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In this talk, we introduce the class of KKM-

type mappings on metric spaces and estab-

lish some fixed point theorems for this classes.

We also introduce a new generalized set-valued

contraction on topological spaces with respect

to a measure of noncompactness. Then we

establish some fixed point theorems for the

KKM-type mappings in metric spaces which

are either generalized set-valued contraction

or condensing. Moreover, Some applications

of these results are given.
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In nonlinear functional analysis, there are tree

basic types of topological fixed point theorems.

The first one is the so-called Fan-Browder fixed

point theorem which says that a set-valued

self-mapping defined in a compact convex Haus-

dorff topological vector spaces has at least one

fixed point if the set-valued mapping has open

inverse values. Browder [3, 4] show that any

multimap with convex values and open inverse

values from a Hausdorff compact space to a

convex space has a continuous selection and

used this fact to prove the Fan-Browder fixed

point theorem [3, 4]. The second type is the

so-called Fan-Glicksberg fixed point theorem

(for example, see Fan [9] or Glicksberg [10]

which says that an upper semicontinuous set-

valued self-mapping defined in a compact con-

vex subset of a Hausdorff locally convex topo-

logical vector space has at least one fixed point.

The celebrated Fan-Glicksberg fixed point the-

orem is so general since it includes many fixed
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point theorems such as Kakutani fixed point

theorem for upper semicontinuous set-valued

in Euclidean spaces, the Tychonoff, Schauder,

Bohnenlus-Karlin and Brouwer, and many other

fixed point theorems for continuous (single-

valued) mapping in locally convex topological

vector spaces, normed spaces, Banach spaces

and Euclidean spaces as special cases. The

third type is the so-called Himmelberg fixed

point theorem (see [11] which says that every

compact upper semicontinuous multivalued map

T with nonempty closed convex values from a

nonempty convex subset X of a locally con-

vex topological space E into itself has a fixed

point. The Himmlberg fixed point theorem in-

clude the Fan-Glicksberg fixed point theorem.



Set-valued mappings and fixed points

The study of fixed point theorems for multi-

valued mappings was initiated by Kakutani, in

1941, in finite dimensional spaces and was ex-

tended to infinite dimensional Banach spaces

by Bohnenblust and Karlin, in 1950, and to lo-

cally convex spaces by Ky Fan, in 1952.

Let X and Y be two topological Hausdorff

spaces and F : X ( Y be a multifunction with

nonempty values, then F is said to be:

(i) upper semi continuous (u.s.c.), if for each

closed set B ⊂ Y , F−(B) = {x ∈ X : F (x)∩B 6=
∅} is closed in X.

(ii)lower semi continuous (l.s.c.), if for each

open set B ⊂ Y , F−(B) = {x ∈ X : F (x) ∩B 6=
∅} is open in X.

(iii) continuous , if it is both u.s.c. and l.s.c..

(iv) closed if its graph Gr(F ) = {(x, y) ∈ X×Y :

y ∈ F (x)} is closed.

(v) compact, if clF (X) is a compact subset of

Y .
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It is well known that if Y is a compact space

and T is closed, then T is u.s.c..

For a set X, we denote the set of all nonempty

finite subset of X by 〈X〉.
A multifunction F : X ( X is said to have

fixed point if x0 ∈ F (x0) for some x0 ∈ X.



Theorem. (Brouwer 1912) Let B be the

unit ball in Rn and f : B → B a continu-

ous function. Then f has a fixed point i.e.

(∃x ∈ B : f(x) = x).

Kakutani proved a generalization of Brouwer’s

theorem to set-valued mappings.

Theorem. (Kakutani(1941)) If K is a non-

empty closed bounded convex subset of Rn and

F : K ( K is an upper semicontinuous set-

valued mapping with nonempty closed convex

values, then F has a fixed point.
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Kakutani(1943) produced an example that Brouwer’s

theorem dose not hold, in general, for infinite

dimensional spaces.

Example. Let B = {x ∈ l2 :‖ x ‖≤ 1}. Define

a map f : B → B by

f(x) = {
√

1− ‖ x ‖2, x1, x2, ...xn, ...}.

Then f is continuous and ‖ f(x) ‖= 1.

If x0 = {x1, ..., xn, ...} ∈ B and f(x0) = x0, then

‖ f(x0) ‖=‖ x0 ‖= 1. But

f(x0) = {
√

1− ‖ x0 ‖2, x1, x2, ...xn, ...}
= {0, x1, ..., xn, ...}
= x0

= {x1, .., xn, ....}.
This gives x1 = 0, x2 = 0, ..., xn = 0, .... or

x0 = {0,0, ....,0, ....}.
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Dugundji (1951) proved the following theorem:

Theorem. A closed unit ball in a normed lin-

ear space is a fixed point space if and only if

it is compact.

Klee (1955) generalized this result to arbitrary

convex sets in metrizable locally convex spaces.

6



Brouwer’s theorem was extended to infinite di-

mensional spaces by Schauder in 1930 in the

following way.

Theorem. (Schauder(1930)) Let X be a

Banach space, C compact convex subset of X

and f : C → C is a continuous map. Then f

has at least one fixed point in C.

The multivalued analogue of Schauder’s fixed

point theorem was given by Bohnenblust and

Karlin.

Theorem. (Bohnenblust-Karlin(1950)) If

K is a nonempty compact convex subset of a

Banach space X and F : K ( K is an upper

semicontinuous multifunction with nonempty

closed convex values, then F has a fixed point.
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In 1935, Tychonoff extended Brouwer’s result

to a compact convex subset of a locally convex

space.

Theorem. (Tychonoff(1935)) Let C be a

nonempty compact convex subset of a locally

convex space X and f : C → C is a continuous

map. Then f has a fixed point.

The multivalued analogue of Tychonoff’s fixed

point theorem was given by Fan and Glicksberg

independently.

Theorem. (Fan-Glicksberg(1952)) If K is a

nonempty compact convex subset of a locally

convex space X and F : K ( K is an upper

semicontinuous multifunction with nonempty

closed convex values, then F has a fixed point.
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In 1972, Himmelberg generalized the Fan-Glicksberg

fixed point theorem as follows:

Theorem. Himmelberg(1972)) If K is a

nonempty convex subset of a locally convex

space X and F : K ( K is an upper semicon-

tinuous multifunction with nonempty closed con-

vex values and compact, then F has a fixed

point.



Question. Schauder) Does a compact con-

vex subset of an arbitrary linear topological

space have the fixed point property?

This problem proved to be very difficult and for

over 65 years defied the effort of many math-

ematiciants. An affirmative answer was given

only recently by Cauty (2001).
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KKM MAPPINGS IN METRIC SPACES

Suppose that A is a bounded subset of a met-

ric space (M, d). Then:

(i) co(A) =
⋂
{B ⊆ M : B is a closed ball in M , A ⊂

B}.
(ii) A(M) = {A ⊆ M : A = co(A)} i.e. A ∈
A(M) if and only if A is an intersection of

closed balls containing A. In this case, we say

that A is admissible subset of M .

(iii) A is called subadmissible, if for each D ∈
〈A〉, co(D) ⊆ A. Obviously, if A is an admissi-

ble subset of M , then A must be subadmissible.
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Let (M, d) be a metric space, X a nonempty

subset of M . A multifunction G : X ( M is

called a KKM mapping, if for each A ∈ 〈X〉,
co(A) ∩ X ⊂ G(A). More generally if Y is a

topological space and G : X ( Y , F : X ( Y

are two multifunctions such that for any A ∈
〈X〉, F (co(A) ∩ X) ⊆ G(A), then G is called

a generalized KKM mapping with respect to

F . If the multifunction F : X ( Y satisfies

the requirement that for any generalized KKM

mapping G : X ( Y with respect to F the

family {clG(x) : x ∈ X} has the finite intersec-

tion property, then F is said to have the KKM

property. We define

KKM(X, Y ) := {F : X ( Y : F has the KKM property}.
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When X is convex subset of topological vector

space, the class KKM(X, Y ) was introduced

and studied by Chang and Yen [5].

Horvath [12] found that hyperconvex spaces

are a particular type of C-spaces, hence they

are G-convex spaces [18] . Fakhar and Zafarani

[8, Lemma 2.7] have shown that those multi-

functions defined on G-convex spaces which

are closed, compact and acyclic valued have

the KKM property.
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Let X be a nonempty subset of a metric space

M . Then F : X ( M is said to have an ap-

proximate fixed point if for any ε > 0, there

exists an xε ∈ X such that F (xε)∩B(xε, ε) 6= ∅.

Theorem.(AFZ[2]2005) Let (M, d) be a met-

ric space and X a nonempty subadmissible sub-

set of M . Suppose that F ∈ KKM(X, X) such

that clF (X) is totally bounded, then F has an

approximate fixed point.

Theorem. (AFZ[2]2005) Let (M, d) be a

metric space and X a nonempty subadmissible

subset of M . Suppose that F ∈ KKM(X, X) is

closed and compact, then F has a fixed point.
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Corollary. Let (M, d) be a metric space and X

a nonempty subadmissible subset of M . Sup-

pose that the identity mapping I : X → X

belongs to KKM(X, X), then any continuous

mapping f : X → X such that clf(X) is com-

pact, has a fixed point.

Remark. The KKM principle of Fan implies

that the identity mapping in normed spaces

is an element of KKM(X, X) for any convex

set X. Khamsi [14], has shown that when

M is hyperconvex, then I ∈ KKM(X, X) for

X ∈ A(M). This result is also true for a metric

topological vector space E such that all balls

are convex. In fact by Fan’s KKM principle,

the identity mapping belongs to KKM(X, X)

for each convex subset X of E. Hence the

identity mapping also belongs to KKM(X, X)

with respect to metric of E for any admissible

subset X of E.
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Here we obtain a generalized Fan’s matching

theorem for metric spaces. In fact we estab-

lish an open version of Fan’s matching theorem

which improves Theorem 2.7 of Yuan [20] and

is similar to Theorem 4.4 of Chang and Yen

[5]. Let us recall that a subset A of a topo-

logical space Z is called compactly open, if its

intersection with any compact subsets of Z is

open in its relative topology.

Theorem. Let X ∈ A(M) of a metric space

(M, d) and Z a topological space. Suppose

that F ∈ KKM(X, Z) is compact and T : X (
Z is compactly open valued such that clF (X) is

contained in T (X) . Then there exists {x1, ..., xj} ⊂
X such that:

F (co({x1, ..., xj}) ∩
j⋂

k=0

T (xk) 6= ∅.
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As an application of the above theorem, we

have the following form of the Fan-Browder

type fixed point theorem, see Kirk et al. [13,

Theorem 3.1].

Corollary. Let X ∈ A(M) be a compact subset

of a metric space (M, d) such that the iden-

tity mapping I ∈ KKM(X, X). Suppose that

G : X ( X is a multifunction with admissible

values such that X =
⋃
{IntG−(y) : y ∈ X}.

Then G has a fixed point.
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FIXED POINT THEOREMS FOR GEN-
ERALIZED SET-CONTRACTION
In 1930 Kuratowski [15] introduced a measure
of noncompactness α of bounded sets in a met-
ric space, in order to generalize the Cantor in-
tersection theorem. Let (M, d) be a metric
space and B ⊆ M be a bounded set, then

α(B) = inf{δ > 0 : B ⊆ ∪n
i=1Ai, diam(Ai) < δ}.

Definition. Let X be a nonempty subset of
M and f : X → X, then

• f is said to be an α-k-set contraction if f is
bounded and there is a k ∈ [0,1) such that
α(fB) ≤ kα(B) for all bounded subsets B
of X.

• f is said to be condensing if f is bounded
and if α(fB) < α(B) for all bounded sub-
sets B of X for which α(B) > 0.
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Darbo [6] showed that if X is a closed, bounded

and convex subset of a Banach space and f :

X → X is a continuous α-k-set contraction,

then f has a fixed point. Later, Sadovskii [19]

introduced the notion of condensing map and

by transfinite induction showed that if f is a

continuous condensing map, then f has a fixed

point. Notice that every α-k-set contraction is

condensing but the converse is not true [17].

Many authors extended the above results in

different spaces; see [14, 17] and references

therein.
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Let E be a topological space. A measure of
noncompactness is simply any functional µ :
2E → [0,∞] such that:

(i) µ(A) = µ(A) for all A ∈ 2E;

(ii) µ(A) = 0 if and only if A is precompact;

(iii) µ(A ∪B) = max{µ(A), µ(B)}.

A sequence {An}∞n=1 of nonempty closed sub-
sets of E is called µ- descending if An+1 ⊆ An

for each n and limn→∞ µ(An) = 0. We say that
µ has the Kuratowski property, if the intersec-
tion A =

⋂
n∈N An is nonempty and compact for

any µ-descending sequence {An}∞n=1. Notice
that, if E is a complete metric space, then the
Hausdorff measure of noncompactness and the
Kuratowski measure of noncompactness have
the Kuratowski property [1].
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Example. Let E be a Banach space. Let

B(E) and WC(E) denote the families of the

bounded subsets of E and of the weakly com-

pact subsets of E, respectively. The weak non-

compactness measure of B ∈ B(E) [8] is de-

fined by

β(B) = inf{ε > 0 : ∃ A ∈ WC(E), B ⊆ A+εB1(0)}.

The weak noncompactness measure is a mea-

sure of noncompactness with the Kuratowski

property [7, 16].

For some other examples of measure of non-

compactness with the Kuratowski property one

can refer to [1].
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Definition. Let E be a topological space and

µ be a measure of noncompactness on E. Sup-

pose that F : E ( E is a set-valued map.

Then, F is said to be

• µ-k set contraction, if there exists k ∈ (0,1)

such that µ(F (A)) ≤ kµ(A) for all A ∈ 2E;

• generalized µ-set contraction, if for each

ε > 0, there exists δ > 0 such that for A ⊆ E

with ε ≤ µ(A) < ε + δ, there exists n ∈ N
such that µ(Fn(A)) < ε.

21



In the following result, we obtain the relation-
ship between the above notions.
Proposition. Let E be a topological space and
µ be a measure of noncompactness on E. Sup-
pose that F : E ( E is a µ-k set contraction
on E, then F is a generalized µ-set contraction.

The following provides an example of a gener-
alized µ-set contraction which is not a µ-k set
contraction.

Example. Suppose that M = {1}
⋃
{2n,3n :

n ∈ N} is equipped with the discrete metric.
Assume that F : M ( M is defined as follows:

F (x) =


{1} if x = 1,

{3(2n + 1)} if x = 2n,
{1} if x = 3n and n is odd.

If a is the Kuratowski measure of noncompact-
ness, then α(F2(M)) = 0. Therefore, F is a
generalized α-set contraction. But if A = {2n :
n ∈ N}, then α(A) = α(F (A)) = 1 and so F is
not α-k-set contraction.
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Lemma. Let E be a topological space and µ

be a measure of noncompactness on E. Sup-

pose that F is a generalized µ-set contraction

on E. Then, for every subset A of E which

F (A) ⊆ A and µ(A) < ∞, we have

limµ(Fn(A)) = 0.

Remark. It is easy to see that if limµ(Fn(A)) =

0 for any subset A of E, then F is a generalized

µ-set contraction on E.
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Lemma. Let E be a topological space, µ be a

measure of noncompactness on E with the Ku-

ratowski property and X be a nonempty subset

of E with µ(X) < ∞. Suppose that F : X ( X

is a generalized µ-set contraction with non-

empty compact values and F (X) ⊆ X. Then,

there exists a precompact subset K of X with

K ⊆ X such that F (K) ⊆ K.
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Theorem. Let (M, d) be a metric space, µ

a measure of noncompactness on M with the

Kuratowski property and X be a nonempty

subset of M with µ(X) < ∞. Suppose that

F ∈ KKM(X, X) is a closed generalized µ-

set contraction, with nonempty compact val-

ues and F (X) ⊆ X. Then F has a fixed point.
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As an application of the above Theorem we
obtain a coincidence theorem.
Theorem. Let µ be a measure of non-compactness
with the Kuratowski property on the metric
space M and X be a nonempty subadmissible
subset of M . Suppose that F, G : X ( X are
two set-valued mappings satisfying the follow-
ing conditions:

(1) F ∈ KKM(X, X);

(2) G has nonempty subadmissible values and
for every compact subset C of X and any
y ∈ X, G−(y) ∩ C is open in C;

(3) F is a generalized µ-set contraction map
with compact values and F (X) ⊆ X.

Then, there exists x0, y0 ∈ X such that y0 ∈
F (x0) and x0 ∈ G(y0).
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Remark.

(a) In the above theorem, instead of (3), we

can assume the following condition:

[(3)′] G is a generalized µ-set contraction

with compact values and G(X) ⊆ X.

(b) If the identity mapping I ∈ KKM(X, X)

and condition (3)′ is satisfied, then we have

a Fan-Browder fixed point theorem for the

set-valued map G.
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As an application of the above Theorem, we

deduce the existence of a fixed point for con-

tractive mappings. Recall that a mapping f :

X → X, where X is subset of a Banach space

(E, ‖‖), is called contractive if, ‖f(x)− f(y)‖ <

‖x− y‖ for each x 6= y ∈ X.

Theorem. Let X be a weakly closed bounded

subset of a Banach space E and β be the weak

measure of noncompactness on E. Suppose

that f : X → X is a contractive generalized β-

set contraction and weakly continuous. Then

f has a fixed point.
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Lemma. Let E be a topological space, µ be a

measure of noncompactness on E and X be a

nonempty closed subset of E with µ(X) < ∞.

Let F : X ( X be a µ-condensing set-valued

map. Then, there exists a compact subset K

of X such that F (K) ⊆ K.

Theorem. Let (M, d) be a metric space, µ

be a measure of noncompactness on M and

X be a nonempty closed subset of M with

µ(X) < ∞. If F ∈ KKM(X, X) is a closed µ-

condensing set-valued map, then F has a fixed

point.
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