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In this talk, we first present some gen-

eralizations of Caristi’s fixed point theo-

rem. Then we give some applications to

fixed point theory of weakly contractive

set-valued maps and Takahashi-type mini-

mization theorem.
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Caristi’s fixed point theorem [1], which is an

extension of Banach’s contraction principle, states

that

any map T : M → M has a fixed point pro-

vided that (M,d) is a complete metric space

and there exists a lower semi-continuous map

φ : M → [0,∞) such that

d(x, Tx) ≤ φ(x)− φ(Tx), for every x ∈M.

This general fixed point theorem has found

many applications in nonlinear analysis. In 1991,

Takahashi [8] proved the following minimiza-

tion theorem: let (M,d) be a complete met-

ric space and let f : M → (−∞,∞] be a

proper lower semicontinuous and bounded

below function. Suppose that for each

x̂ ∈M with

inf
x∈M

f(x) < f(x̂)

there exists x ∈ X with x 6= x̂ such that

d(x̂, x) ≤ f(x̂)− f(x).



Then there exists x ∈M such that

f(x) = inf
x∈M

f(x).

It is well known that Takahashi’s existence

theorem and Caristi’s fixed point theorem are

equivalent. Our first aim in this talk is to

prove some generalizations of Caristi’s fixed

point theorem. Then, we apply our general-

ized Caristi’s fixed point theorems to prove a

fixed point result for weakly contractive set-

valued maps and an extension of Takahashi

minimization theorem.



Throughout the paper, let Ψ be the class of

all the maps ψ : M×M → R which satisfies the

following conditions:

(i) there exists x̂ ∈M such that ψ(x̂, .) is bounded

below and lower semi-continuous and ψ(., y)

is upper semi-continuous for each y ∈M ;

(ii) ψ(x, x) = 0, for each x ∈M ;

(iii) ψ(x, y) + ψ(y, z) ≤ ψ(x, z), for each x, y, z ∈
M.

Remark. Let φ : M → R be a lower bounded,

lower semi-continuous function and let

ψ(x, y) = φ(y)− φ(x).

Then trivially ψ ∈ Ψ. But there are other func-

tions, not of this form, that are in Ψ. Take,

for instance, the function ψ(x, y) = e−d(x,y)−1.
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Lemma. Let (M,d) be a complete metric

space and ψ ∈ Ψ. Let γ : [0,∞) → [0,∞) is

subadditive, i.e. γ(x+ y) ≤ γ(x) + γ(y), for

each x, y ∈ [0,∞), nondecreasing continu-

ous map such that γ−1{0} = {0}. Define

the order ≺ on M by

x ≺ y ⇔ γ(d(x, y)) ≤ ψ(x, y),

for any x, y ∈ M. Then (M,≺) is a partial

order set which has minimal elements.

Proof. It is straightforward to see that (M,≺)

is a partial order set. To show that (M,≺)

has minimal elements, we show that any de-

creasing chain has a lower bound. Indeed, let

(xα)α∈Γ be a decreasing chain, then we have

0 ≤ γ(d(xα, xβ)) ≤ ψ(xα, xβ)

≤ ψ(x̂, xβ)− ψ(x̂, xα).



Thus (ψ(x̂, xα))α∈Γ is decreasing net of reals

which is bounded below. Let (αn) be an in-

creasing sequence of elements from Γ such

that

lim
n→∞ψ(x̂, xαn) = inf{ψ(x̂, xα);α ∈ Γ}.

Then for each ε > 0, there exists nε ∈ N such

that for each m ≥ n ≥ nε we have

ψ(x̂, xαn)− ψ(x̂, xαm) < ε.

Hence for m ≥ n ≥ nε

γ(d(xαm, xαn) ≤ ψ(xαm, xαn) ≤

ψ(x̂, xαn)− ψ(x̂, xαm) < ε.

Then our assumptions on γ imply that (xαn)

is a Cauchy sequence and therefore converges

to some x ∈M (note that (M,d) is complete).

Since γ is continuous and ψ(., xαn) is upper

semi-continuous, then we have

γ(d(x, xαn)) = lim sup
m→∞

γ(d(xαm, xαn) ≤



lim sup
m→∞

ψ(xαm, xαn) ≤ ψ(x, xαn).

This shows that x ≺ xαn for all n ≥ 1, which

means that x is lower bound for (xαn)n≥1. In

order to see that x is also a lower bound for

(xα)α∈Γ, let β ∈ Γ be such that xβ ≺ xαn for all

n ≥ 1. Then for each n ∈ N, we have

0 ≤ γ(d(xβ, xαn)) ≤ ψ(xβ, xαn)

≤ ψ(x̂, xαn)− ψ(x̂, xβ), (1)

Hence

ψ(x̂, xβ) ≤ ψ(x̂, xαn), for all n ≥ 1

which implies

ψ(x̂, xβ) = inf{ψ(x̂, xα);α ∈ Γ} = lim
n→∞ψ(x̂, xαn).

Thus from (1) we get limn→∞ xαn = xβ, which

implies xβ = x. Therefore, for any α ∈ Γ,

there exists n ∈ N such that xαn ≺ xα, i.e. x is

a lower bound of (xα)α∈Γ (note that x ≺ xαn).

Zorn’s lemma will therefore imply that (M,≺)

has minimal elements.



In what follows, let A be the class of all

maps η : [0,∞) → [0,∞) which are nonde-

creasing, continuous, and such that there

exist ε0 > 0 such that

η(t) ≤ ε0 ⇒ η(t) ≥ γ(t),

where γ : [0,∞) → [0,∞) is a subadditive,

nondecreasing continuous map such that

γ−1{0} = {0}.

Theorem. Let (M,d) be a complete metric

space, η ∈ A and ψ ∈ Ψ. Define the order

≺ on M by

x ≺ y ⇔ η(d(x, y)) ≤ ψ(x, y).

Then (M,≺) has a minimal element x∗, i.e.

if x ≺ x∗ then we must have x = x∗.

Proof. Notice first that (M,≺) is not necessary

a partial ordered set. Since ψ ∈ Ψ, there exists

x̂ ∈ M such that {ψ(x̂, x) : x ∈ M} is bounded



below. Set ψ0 = inf{ψ(x̂, x);x ∈ M}. For any

ε > 0, set

Mε = {x ∈M : ψ(x̂, x) ≤ ψ0 + ε}.

Since ψ(x̂, .) is lower semi-continuous then Mε

is a closed nonempty subset of M . Also if

x, y ∈Mε and x ≺ y, then

ψ0 ≤ ψ(x̂, x) ≤ ψ0 + ε

and

ψ0 ≤ ψ(x̂, y) ≤ ψ0 + ε, (2)

also we have

η(d(x, y)) ≤ ψ(x, y) ≤ ψ(x̂, y)− ψ(x̂, x). (3)

From (2) and (3) we have η(d(x, y)) ≤ ε. Using

ε0 associated with η, we get

γ(d(x, y)) ≤ η(d(x, y)) ≤ ψ(x, y).

For on Mε0 we define the new relation ≺∗ by

x ≺∗ y ⇔ γ(d(x, y)) ≤ ψ(x, y).



By Lemma, the partial order set (Mε0,≺∗) has

a minimal element x∗. Let us show that x∗ is

also a minimal element of (M,≺). Indeed let

x ∈M be such that x ≺ x∗. Then we have

0 ≤ η(d(x, x∗)) ≤ ψ(x, x∗) ≤ ψ(x̂, x∗)−ψ(x̂, x). (4)

Since ψ(x∗, x) + ψ(x, x∗) ≤ ψ(x∗, x∗) = 0 and

ψ(x, x∗) ≥ 0 then ψ(x∗, x) ≤ 0. Then from (4)

we obtain

ψ(x̂, x) = (ψ(x̂, x)− ψ(x̂, x∗)) + ψ(x̂, x∗) ≤

ψ(x̂, x∗) ≤ ψ0 + ε0,

which implies that ψ(x̂, x) ≤ ψ0 + ε0; i.e. x ∈
Mε0. As before, we have η(d(x, x∗)) ≤ ε0 which

implies that

γ(d(x, x∗)) ≤ η(d(x, x∗)) ≤ ψ(x, x∗)

which implies x ≺∗ x∗. Since x∗ is minimal in

(Mε0,≺∗) we get x = x∗. This completes the

proof.



Corollary. (Generalized Caristi’s fixed point

theorem) Let (M,d) be a complete metric

space, η ∈ A and ψ ∈ Ψ. Let T : M → M be

a map such that

η(d(x, Tx)) ≤ ψ(Tx, x), for all x ∈M

(i.e. Tx ≺ x). Then T has a fixed point.

Proof. By The previous theorem, the ordered

set (M,≺) has a minimal element, say x. By

our assumption Tx ≺ x. Then by the minimal-

ity of x, we get Tx = x.

Remark. If we take ψ(x, y) = φ(y) − φ(x),

where φ : M → [0,∞) is lower semi-continuous

and γ(t) = ct then the above Corollary re-

duces to a result of Khamsi [4].

The proof of the above corollary yields the fol-

lowing endpoint result.



Corollary. Let (M,d) be a complete metric

space, η ∈ A and ψ ∈ Ψ. Let T : M (
M be a set-valued map such that T x is

nonempty. If the condition

η(d(x, y)) ≤ ψ(y, x), for all y ∈ T x

is satisfied, then T has a endpoint in M,

that is, there exists x ∈M such that T (x) =

{x}.



Applications.

Let (M,d) be a metric space. The map T :

M → M is said to be weakly contractive if for

all x, y ∈M

d(Tx, Ty) ≤ d(x, y)− µ(d(x, y)),

where µ : [0,∞) → [0,∞) is continuous, non-

decreasing and µ−1{0} = {0}. In 2001 Rhodes

[7] proved the following fixed point theorem for

weakly contractive maps.

Theorem. Let (M,d) be a complete met-

ric space and let T : M → M be a weakly

contractive map. Then T has a unique

fixed point.

In the following, let H denotes the Hausdorff

metric on nonempty closed bounded subsets of



M . The set-valued map T : M ( M with

nonempty closed bounded values is said to

be weakly contractive if for all x, y ∈M

H(T x, T y) ≤ d(x,y)− µ(d(x,y)),

where µ : [0,∞)→ [0,∞) is continuous, non-

decreasing and µ−1{0} = {0}. In the light

of the above Theorem, we pose the following

problem:

Assume that T : M ( M is a weakly con-

tractive set-valued map on a complete met-

ric space (M,d) such that T x is nonempty

closed and bounded for all x ∈ M. Does T
has a fixed point?

In the following we give a partial solution of

the above problem.

Theorem. Let (M,d) be a complete metric

space and let µ ∈ A. Let T : M ( M be



a set-valued map with nonempty compact

values satisfying

H(T x, T y) ≤ d(x, y)− µ(d(x, y)), (1)

for all x, y ∈M. Then T has a fixed point.

Proof. Define ν(t) = 2t−µ(t)
2 for t ∈ [0,∞),

then ν(d(x, y)) ≤ d(x, y) for all x, y ∈M . There-

fore, given x ∈M , the set

{y ∈ T (x) : ν(d(x, y)) ≤ d(x, T (x))}

is nonempty (note that T (x) is compact). By

the axiom of choice, there is a map T : M →M

such that

ν(d(x, Tx)) ≤ d(x, T (x)) for x ∈M.

By (1) we have,

d(Tx, T (Tx)) ≤ H(T x, T (Tx)) ≤

d(x, Tx)− µ(d(x, Tx)). (2)



Let φ(x) = d(x, T x) for x ∈ M and λ(t) =

t− µ(t) for each t ≥ 0. Then from (2) we get

µ

2
(d(x, Tx)) = ν(d(x, Tx))− λ(d(x, Tx) ≤

d(x, T x)− d(Tx, T (Tx)).

Thus

µ

2
(d(x, Tx)) ≤ φ(x)−φ(Tx), for each x ∈M,

and all the assumptions of our generalized Caristi’s

fixed point theorem are satisfied with ψ(x, y) =

φ(y) − φ(x)(note that since T is continuous

then φ is lower semicontinuous). Then T has

a fixed point, say x. Then x = Tx ∈ T x.

The following result is an extension of Taka-

hashi minimization theorem [8].

Theorem. (Takahashi-type Minimazation

Theorem) Let (M,d) be a complete metric

space, and η ∈ A. Let f : M → (−∞,∞] be a



proper lower semicontinuous and bounded

below function. Assume that for each x̂ ∈
M with infz∈M f(z) < f(x̂), there exists x ∈
M such that

x 6= x̂ and η(d(x̂,x)) ≤ f(x̂)− f(x).

Then there exists x ∈M such that

f(x) = inf
z∈M

f(z).

Proof. Define a set-valued map T : M ( M as

T (x) = {y ∈M : η(d(x, y)) ≤ f(x)− f(y)}.

Let ψ(y, x) = f(x)− f(y), then by the general-
ized Caristi’s fixed point theorem, there exists
x ∈ M such that T (x) = {x}. By assumption,
for all x̂ ∈ M there exists x ∈ M such that
x 6= x̂, we have x ∈ T (x̂) and so T (x̂) \ {x̂} 6= ∅
whenever infz∈M f(z) < f(x̂). Hence we must
have

f(x) = inf
z∈M

f(z).



Vector Caristi’s fixed point theorem

Let Y be a real Banach space. A nonempty

subset P of Y is called cone if cP ⊆ P for each

c ≥ 0. A cone P is called pointed if P ∩(−P ) =

{0}. It is easy to see that the relation

x ≤ y if and only if y − x ∈ P

defines a partial ordering ≤ in Y , where P is

a closed convex pointed cone. We shall write

x� y to indicate that y − x ∈ int P .

The cone P is called normal if there is number

K > 0 such that for all x, y ∈ Y ,

0 ≤ x ≤ y ⇒ ‖x‖ ≤ K‖y‖.

The least positive number satisfying above is

called the normal constant of P . The cone P is

called regular if every nondecreasing sequence

which is bounded from above is convergent.

That is, if {xn} is sequence such that

x1 ≤ x2 ≤ ... ≤ xn ≤ ... ≤ y,



for some y ∈ Y , then there is x ∈ Y such that

limn→∞ ‖xn − x‖ = 0. Equivalently, the cone

P is regular if and only if every nonincreasing

sequence which is bounded from below is con-

vergent. It is well known that a regular cone

is a normal cone [3, Proposition 1.3.4].

By an ordered Banach space we mean a real

Banach space (Y, ‖.‖) which is ordered by a

pointed closed convex cone P with int P 6= ∅.
In the following we always suppose Y is a Ba-

nach space, P is a pointed closed convex cone

in Y with int P 6= ∅, and ≤ is partial ordering

with respect to P .

Lemma. ([3, Proposition 1.3.2]) If Y is an

ordered Banach space with regular order

cone, then each order bounded chain C

of Y contains a nondecreasing (resp. a

nonincreasing) sequence which converges

strongly to supC (resp. inf C).



Definition. ([2,5]) Let X be a nonempty

set and Y be an ordered Banach space with

regular cone. Suppose that the mapping

d : X ×X → Y satisfies:

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0

if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(ii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Then (X, d) is called a cone metric space.

Let {xn} be a sequence in X and x ∈ X.

We say that {xn} is:

(i) a Cauchy sequence if for every c ∈ Y

with 0� c, there exists N ∈ N such that,

for all m,n ≥ N, d(xm,xn)� c;



(ii) convergent to x and is denoted by limn→∞ xn =

x, if for every c ∈ Y with 0 � c, there

exists N ∈ N such that, for all n ≥ N,

d(xn, x)� c.

The cone metric space (X, d) is called com-

plete, if every Cauchy sequence in X is con-

vergent.

Lemma. ([5]) Let (X, d) be a cone met-

ric space and {xn} be a sequence in X.

Then {xn} converges to x if and only if

limn→∞ d(xn, x) = 0. Moreover, the limit of

a convergent sequence is unique.

Let (X, d) be a cone metric space and A ⊆
X. We say that A is a closed subset of X

if for each convergent sequence {xn} in A

with limn→∞ xn = x we have x ∈ A.



Lemma. ([5]) Let (X, d) be a cone metric
space. Let {xn} be a sequence in X. Then
{xn} is a Cauchy sequence if and only if

lim
m,n→∞d(xn,xm) = 0.

Lemma. ([5]) Let (X, d) be a cone metric
space. Let {xn} and {yn} be two sequences
in X and limn→∞ xn = x, limn→∞ yn = y.
Then limn→∞ d(xn,yn) = d(x,y).

Definition. Let (X, d) be a cone metric space
and let ϕ : X → Y . Then ϕ is said to be
P -lower semicontinuous if for each λ ∈ Y ,
the set {x ∈ X : ϕ(x) ≤ λ} is closed in X.

The following lemma will be used in the next
section.

Lemma. Let (X, d) be a cone metric space
and let ϕ : X → Y be a P -lower semicon-
tinuous map. Let {xn} be a convergent se-
quence with limn→∞ xn = x such that {ϕ(xn)}



is nonincreasing and convergent. Then

ϕ(x) ≤ lim
n→∞ϕ(xn).

Proof. Since ϕ : X → Y is P -lower semicontin-

uous then for each n ∈ N, the set Bn = {z ∈ X :

ϕ(z) ≤ ϕ(xn)} is closed in X. Since {ϕ(xn)} is

nonincreasing then xm ∈ Bn for each m ≥ n.

This along with the closeness of Bn imply that

x ∈ Bn, that is, ϕ(x) ≤ ϕ(xn) for each n ∈ N.

Therefore ϕ(x) ≤ limn→∞ϕ(xn).

Lemma. Let (X, d) be a complete cone

metric space and ϕ : X → Y be a P -lower

semicontinuous and lower bounded map.

Define the order ≺ on X by

x ≺ y ⇔ d(x,y) ≤ ϕ(y)− ϕ(x),

for any x, y ∈ X. Then (M,≺) is a partial

order set which has minimal elements.



Proof. It is straightforward to see that (M,≺)
is a partial order set. To show that (M,≺)
has minimal elements, we show that any non-
incrasing chain has a lower bound. Indeed,
let (xα)α∈Γ be a nonincreasing chain, then we
have

0 ≤ d(xα, xβ) ≤ ϕ(xα)− ϕ(xβ).

Thus (ϕ(xα))α∈Γ is a nonincreasing net in Y
which is bounded below. By Lemma 1.1, there
exist a nondecreasing sequence (αn) of ele-
ments from Γ such that

lim
n→∞ϕ(xαn) = inf{ϕ(xα);α ∈ Γ}.

Then for each ε > 0, there exists nε ∈ N such
that for each m ≥ n ≥ nε we have ‖ϕ(xαm) −
ϕ(xαn)‖ < ε. Since for m ≥ n we have

d(xαn, xαm) ≤ ϕ(xαn)− ϕ(xαm) (1)

and every regular cone is normal, then there
exists K > 0 such that

‖d(xαn, xαm)‖ ≤ K‖ϕ(xαn)− ϕ(xαm)‖ < K.ε



Thus d(xαm, xαn) → 0 as m,n→∞. Therefore

by Lemma , {xαn} is a Cauchy sequence in

X and since (X, d) is a complete cone metric

space then {xαn} converges to some x∗ ∈ X.

Then from (1) we have

lim
m→∞ d(xαn, xαm) ≤ lim

m→∞(ϕ(xαn)− ϕ(xαm))

Since ϕ is P -lower semicontinuous, then from

Lemma we get

d(xαn, x
∗) ≤ ϕ(xαn)− ϕ(x∗)

This shows that x∗ ≺ xαn for all n ≥ 1, which

means that x∗ is lower bound for (xαn)n≥1. In

order to see that x∗ is also a lower bound for

(xα)α∈Γ, let β ∈ Γ be such that xβ ≺ xαn for all

n ≥ 1. Then for each n ∈ N, we have

0 ≤ d(xαn, xβ) ≤ ϕ(xαn)− ϕ(xβ) (2)

Hence

ϕ(xβ) ≤ ϕ(xαn), for all n ≥ 1



which implies

ϕ(xβ) = lim
n→∞ϕ(xαn) = inf{ϕ(xα);α ∈ Γ}. (3)

Thus from (2) we get ‖d(xαn, xβ)‖ ≤ K‖ϕ(xαn)−
ϕ(xβ)‖, where K is normal constant of P . This

along with (3) imply that

lim
n→∞ d(xαn, xβ) = 0.

Then by Lemma 1.3, limn→∞ xαn = xβ, which

implies xβ = x∗. Therefore, for any α ∈ Γ,

there exists n ∈ N such that xαn ≺ xα, i.e. x∗ is

a lower bound of (xα)α∈Γ (note that x∗ ≺ xαn).

Zorn’s lemma will therefore imply that (M,≺)

has minimal elements.

Now we have the following generalized Caristi’s

fixed point theorem.

Corollary. Let (X, d) be a complete cone

metric space and ϕ : X → Y be a P -lower



semicontinuous and lower bounded map.

Let T : X → X be a map such that

d(x,Tx) ≤ ϕ(x)− ϕ(Tx), for all x ∈ X

(i.e. Tx ≺ x). Then T has a fixed point.

Proof. By the above Lemma, the ordered set

(M,≺) has a minimal element, say x∗. By our

assumption Tx∗ ≺ x∗. Then by the minimality

of x∗, we get Tx∗ = x∗.

The proof of the above corollary yields the fol-

lowing endpoint result.

Corollary. Let (X, d) be a complete cone

metric space and ϕ : X → Y be a P -lower

semicontinuous and lower bounded map.

Let T : X ( X be a set-valued map such

that T x is nonempty for each x ∈ X. If the

condition

d(x, y) ≤ ϕ(x)− ϕ(y), for all y ∈ T x



is satisfied (i.e. y ≺ x), then T has a end-

point in X, that is, there exists x∗ ∈ X such

that T (x∗) = {x∗}.
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