Hadamard matrices and
nonsymmetric association schemes of class 2. Let n ≡ 3 (mod 4) and S = {A0, A1, A2} be
a nonsymmetric association scheme of order n. Then,

H(S) =


1 1 · · · 1

−1
... A0 +A1 −A2

−1

 (1)

is a skew-Hadamard matrix of order n+1. Conversely, association schemes can be obtained
from a skew-Hadamard matrix H of order n + 1. Let Di be the diagonal matrix whose
diagonal vector is the ith row vector of H. Clearly, D−1i HDi is of the form



i

−1
...
−1

i 1 · · · 1 1 1 · · · 1
−1
...
−1


. (2)
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Define an n × n matrix Ri by deleting the ith row and column of D−1i HDi. We get an
association scheme H(i) by reversing the above operation, namely, H(i) = {A0, A1, A2},
where A0 = I, A1 = (J − 2I +Ri)/2, A2 = (J −Ri)/2, and J denotes the all one matrix.
For details, see [7]. We remark that the association scheme depends on the choice of i. We
give a small example.

Example 3.2. Consider a skew-Hadamard matrix

H =


1 1 1 1
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1


and let compute H(4). We have

D4 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 and D−14 HD4 =


1 −1 1 −1
1 1 −1 −1
−1 1 1 −1
1 1 1 1

 .
Now, we get the nonsymmetric association scheme H(4) = {A0, A1, A2}, where

A0 =

 1 0 0
0 1 0
0 0 1

 , A1 =

 0 0 1
1 0 0
0 1 0

 , A2 =

 0 1 0
0 0 1
1 0 0

 .
We use the following lemma to obtain all nonsymmetric association schemes of class 2

from skew-Hadamard matrices.

Lemma 3.3. Let H1, . . . ,Hm be representatives of all the SH-equivalence classes of skew-
Hadamard matrices of order n+ 1. Then

An =
{
H

(i)
k

∣∣∣ k = 1, . . . ,m and i = 1, . . . , n+ 1
}

contains representatives of all the isomorphism classes of nonsymmetric association schemes
of order n and class 2.

Proof. Let S be a nonsymmetric association scheme of order n and class 2 and let H(S)
be a skew-Hadamard matrix defined in (1). There exist H ∈ {H1, . . . ,Hm} and a signed
permutation matrix P such that H(S) = P−1HP . Moreover, there exist a permutation
matrix Q and a diagonal matrix D such that P = DQ. Let σ be the permutation on
{1, . . . , n + 1} given by Q, that is, σ(i) = j if Qij = 1. Then, QH(S)Q−1 is of the form
given in (2) with i = σ−1(1). Since QH(S)Q−1 = D−1HD, the diagonal vector of D must
be the ith row vector of H or its negation. This means that H(i) is obtained from D−1HD
by deleting the ith row and column. So, if R is the matrix obtained from Q by deleting
the ith row and the first column, then S = R−1H(i)R. This completes the proof.
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We need to compute isomorphisms in A31. This can be done by GRAPE Package [17]
on GAP [20]. Suppose that S = {A0, A1, A2} and T = {B0, B1, B2} are two association
schemes in A31. We denote by G(A) the directed graph corresponding to a matrix A whose
entries are in {0, 1}. Then S and T are isomorphic as association schemes if and only if
“ IsIsomorphicGraph(G(A1), G(B1)) or IsIsomorphicGraph(G(A1), G(B2))” is true on GAP.
However, we could not finish the computation by using this function directly. We define an
invariant obtained from [2]. Let A be an n×n matrix with entries in {0, 1}. For mutually
distinct indices i, j, k ∈ {1, . . . , n}, we define

m
(
{i, j, k}

)
=
∣∣∣{` ∈ {1, . . . , n} ∣∣∣Ai` = Aj` = Ak` = 1

}∣∣∣
and we consider the multiset

M(A) =
{
m
(
{i, j, k}

) ∣∣∣ i, j, k ∈ {1, . . . , n} are mutually distinct
}
.

The next lemma is clear by definition.

Lemma 3.4. Let {A0, A1, A2} and {B0, B1, B2} be isomorphic nonsymmetric association
schemes. Then {M(A1),M(A2)} = {M(B1),M(B2)}.

So, {M(A1),M(A2)} is an invariant of a nonsymmetric association scheme {A0, A1, A2}.
Note that this invariant is closely related to the 4-profile of Hadamard matrices [4].

Example 3.5.Denote by H the first skew-Hadamard matrix in the list of SH-inequivalent
skew-Hadamard matrices of order 32 given in [19]. If we let H(1) = {A0, A1, A2}, then

{
M(A1),M(A2)

}
=

{{
0
2
, 1
54
, 2
582

, 3
2707

, 4
990

, 5
156

, 6
2
, 7
2
}
,

{
0
4
, 1
44
, 2
617

, 3
2626

, 4
1094

, 5
88
, 6
21
, 7
1
}}

,

where the exponents indicate the multiplicities.

This invariant is very useful, because there are 88745 distinct values for A31. Conse-
quently, we have the classification of association schemes of order 31.

Theorem 3.6. There exist exactly 98307 isomorphism classes of association schemes of
order 31.

Proof. By the GRAPE function with help of the invariant described above, we found 98300
isomorphism classes of nonsymmetric association schemes of order 31 and class 2. Sym-
metric association schemes of class 2 are correspondent to strongly regular graphs. Since
no strongly regular graph exists in order 31, there are no symmetric association schemes
of order 31 and class 2. From Lemma 3.1, there are also 7 other association schemes. The
result follows.

All data and programs used in this section are available electronically at [6]. Also, the
complete lists of association schemes of orders 3, . . . , 34, and 38 have been posted on [22].
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