Information Measure of Dependence: Some Virtues and a Caveat

Ehsan Soofi

Lubar School, University of Wisconsin-Milwaukee

Presentation at the IPM Isfahan

Coauthors:

Nader Ebrahimi, Northern Illinois University Nima Jalali, Lubar School of Business

December 25, 2012

Outline

- Notions of dependence, association, and predictability
- Information approach to dependence
 - Scale of predictability
 - ▶ The mutual information
 - Utility of dependence
 - Dependence information index (absolutely continuous distributions)
- ► Failure of traditional measures to capture dependence
- Location-scale family
 - Gaussian, Student-t, Elliptical
- ▶ Dependence between sum and summands
 - Regression (normal and beyond)
 - Stochastic processes
 - Measurement error

Outline

- Notions of dependence, association, and predictability
- Information approach to dependence
 - Scale of predictability
 - ▶ The mutual information
 - Utility of dependence
 - Dependence information index (absolutely continuous distributions)
- ► Failure of traditional measures to capture dependence
- Location-scale family
 - Gaussian, Student-t, Elliptical
- ▶ Dependence between sum and summands
 - Regression (normal and beyond)
 - Stochastic processes
 - Measurement error
- Information index for singular models (if time allows)
 - Marshall-Olkin family
 - Gaver-Lewis family
 - Test of sharp hypothesis

Dependence

- \triangleright X_1 and X_2 two random variables
 - (X_1, X_2) , random vector with a bivariate F with pdf f
 - ▶ Marginal distributions F_i , with pdf f_i , i = 1, 2
 - ► Conditional distributions with pdf's $f_{i|j}(x_i|x_j) = \frac{f(x_1, x_2)}{f(x_i)}$

Dependence

- \triangleright X_1 and X_2 two random variables
 - (X_1, X_2) , random vector with a bivariate F with pdf f
 - Marginal distributions F_i , with pdf f_i , i = 1, 2
 - ► Conditional distributions with pdf's $f_{i|j}(x_i|x_j) = \frac{f(x_1, x_2)}{f_i(x_i)}$
- Independence is a stochastic notion

$$F(x_1, x_2) = F_1(x_1)F_2(x_2)$$
 for all $(x_1, x_2) \in \Re^2$

A sharp state

Dependence

- \triangleright X_1 and X_2 two random variables
 - \triangleright (X_1, X_2) , random vector with a bivariate F with pdf f
 - ▶ Marginal distributions F_i , with pdf f_i , i = 1, 2
 - ► Conditional distributions with pdf's $f_{i|j}(x_i|x_j) = \frac{f(x_1, x_2)}{f(x_i)}$
- Independence is a stochastic notion

$$F(x_1, x_2) = F_1(x_1)F_2(x_2)$$
 for all $(x_1, x_2) \in \Re^2$

A sharp state

Dependence is a negation of the independence

$$F(x_1, x_2) \neq F_1(x_1)F_2(x_2)$$
 for some $(x_1, x_2) \in \Re^2$

A multifarious notion

Examples of Bivariate Distributions

$$\mathsf{cov}[\phi_1(X_1),\phi_2(X_2)] \neq 0$$

- $\phi_i(\cdot)$, i = 1, 2 monotone functions
- ▶ Positive and negative $cov[\phi_1(X_1), \phi_2(X_2)]$ are called positive and negative quadrant dependence in reliability
- ▶ Correlation: linear association $cov(X_1), X_2) \neq 0$

$$\mathsf{cov}[\phi_1(X_1),\phi_2(X_2)] \neq 0$$

- $\phi_i(\cdot)$, i = 1, 2 monotone functions
- Positive and negative $cov[\phi_1(X_1), \phi_2(X_2)]$ are called positive and negative quadrant dependence in reliability
- Correlation: linear association $cov(X_1), X_2) \neq 0$
- Diagram of relationships between two random variables

$$\mathsf{cov}[\phi_1(X_1),\phi_2(X_2)] \neq 0$$

- $\phi_i(\cdot)$, i = 1, 2 monotone functions
- Positive and negative $cov[\phi_1(X_1), \phi_2(X_2)]$ are called positive and negative quadrant dependence in reliability
- ▶ Correlation: linear association $cov(X_1), X_2) \neq 0$
- Diagram of relationships between two random variables

$$\mathsf{cov}[\phi_1(X_1),\phi_2(X_2)] \neq 0$$

- $\phi_i(\cdot)$, i=1,2 monotone functions
- ▶ Positive and negative $cov[\phi_1(X_1), \phi_2(X_2)]$ are called positive and negative quadrant dependence in reliability
- ▶ Correlation: linear association $cov(X_1), X_2) \neq 0$
- Diagram of relationships between two random variables

Examples of Bivariate Distributions

► How much each dependent model deviates from its independent version?

- ▶ How much each dependent model deviates from its independent version?
- ▶ Which of the dependent models represents a weaker or a stronger dependence?

- How much each dependent model deviates from its independent version?
- ▶ Which of the dependent models represents a weaker or a stronger dependence?
- Which of these models would enable you to better predict one of the variables by using the other?

- ▶ How much each dependent model deviates from its independent version?
- ▶ Which of the dependent models represents a weaker or a stronger dependence?
- ▶ Which of these models would enable you to better predict one of the variables by using the other?
- Are more strongly associated models also more dependent?

- ▶ How much each dependent model deviates from its independent version?
- ▶ Which of the dependent models represents a weaker or a stronger dependence?
- ▶ Which of these models would enable you to better predict one of the variables by using the other?
- Are more strongly associated models also more dependent?
- ▶ The information notion of dependence answers these questions based on the departure of the joint distribution F from the independent model $G = F_1F_2$.

Data From Four Unassociated Models

- ▶ Bivariate normal: Independent
- Bivariate t: Not independent

Data From Four Equally Associated Models

- ▶ Regression $E(X_1|x_2) = .4x_2$
- Bivariate normal: Constant conditional variance
- Bivariate t: Quadratic conditional variance (not defined for Cauchy)

- ► The independent state:
 - Complete absence of probabilistic information about the outcomes of each variable by the other
 - Perfect unpredictability

- The independent state:
 - Complete absence of probabilistic information about the outcomes of each variable by the other
 - Perfect unpredictability
- Complete dependence (Lancaster 1963):

$$P[X_i = \phi_i(X_j)] = 1, \quad i \neq j$$

- $\phi_i(\cdot)$, a measureable one-to-one function
- Perfect predictability (Kimeldorf & Sampson 1978)

- The independent state:
 - Complete absence of probabilistic information about the outcomes of each variable by the other
 - Perfect unpredictability
- Complete dependence (Lancaster 1963):

$$P[X_i = \phi_i(X_j)] = 1, \quad i \neq j$$

- $\phi_i(\cdot)$, a measureable one-to-one function
- Perfect predictability (Kimeldorf & Sampson 1978)
- Scale of predictability

Perfect unpredictability	Perfect predictability
-	1009/

- The independent state:
 - Complete absence of probabilistic information about the outcomes of each variable by the other
 - Perfect unpredictability
- Complete dependence (Lancaster 1963):

$$P[X_i = \phi_i(X_j)] = 1, \quad i \neq j$$

- $\phi_i(\cdot)$, a measureable one-to-one function
- Perfect predictability (Kimeldorf & Sampson 1978)
- Scale of predictability

- The independent state:
 - Complete absence of probabilistic information about the outcomes of each variable by the other
 - Perfect unpredictability
- ► Complete dependence (Lancaster 1963):

$$P[X_i = \phi_i(X_j)] = 1, \quad i \neq j$$

- $ightharpoonup \phi_i(\cdot)$, a measureable one-to-one function
- Perfect predictability (Kimeldorf & Sampson 1978)
- Scale of predictability

Information Approach to Dependence

- ▶ The information notion of dependence compares F with the independent model $G = F_1 F_2$
- ▶ The strength of dependence is measured by a divergence function between $\mathcal{D}(F:F_1F_2)>0$
 - the equality holds if and only if $f(x_1, x_2) = f_1(x_1) f_2(x_2)$ for almost all $(x_1, x_2) \in \Re^2$

Information Approach to Dependence

- ▶ The information notion of dependence compares F with the independent model $G = F_1F_2$
- ▶ The strength of dependence is measured by a divergence function between $\mathcal{D}(F:F_1F_2) \geq 0$
 - ▶ the equality holds if and only if $f(x_1, x_2) = f_1(x_1)f_2(x_2)$ for almost all $(x_1, x_2) \in \Re^2$
- ▶ Scale of $\mathcal{D}(F : F_1F_2)$

Kullback-Leibler (KL) Information & Shannon Entropy

- ▶ The most well-known and widely-used divergence and uncertainty functions
- The KL information divergence

$$K(F:G) = \int_{S} f(x) \log \frac{f(x)}{g(x)} dx$$

provided that the integral is finite

- \triangleright S is the support of F, provided that the integral is finite
- F must be absolutely continuous with respect to G, denoted $F \ll G$
- It is also known as cross-entropy and relative entropy
- Shannon entropy (Shannon 1948)

$$H(X) = H(F) = -\int_{S} f(x) \log f(x) dx$$

▶ $Var(X) < \infty \Rightarrow H(X) < \infty$, converse does not hold

▶ The mutual information of the bivariate distribution F:

$$M(F) \equiv M(X_1, X_2)$$

$$= K(F : F_1F_2)$$

$$= E_{x_j} \Big\{ H[F_i(x_i)] - H[F_{i|j}(x_i|X_j)] \Big\}, \quad j \neq i = 1, 2$$

$$= E_{x_j} \Big\{ K[F_{i|j}(x_i|X_j) : F_i(x_i)] \Big\}, \quad j \neq i = 1, 2,$$

provided that $F \ll F_1 F_2$

▶ The mutual information of the bivariate distribution F:

$$M(F) \equiv M(X_1, X_2)$$

$$= K(F : F_1F_2)$$

$$= E_{x_j} \Big\{ H[F_i(x_i)] - H[F_{i|j}(x_i|X_j)] \Big\}, \quad j \neq i = 1, 2$$

$$= E_{x_j} \Big\{ K[F_{i|j}(x_i|X_j) : F_i(x_i)] \Big\}, \quad j \neq i = 1, 2,$$

provided that $F \ll F_1 F_2$

▶ $M(X_1, X_2) \ge 0$, equality holds $\Leftrightarrow X_1$ and X_2 are independent.

▶ The mutual information of the bivariate distribution *F*:

$$M(F) \equiv M(X_1, X_2)$$

$$= K(F : F_1F_2)$$

$$= E_{x_j} \Big\{ H[F_i(x_i)] - H[F_{i|j}(x_i|X_j)] \Big\}, \quad j \neq i = 1, 2$$

$$= E_{x_j} \Big\{ K[F_{i|j}(x_i|X_j) : F_i(x_i)] \Big\}, \quad j \neq i = 1, 2,$$

provided that $F \ll F_1 F_2$

- ▶ $M(X_1, X_2) \ge 0$, equality holds $\Leftrightarrow X_1$ and X_2 are independent.
- ▶ The absolute continuity requires $P[X_1 = \phi_1(X_2)] = 0$ and $P[X_2 = \phi_2(X_1)] = 0$
 - Inapplicable to singular distributions

▶ The mutual information of the bivariate distribution *F*:

$$M(F) \equiv M(X_1, X_2)$$

$$= K(F : F_1F_2)$$

$$= E_{x_j} \Big\{ H[F_i(x_i)] - H[F_{i|j}(x_i|X_j)] \Big\}, \quad j \neq i = 1, 2$$

$$= E_{x_j} \Big\{ K[F_{i|j}(x_i|X_j) : F_i(x_i)] \Big\}, \quad j \neq i = 1, 2,$$

provided that $F \ll F_1 F_2$

- ▶ $M(X_1, X_2) \ge 0$, equality holds $\Leftrightarrow X_1$ and X_2 are independent.
- ▶ The absolute continuity requires $P[X_1 = \phi_1(X_2)] = 0$ and $P[X_2 = \phi_2(X_1)] = 0$
 - Inapplicable to singular distributions
- Lindley's (1956) Bayesian measure of sample information about a parameter $M(X, \Theta)$
 - The expected utility interpretation (Bernardo 1979)

 \triangleright The predictability of outcomes of X_i without using $X_i, j \neq i = 1, 2$, depends solely on the concentration of its marginal distribution. $H(X_i)$ measures this uncertainty.

- \triangleright The predictability of outcomes of X_i without using $X_i, j \neq i = 1, 2$, depends solely on the concentration of its marginal distribution. $H(X_i)$ measures this uncertainty.
- \triangleright Given an outcome x_i of X_i , the predictability of outcomes of X_i depends on, the concentration of the conditional distribution of X_i given $X_i = x_i$, measured by $H(F_{i|i})$.

- \triangleright The predictability of outcomes of X_i without using $X_i, j \neq i = 1, 2$, depends solely on the concentration of its marginal distribution. $H(X_i)$ measures this uncertainty.
- \triangleright Given an outcome x_i of X_i , the predictability of outcomes of X_i depends on, the concentration of the conditional distribution of X_i given $X_i = x_i$, measured by $H(F_{i|i})$.
- ▶ The expected utility of X_i for prediction of X_i is given by the representation

$$M(X_1, X_2) = E_{x_j} \Big\{ H[F_i(x_i)] - H[F_{i|j}(x_i|X_j)] \Big\}, \quad j \neq i = 1, 2$$

The bracketed quantity is known as the observed information provided by x_i for predicting X_i .

- \triangleright The predictability of outcomes of X_i without using $X_i, j \neq i = 1, 2$, depends solely on the concentration of its marginal distribution. $H(X_i)$ measures this uncertainty.
- \triangleright Given an outcome x_i of X_i , the predictability of outcomes of X_i depends on, the concentration of the conditional distribution of X_i given $X_i = x_i$, measured by $H(F_{i|i})$.
- ▶ The expected utility of X_i for prediction of X_i is given by the representation

$$M(X_1, X_2) = E_{x_j} \Big\{ H[F_i(x_i)] - H[F_{i|j}(x_i|X_j)] \Big\}, \quad j \neq i = 1, 2$$

- The bracketed quantity is known as the observed information provided by x_i for predicting X_i .
- When two variables are dependent, one is useful for predicting the other, irrespective of whether or not being associated

Other Divergence measures

- Among the known divergence measures and generalizations of Shannon entropy, only the KL information admits the expected utility representation
- ▶ The immediate generalizations are Rènyi measures

$$K_r(F:G) = \frac{1}{r-1} \log \int f^r(x) [g(x)]^{1-r} dx, \quad r \neq 1, \quad r > 0,$$

$$H_r(X) = \frac{1}{1-r} \log \int f^r(x) dx, \quad r \neq 1, \quad r > 0$$

- $K_1(F:G) = K(F:G), H_1(X) = H(X)$
- **Example:** Bivariate normal distribution with correlation ρ :

$$E_{x_j} \Big\{ H_r[F_i(x_i)] - H_r[F_{i|j}(x_i|X_j)] \Big\} = M(X_1, X_2) = -\frac{1}{2} \log(1 - \rho^2)$$

$$K_r(F: F_1, F_2) = M(X_1, X_2) + \frac{1}{2(1-r)} \log\left(1 - (1-r)^2 \rho^2\right)$$

Discrepancy with the independent normal is more (r > 1) or less (r < 1) than the utility

Fourth Representation

► The unique additive property of Shannon entropy also gives the following representation

$$M(X_1, X_2) = H(X_1) + H(X_2) - H(X_1, X_2),$$

- Shared or redundant information
- ▶ The finiteness of the joint and marginal entropies are necessary. However, this is not sufficient
- ▶ Particularly useful for calculating M by entropy expressions

Copula information

- ▶ $M(X_1, X_2)$ is invariant under 1-to-1 transformations of each X_i
- Copula of F
 - ▶ Let $U_i = F_i(X_i), i = 1, 2$. Then

$$C(u_1, u_2) = F(F_1^{-1}(u_1), F_2^{-1}(u_2)), \quad (u_1, u_2) \in [0, 1]^2$$

(Sklar 1959)

A widely used approach for modeling dependence

Copula information

- $M(X_1, X_2)$ is invariant under 1-to-1 transformations of each X_i
- Copula of F
 - ▶ Let $U_i = F_i(X_i), i = 1, 2$. Then

$$C(u_1, u_2) = F(F_1^{-1}(u_1), F_2^{-1}(u_2)), \quad (u_1, u_2) \in [0, 1]^2$$

(Sklar 1959)

- ▶ A widely used approach for modeling dependence
- Copula information

$$M(F) = M(C) = K(C : C_0) = -H(C) = I(C) \ge 0$$

- C_0 denotes the product copula $C_0(u_1, u_2) = u_1 u_2$.
- ▶ *I(C)* is referred to as the information measure of the distribution (Lindley 1956, Zellner 1971), here the copula.

Dependence Information Index

Dependence Information Index

Perfect unpredictability Perfect predictability $M(X_1, X_2)$ $\delta^2(X_1,X_2)$ If and only if Whenever X_1, X_2 are independent $P[X_i = \phi_i(X_i)] = 1$

For the *absolutely continuous* distributions:

$$\delta^2(F) = \delta^2(X_1, X_2) = 1 - e^{-2M(X_1, X_2)}$$

Entropy reduction

$$\delta^{2}(X_{1}, X_{2}) = 1 - \frac{\exp\{E_{x_{j}}[H(X_{i}|x_{j})]\}^{2}}{\exp\{H(X_{j})\}^{2}} = 1 - \frac{\exp\{H(X_{1}, X_{2})\}^{2}}{\exp\{H(X_{1}) + H(X_{2})\}^{2}}$$

Copula representation

$$\delta^{2}(F) = \delta^{2}(C) = 1 - e^{-2I(C)}$$

Moment-based Indices

- Two popular indices
 - Pearson correlation coefficient ρ_p :
 - Subscript is for distinction between the correlation coefficient and a model parameter ρ
 - ► $E(X_iX_i) < \infty, i, j = 1, 2$
 - Invariant under linear transformations (up to the sign)
 - ▶ The fraction of expected variance reduction due to regression, also known as the correlation fraction:

$$\eta_{i|j}^2 = 1 - rac{E_{x_j}[\mathsf{Var}(X_i|x_j)]}{\mathsf{Var}(X_i)} \ge 0, \;\; j
eq i = 1, 2,$$

- $ightharpoonup Var(X_i), Var(X_i|x_i) < \infty, i, j = 1, 2$
- Invariant under linear transformations

For the bivariate normal distribution

$$\delta^{2}(F) = \eta^{2}(F) = \rho_{p}^{2}(F) = \rho^{2}$$

- Information approach
 - Linear relationship generalizes to any functional relationship.

▶ For the bivariate normal distribution

$$\delta^{2}(F) = \eta^{2}(F) = \rho_{p}^{2}(F) = \rho^{2}$$

- Information approach
 - Linear relationship generalizes to any functional relationship.
 - Variance generalizes to an uncertainty function
 - (a) Concave function of f that measures the concentration, H(F) < H(uniform)
 - (b) The variance does not always satisfy this condition

For the bivariate normal distribution

$$\delta^{2}(F) = \eta^{2}(F) = \rho_{p}^{2}(F) = \rho^{2}$$

- Information approach
 - Linear relationship generalizes to any functional relationship.
 - Variance generalizes to an uncertainty function
 - (a) Concave function of f that measures the concentration, H(F) < H(uniform)
 - (b) The variance does not always satisfy this condition
 - ▶ The departure from independence is measured formally by a divergence function between two probability distributions $\mathcal{D}(P:Q) \geq 0$, where $\mathcal{D}=0$ if and only if the distributions are identical dP(x) = dQ(x)

For the bivariate normal distribution

$$\delta^{2}(F) = \eta^{2}(F) = \rho_{p}^{2}(F) = \rho^{2}$$

- Information approach
 - Linear relationship generalizes to any functional relationship.
 - Variance generalizes to an uncertainty function
 - (a) Concave function of f that measures the concentration, H(F) < H(uniform)
 - (b) The variance does not always satisfy this condition
 - ▶ The departure from independence is measured formally by a divergence function between two probability distributions $\mathcal{D}(P:Q) \geq 0$, where $\mathcal{D}=0$ if and only if the distributions are identical dP(x) = dQ(x)
 - ▶ Invariance under linear transformations generalizes to the invariance under all one-to-one transformations

Compare predictability of distributions

- Which of the two distributions *in each panel* have outcomes that can be predicted with a high probability?
 - Write your answer for each case as: "solid" or "dashed"
- With which distribution in each panel is more difficult to predict outcomes?

Compare predictability of distributions

Association Indices

- Two popular indices
 - Spearman's rank correlation

$$\rho_s(F) = 12 \int \int_{\Re^2} F_1(x_1) F_2(x_2) f(x_1, x_2) dx_1 dx_2 - 3$$

Kendall's tau

$$\tau(F) = 4 \int \int_{\Re^2} F(x_1, x_2) f(x_1, x_2) dx_1 dx_2 - 1$$

- Sign indicates the direction of association
- Invariant under monotone transformations
- Copula representations

$$\rho_s(F) = \rho_s(C), \quad \tau(F) = \tau(C)$$

- ▶ Two variables are unassociated if and only if $\rho_s = \tau = 0$
- Unassociated dependent $\rho_s = \tau = 0, \ \delta^2 > 0$
 - One variable is useful for predicting the other
- $\rho_n = \eta^2 = \rho_s = \tau = 0 \implies X_1$ and X_2 are independent

Example 1. Examples of Bivariate Distributions

Figure 2. Examples of Bivariate Distributions

Figure 2. Examples of Bivariate Distributions

Elliptical & Pareto families

Elliptical pdf

$$f_h(x_1,x_2) = \frac{1}{2\pi(1-\rho^2)^{1/2}} h\left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{1-\rho^2}\right), (x_1,x_2) \in \Re^2, \ \rho^2 < 1,$$

 $h(\cdot)$ is a real function

- **Gaussian (Figure 1b)** $h(z) = e^{-z/2}$
- ▶ Student-t (Figure 2a, $\nu = 3$) $h(z) = \left(1 + \frac{z}{...}\right)^{-\nu/2-1}$
- Cauchy (Figure 2b) $h(z) = (1+z)^{-3/2}$
- Log-normal (Figure 1f) is monotone transformation of normal

Elliptical & Pareto families

Elliptical pdf

$$f_h(x_1,x_2) = \frac{1}{2\pi(1-\rho^2)^{1/2}} h\left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{1-\rho^2}\right), (x_1,x_2) \in \Re^2, \ \rho^2 < 1,$$

 $h(\cdot)$ is a real function

- ▶ Gaussian (Figure 1b) $h(z) = e^{-z/2}$
- ▶ Student-t (Figure 2a, $\nu = 3$) $h(z) = \left(1 + \frac{z}{...}\right)^{-\nu/2-1}$
- Cauchy (Figure 2b) $h(z) = (1+z)^{-3/2}$
- Log-normal (Figure 1f) is monotone transformation of normal

Pareto Type II (Figure 2c)

$$f(x_1, x_2) = \alpha(\alpha + 1)(1 + x_1 + x_2)^{-\alpha - 2}, \quad x_i \ge 0, \quad \alpha > 0$$

Numerous other distributions are related to this model by monotone transformations, including Pareto Types I, III & IV, exponential, Weibull, logistic, Burr, and Calyton copula, among others (Darbellay & Vajda 2000, Asadi et al. 2006, Balakrishnan & Lai 2009)

Families with bivariate pdf's

$$f_q(x_1, x_2) = f_1(x_1)f_2(x_2)[1 + \beta q(x_1, x_2)], (x_1, x_2) \in \Re^2, \ \beta \le B^{-1}$$

- $f_i(x_i)$, i = 1, 2 are the marginal pdf's
- $q(x_1, x_2)$ is a measurable bounded function $|q(x_1, x_2)| \leq B$

Families with bivariate pdf's

$$f_q(x_1, x_2) = f_1(x_1)f_2(x_2)[1 + \beta q(x_1, x_2)], (x_1, x_2) \in \Re^2, \ \beta \le B^{-1}$$

- $f_i(x_i)$, i=1,2 are the marginal pdf's
- $q(x_1, x_2)$ is a measurable bounded function $|q(x_1, x_2)| \leq B$
- Sarmanov families: $q(x_1, x_2) = q_1(x_1)q_2(x_2)$
 - ▶ F-G-M Copula (Figure 2d, $\beta = 1$) $f_i(x_i) = 1, \ 0 < x_i < 1, \ |\beta| < 1, \ a_i(x_i) = (1 - 2x_i)$

Families with bivariate pdf's

$$f_q(x_1, x_2) = f_1(x_1)f_2(x_2)[1 + \beta q(x_1, x_2)], (x_1, x_2) \in \Re^2, \ \beta \le B^{-1}$$

- $f_i(x_i)$, i=1,2 are the marginal pdf's
- $q(x_1, x_2)$ is a measurable bounded function $|q(x_1, x_2)| \leq B$
- Sarmanov families: $q(x_1, x_2) = q_1(x_1)q_2(x_2)$
 - ▶ F-G-M Copula (Figure 2d, $\beta = 1$) $f_i(x_i) = 1, \ 0 < x_i < 1, \ |\beta| < 1, \ q_i(x_i) = (1 - 2x_i)$
 - ▶ Unassociated log-normal (Figure 1h, $\beta = 1$) $f_i(x_i) = LN(0,1), x_i > 0, |\beta| < 1, q_i(x_i) = \sin(2\pi \log x_i)$
 - $E(X_i^m|X_i) = E(X_i^m), i \neq i, m = 1, 2, \cdots$ (De Paula 2008)
 - ▶ All polynomial functions of X_i and X_i are uncorrelated

A class of models for uncorrelated random variable

$$X_1 + X_2 \stackrel{st}{=} X_2^o + X_2^o, \quad F^o(x_1, x_2) = F_1(x_1)F_2(x_2)$$

Referred as the Summable Uncorrelated Marginals (SUM), (Hamedani & Tata 1975, Ebrahimi et al. 2010)

A class of models for uncorrelated random variable

$$X_1 + X_2 \stackrel{st}{=} X_2^o + X_2^o, \quad F^o(x_1, x_2) = F_1(x_1)F_2(x_2)$$

Referred as the Summable Uncorrelated Marginals (SUM), (Hamedani & Tata 1975, Ebrahimi et al. 2010)

- ▶ Unassociated normal unimodal (Figure 1c, $\beta = .25e^2$) $f_i(x_i) = N(0,1), (x_1,x_2) \in \Re^2, |\beta| < .25e^2.$ $q(x_1, x_2) = x_1 x_2 (x_1^2 - x_2^2) e^{-\frac{1}{2}(x_1^2 + x_2^2)}$
- ▶ Unassociated normal multimodal (Figure 1d, $\beta = 4$) $f_i(x_i) = N(0,1), (x_1,x_2) \in \Re^2, |\beta| < 4.$ $q(x_1, x_2) = x_1 x_2 (x_1^2 - x_2^2) e^{-\frac{1}{2}(x_1^2 + x_2^2)}$
- ▶ Uncorrelated dependent (Figure 2e, $\beta = .5$) $f_1(x_1) = .5 + x_1, f_2(x_2) = 1, 0 < x_i < 1,$ $|\beta| < 1$, $q(x_1, x_2) = \sin[2\pi(x_2 - x_1)]$
- ▶ Uncorrelated Copula (Figure 2f, $\beta = .6$) $f_i(x_i) = 1, 0 \le x_i \le 1, \quad |\beta| \le 1, \quad q(x_1, x_2) = \sin[2\pi(x_2 - x_1)]$

Common metric?

Family	ρ_{p}	$ ho_{s}$	au	η^2	δ^2	Example pdf Figure, δ^2 (Rank*)
Elliptical	•					
Gaussian						1b, .160 (7)
Student- <i>t</i>	Θ	\odot	\odot	\bigcirc		2a, .081 (10)
Cauchy	\bigcirc			\bigcirc		2b, .361 (2)
Pareto and related families						
Pareto	$\overline{}$			$\overline{}$		2c, .836 (1)
Generalized Sarmanov						
F-G-M copula						2d, .113 (9)
Uncorrelated dependent	0					2e, .136 (8)
Uncorrelated copula	0	0				2f, .172 (5)
Unassociated normal unimodal	0	0	0			1c, .173 (4)
Unassociated normal multimodal	0	0	0			1d, .168 (6)
Unassociated log-normal	0	0	0	0		1h, .249 (3)

Notes:

undefined for some parameter values, dependence varies within the family, index does not: ranks are among ten dependent pdf's in Figures 2 and 3.

suitable within the family; O undefined; O unsuitable, dependence varies within the family, index does not;

unsuitable, dependence varies, index identically zero;
 Partially suitable, undefined for some parameter values;

Multivariate Information

- \triangleright G in K(F:G) is a model for independence between two or more subvectors of a d-dimensional random vector \mathbf{X}
 - ▶ The independent model $G = F_1 \cdots F_d$
 - Independence of two disjoint subvectors, $G(\mathbf{x}) = F_i(\mathbf{x}_i)F_h(\mathbf{x}_h), i+h=d.$

Multivariate Information

- \triangleright G in K(F:G) is a model for independence between two or more subvectors of a d-dimensional random vector X
 - ▶ The independent model $G = F_1 \cdots F_d$
 - Independence of two disjoint subvectors, $G(\mathbf{x}) = F_i(\mathbf{x}_i)F_h(\mathbf{x}_h), i+h=d.$
- ► Three properties of multivariate M's:

$$M(X_1, \cdots, X_d)$$
 increasing in d

$$M(X_1, (X_2, \dots, X_d)) = \sum_{i=2}^d M(X_1, X_i | X_2, \dots X_{i-1})$$
 increasing in d

$$M(\mathbf{X}) = M(\mathbf{X}_j) + M(\mathbf{X}_k) + M(\mathbf{X}_j, \mathbf{X}_h) \ge M(\mathbf{X}_j) + M(\mathbf{X}_h), \quad j+h=d$$

- $M(X_1, X_i | X_2, \cdots X_{i-1}) = E_{x_1, \cdots x_{i-1}}[M(X_1, X_i | x_2, \cdots x_{i-1})],$ partial mutual information
- ▶ The first two formalize the intuition that dependence increases with the dimension
- The inequality formalizes the intuition that aggregation of lower dependence underestimates the overall dependence

▶ A pdf $f(\mathbf{x}|\theta, \mu, \Sigma)$ with location vector μ and scale matrix Σ

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\Sigma|^{1/2} \mathbf{X}^{o},$$

- \triangleright θ , model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\mathbf{\Sigma}|^{1/2} \mathbf{X}^{o},$$

- ightharpoonup heta, model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\mathbf{\Sigma}|^{1/2} \mathbf{X}^{o},$$

- m heta, model parameters other than μ and Σ
- **X**°, in the same family with $\mu = \mathbf{0}$ and $\Sigma = I_d$, identity matrix.

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\mathbf{\Sigma}|^{1/2} \mathbf{X}^{o},$$

- ightharpoonup heta, model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\Sigma|^{1/2} \mathbf{X}^{o},$$

- m heta, model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\mathbf{\Sigma}|^{1/2} \mathbf{X}^{o},$$

- m heta, model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\Sigma|^{1/2} \mathbf{X}^{o},$$

- m heta, model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

▶ A pdf f($\mathbf{x}|\theta, \mu, \Sigma$) with location vector μ and scale matrix Σ

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\Sigma|^{1/2} \mathbf{X}^{o},$$

- m heta, model parameters other than μ and Σ
- **f X**°, in the same family with $m \mu = m 0$ and $m \Sigma = I_d$, identity matrix.

▶ A pdf $f(\mathbf{x}|\theta, \mu, \Sigma)$ with location vector μ and scale matrix Σ

$$\mathbf{X} \stackrel{st}{=} \boldsymbol{\mu} + |\Sigma|^{1/2} \mathbf{X}^{o},$$

- \triangleright θ , model parameters other than μ and Σ
- **X**°, in the same family with $\mu = 0$ and $\Sigma = I_d$, identity matrix.

Location-Scale Family

► The entropy of L-S family

$$H(\mathbf{X}|\mathbf{ heta}, \mathbf{\Sigma}) = H(\mathbf{X}^{\mathbf{o}}|\mathbf{ heta}) + rac{1}{2}\log|\mathbf{\Sigma}| \leq H_{\mathcal{G}}(\mathbf{\Sigma})$$

- ▶ $H(X^{o}|\theta)$ is free from μ and Σ
- \vdash $H_{\mathcal{G}}(\Sigma)$, the entropy of Gaussian distribution (The maximum entropy model)

Location-Scale Family

► The entropy of L-S family

$$H(\mathbf{X}|\mathbf{ heta}, \mathbf{\Sigma}) = H(\mathbf{X}^{\mathbf{o}}|\mathbf{ heta}) + rac{1}{2}\log|\mathbf{\Sigma}| \leq H_{\mathcal{G}}(\mathbf{\Sigma})$$

- ▶ $H(X^{o}|\theta)$ is free from μ and Σ
- \vdash $H_{\mathcal{G}}(\Sigma)$, the entropy of Gaussian distribution (The maximum entropy model)
- The mutual information measures

$$M(\mathbf{X}|\boldsymbol{\theta}, \boldsymbol{\Sigma}) = M(\Omega) + M(\mathbf{X}^{0}|\boldsymbol{\theta}) \geq M(\Omega)$$

- $\Omega = D^{-1/2} \Sigma D^{-1/2}, D = \text{Diag}[\sigma_{11}, \cdots, \sigma_{dd}]$
- \blacktriangleright $M(\Omega)$, the portion of dependence induced by the rotation
- $M(\Omega)=M_{\mathcal{G}}(\Omega)$, for the Gaussian model with correlation Ω
- $M(\mathbf{X}^0|\theta)$, the intrinsic dependence of the unrotated vector \mathbf{X}^0

Location-Scale Family

► The entropy of L-S family

$$H(\mathbf{X}|\mathbf{\theta}, \mathbf{\Sigma}) = H(\mathbf{X}^{\mathbf{o}}|\mathbf{\theta}) + \frac{1}{2}\log|\mathbf{\Sigma}| \leq H_{\mathcal{G}}(\mathbf{\Sigma})$$

- ▶ $H(X^{\circ}|\theta)$ is free from μ and Σ
- \vdash $H_{\mathcal{G}}(\Sigma)$, the entropy of Gaussian distribution (The maximum entropy model)
- The mutual information measures

$$M(\mathbf{X}|\boldsymbol{\theta}, \boldsymbol{\Sigma}) = M(\Omega) + M(\mathbf{X}^{0}|\boldsymbol{\theta}) \geq M(\Omega)$$

- $\Omega = D^{-1/2} \Sigma D^{-1/2}, D = \text{Diag}[\sigma_{11}, \cdots, \sigma_{dd}]$
- \blacktriangleright $M(\Omega)$, the portion of dependence induced by the rotation
- ▶ $M(\Omega) = M_{\mathcal{G}}(\Omega)$, for the Gaussian model with correlation Ω ▶ $M(\mathbf{X}^0|\theta)$, the intrinsic dependence of the unrotated vector \mathbf{X}^0
- Among all distributions in the multivariate L-S family having the same scale matrix Σ , the Gaussian model (copula) has the minimum dependence model

Multivariate Normal (Gaussian) Information Measures

$$\begin{array}{lll} \text{Mutual Information} & \mathcal{M}_{\mathcal{G}}(\Omega) & \text{Index } (\delta_{\mathcal{G}}^2) \\ \hline \mathcal{M}(\mathbf{X}) & -.5 \log |\Omega| & 1 - |\Omega| \\ \\ \mathcal{M}(\mathbf{X}_1, \mathbf{X}_2) & -.5 \sum_{j=1}^{\min\{d_k\}} \log(1-\lambda_j) & 1 - \prod_{j=1}^{\min\{d_k\}} (1-\lambda_j) \\ \\ \mathcal{M}[Y, (X_1, \cdots, X_d)] & -.5 \log \left(1 - \rho_{y|x_1, \cdots, x_d}^2\right) & \rho_{y|x_1, \cdots, x_d}^2 \end{array}$$

- Row 1. measures for shared information between all components.
- Row 2. measures for two disjoint subvectors
 - λ_i , $j=1,\cdots,\min\{d_k\}$ are the nonzero eigenvalues of $\Omega_{11}^{-1/2}\Omega_{12}\Omega_{22}^{-1/2}\Omega_{12}\Omega_{11}^{-1/2}$ [Ω_{ii} partitions of Ω for $(\mathbf{X}_1, \mathbf{X}_2)$]
 - ▶ The canonical correlations of the two subvectors $(\mathbf{X}_1, \mathbf{X}_2)$
- Row 3. regression information measures
 - $ho_{v|x_1,\dots,x_d}^2$, the normal regression fit index

► The pdf is in the form of

$$f_h(\mathbf{x}|\Sigma, \boldsymbol{\mu}) = k|\Sigma|^{-1/2} h\Big((\mathbf{x} - \boldsymbol{\mu})'\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\Big)$$

- $h(\cdot)$ is referred to as the scale or generator function which may include a vector of parameters θ in addition to (μ, Σ)
- ► The marginal distributions are also elliptical with L-S parameters (μ_i, σ_{ii}) , but the generator of the marginals $h_i(\cdot)$ may be different than $h(\cdot)$.

► The pdf is in the form of

$$f_h(\mathbf{x}|\Sigma, \boldsymbol{\mu}) = k|\Sigma|^{-1/2} h\Big((\mathbf{x} - \boldsymbol{\mu})'\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\Big)$$

- $h(\cdot)$ is referred to as the scale or generator function which may include a vector of parameters θ in addition to (μ, Σ)
- ► The marginal distributions are also elliptical with L-S parameters (μ_i, σ_{ii}) , but the generator of the marginals $h_i(\cdot)$ may be different than $h(\cdot)$.
- ▶ The Gaussian family $N(\mu, \Sigma)$: $h(z) = e^{z^2/2}$

► The pdf is in the form of

$$f_h(\mathbf{x}|\Sigma, \boldsymbol{\mu}) = k|\Sigma|^{-1/2} h\Big((\mathbf{x} - \boldsymbol{\mu})'\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\Big)$$

- $h(\cdot)$ is referred to as the scale or generator function which may include a vector of parameters θ in addition to (μ, Σ)
- ► The marginal distributions are also elliptical with L-S parameters (μ_i, σ_{ii}) , but the generator of the marginals $h_i(\cdot)$ may be different than $h(\cdot)$.
- ▶ The Gaussian family $N(\mu, \Sigma)$: $h(z) = e^{z^2/2}$
- ▶ Student-*t* family $t(\nu, \mu, \Sigma)$, ν , degrees of freedom:

$$h(z) = \left(1 + \frac{z^2}{\nu}\right)^{-(d+\nu)/2}$$

The pdf is in the form of

$$f_h(\mathbf{x}|\Sigma, \boldsymbol{\mu}) = k|\Sigma|^{-1/2} h\Big((\mathbf{x} - \boldsymbol{\mu})'\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\Big)$$

- ▶ $h(\cdot)$ is referred to as the scale or generator function which may include a vector of parameters θ in addition to (μ, Σ)
- ▶ The marginal distributions are also elliptical with L-S parameters (μ_i, σ_{ii}) , but the generator of the marginals $h_i(\cdot)$ may be different than $h(\cdot)$.
- ▶ The Gaussian family $N(\mu, \Sigma)$: $h(z) = e^{z^2/2}$
- ▶ Student-*t* family $t(\nu, \mu, \Sigma)$, ν , degrees of freedom:

$$h(z) = \left(1 + \frac{z^2}{\nu}\right)^{-(d+\nu)/2}$$

▶ For all elliptical families: $\tau = \frac{2}{\pi} \sin^{-1}(\rho)$; (Fang et al. 2002)

- Relationships with multivariate normal
 - ▶ Limiting distribution: $t(\nu, \mu, \Sigma) \to N(\mu, \Sigma)$ as $\nu \to \infty$

- Relationships with multivariate normal
 - ▶ Limiting distribution: $t(\nu, \mu, \Sigma) \to N(\mu, \Sigma)$ as $\nu \to \infty$
 - Normal mixture:

$$f(\mathbf{x}|\phi) = N(\boldsymbol{\mu}, \phi \Sigma), \quad \phi \sim \text{Gamma}(\nu/2, \nu/2), \quad \nu = 1, 2 \cdots$$

 $\implies f(\mathbf{x}) = t(\nu, \boldsymbol{\mu}, \Sigma)$

- Relationships with multivariate normal
 - ▶ Limiting distribution: $t(\nu, \mu, \Sigma) \to N(\mu, \Sigma)$ as $\nu \to \infty$
 - Normal mixture:

$$f(\mathbf{x}|\phi) = N(\mu, \phi\Sigma), \quad \phi \sim \text{Gamma}(\nu/2, \nu/2), \quad \nu = 1, 2 \cdots$$

 $\implies f(\mathbf{x}) = t(\nu, \mu, \Sigma)$

The information index:

$$\delta_T(\nu, \Sigma) = \delta_{\mathcal{G}} + (1 - \delta_{\mathcal{G}})\delta(\nu), \quad \uparrow \delta_{\mathcal{G}}, \quad \downarrow \nu$$

- \triangleright δ_G the index for Gaussian (normal)
- For the bivariate case:

$$\delta_t^2(\nu,\tau) = \sin^2\left(\frac{\tau\pi}{2}\right) + \cos^2\left(\frac{\tau\pi}{2}\right)\delta^2(\nu),$$

- Relationships with multivariate normal
 - ▶ Limiting distribution: $t(\nu, \mu, \Sigma) \to N(\mu, \Sigma)$ as $\nu \to \infty$
 - Normal mixture:

$$f(\mathbf{x}|\phi) = N(\mu, \phi\Sigma), \quad \phi \sim \text{Gamma}(\nu/2, \nu/2), \quad \nu = 1, 2 \cdots$$

$$\implies f(\mathbf{x}) = t(\nu, \mu, \Sigma)$$

The information index:

$$\delta_T(\nu, \Sigma) = \delta_{\mathcal{G}} + (1 - \delta_{\mathcal{G}})\delta(\nu), \quad \uparrow \delta_{\mathcal{G}}, \quad \downarrow \nu$$

- \triangleright δ_G the index for Gaussian (normal)
- For the bivariate case:

$$\delta_t^2(\nu, \tau) = \sin^2\left(\frac{\tau\pi}{2}\right) + \cos^2\left(\frac{\tau\pi}{2}\right)\delta^2(\nu),$$

- Many applications
 - Regression model with multivariate t errors (Zellner 1976)
 - Dynamic stochastic general equilibrium model with Student-t errors (Chib & Ramamurthy 2012)
 - ► Copulas (Demarta & McNeil 2005), model for financial variables, ...

Student-t

- ▶ Student-t when τ (ρ) and the degrees of freedom ν are low
 - Substantial gaps between the level of dependence
 - ▶ The spectrum of dependence is narrow

Student's t & Pearson Type VII

- ▶ Student-t when τ (ρ) and the degrees of freedom ν are low
 - Substantial gaps between the level of dependence
 - The spectrum of dependence is narrow
- ▶ The spectrum of dependence of the t family is substantially widen and refined by replacing $\nu/2$ with a parameter $\alpha > 0$.

Convolution Models

Noisy relationship between Y and $\mathbf{X}' = (X_1, \dots, X_n)$:

$$Y = \phi(\mathbf{X}, \boldsymbol{\beta}) + \epsilon$$

- $ightharpoonup \phi(\cdot,\cdot)$, a scalar function, need not be linear
- $\beta = (\beta_1, \cdots, \beta_n)'$
- \triangleright X, β , or both can be stochastic
- \bullet ϵ , random noise, may not be independent of the signal $\phi(\mathbf{X}_i, \boldsymbol{\beta})$

Convolution Models

▶ Noisy relationship between Y and $\mathbf{X}' = (X_1, \dots, X_n)$:

$$Y = \phi(\mathbf{X}, \boldsymbol{\beta}) + \epsilon$$

- \bullet $\phi(\cdot,\cdot)$, a scalar function, need not be linear
- $\beta = (\beta_1, \cdots, \beta_n)'$
- \triangleright X, β , or both can be stochastic
- \bullet ϵ , random noise, may not be independent of the signal $\phi(\mathbf{X}_i, \boldsymbol{\beta})$
- Two known results for the sum of independent variables
 - The sum has a larger entropy than each variable alone
 - ▶ The amount of increase in the entropy is the M between the sum and the summands (Blahut 1987)

Convolution Models

▶ Noisy relationship between Y and $\mathbf{X}' = (X_1, \dots, X_n)$:

$$Y = \phi(\mathbf{X}, \boldsymbol{\beta}) + \epsilon$$

- \bullet $\phi(\cdot,\cdot)$, a scalar function, need not be linear
- $\beta = (\beta_1, \cdots, \beta_n)'$
- \triangleright X, β , or both can be stochastic
- \bullet ϵ , random noise, may not be independent of the signal $\phi(\mathbf{X}_i, \boldsymbol{\beta})$
- Two known results for the sum of independent variables
 - ▶ The sum has a larger entropy than each variable alone
 - ▶ The amount of increase in the entropy is the M between the sum and the summands (Blahut 1987)
- An enhanced version of Blahut's result gives:

$$M(Y, \phi(\mathbf{X}, \boldsymbol{\beta})) = [H(Y) - H(\epsilon)] + M(\epsilon, \phi(\mathbf{X}, \boldsymbol{\beta}))$$

▶ Blahut's theorem is for $M(\epsilon, \phi(\mathbf{X}, \beta)) = 0$:

$$M(Y, \phi(\mathbf{X}, \boldsymbol{\beta})) = H(Y) - H(\epsilon)$$

Normal Linear Regression

- $\phi(\mathbf{X}, \boldsymbol{\beta}) = \mathbf{X}'\boldsymbol{\beta}, \ Y|\mathbf{X}, \boldsymbol{\beta}, \sigma^2 \sim N(\mathbf{X}'\boldsymbol{\beta}, \sigma^2), \ M(\epsilon, \phi(\mathbf{X}, \boldsymbol{\beta})) = 0$
- ▶ Two information measures are well-known

Normal Linear Regression

- $\phi(\mathbf{X},\beta) = \mathbf{X}'\beta, \ Y|\mathbf{X},\beta,\sigma^2 \sim N(\mathbf{X}'\beta,\sigma^2), \ M(\epsilon,\phi(\mathbf{X},\beta)) = 0$
- Two information measures are well-known
 - β non-stochastic:

$$M(Y, \phi(\mathbf{X}, \beta)) = M(Y, \mathbf{X}) = -\frac{1}{2} \log(1 - \rho_{y|x_1, \dots x_p}^2)$$
$$= -\frac{1}{2} \sum_{i=1}^{p} \log(1 - \rho_{x_j|x_1, \dots x_{j-1}}^2),$$

- $ho_{x_i|x_1,\cdots x_{i-1}}^2$ is the squared partial correlation coefficient
- ▶ Theil and Chung (1988) proposed the above decomposition of the sample version $2\hat{M}(\mathbf{Y}, \mathbf{X}) = -\log(1 - R^2)$ as transformation of the regression index R^2 for assessing the relative importance of the predictors.

Normal Linear Regression

- $\phi(\mathbf{X}, \beta) = \mathbf{X}'\beta, \ Y|\mathbf{X}, \beta, \sigma^2 \sim N(\mathbf{X}'\beta, \sigma^2), \ M(\epsilon, \phi(\mathbf{X}, \beta)) = 0$
- ▶ Two information measures are well-known
 - β non-stochastic:

$$M(Y, \phi(\mathbf{X}, \beta)) = M(Y, \mathbf{X}) = -\frac{1}{2} \log(1 - \rho_{y|x_1, \dots x_p}^2)$$
$$= -\frac{1}{2} \sum_{p}^{p} \log(1 - \rho_{x_j|x_1, \dots x_{j-1}}^2),$$

- $ho_{x_i|x_1,\cdots x_{i-1}}^2$ is the squared partial correlation coefficient
- ▶ Theil and Chung (1988) proposed the above decomposition of the sample version $2\hat{M}(\mathbf{Y}, \mathbf{X}) = -\log(1 - R^2)$ as transformation of the regression index R^2 for assessing the relative importance of the predictors.
- **X** a design matrix (non-stochastic) and $\beta | \sigma^2 \sim N(\mu_0, \sigma_0^2 A_0)$:

$$M(\mathbf{Y}, \boldsymbol{\beta}|\eta, A_0) = \frac{1}{2} \log \left| I_p + \frac{\sigma_0^2}{\sigma^2} A_0 X' X \right|.$$

The Bayesian sample information about regression parameter (Lindley's information)

Bayesian Linear Regression Beyond Normal

- $\epsilon \sim F(0, \sigma^2)$
- \triangleright β_i , $i = 1, \dots, p$ are independent and have g-priors $\beta_{i} \sim F(0, \sigma^{2} x_{i}^{-1}), j = 1, \cdots, p$
- ▶ Y_i is convolution of p+1 iid variables $Z_i = \beta_i x_i$ and ϵ
- ▶ If F is closed under convolution, $Y_i | \sigma^2 \sim F(0, (p+1)\sigma^2)$

Bayesian Linear Regression Beyond Normal

- $ightharpoonup \epsilon \sim F(0, \sigma^2)$
- \triangleright β_i , $i = 1, \dots, p$ are independent and have g-priors $\beta_{j} \sim F(0, \sigma^{2} x_{i}^{-1}), j = 1, \cdots, p$
- ▶ Y_i is convolution of p+1 iid variables $Z_j = \beta_j x_j$ and ϵ
- ▶ If *F* is closed under convolution, $Y_i | \sigma^2 \sim F(0, (p+1)\sigma^2)$
- ▶ Information quantities when F are normal and Cauchy
 - Regression with t error has been proposed for capturing outliers (Zellner 1976, Lang et al. 1989)

$$F \hspace{1cm} H(Y) \hspace{1cm} H(\epsilon) \hspace{1cm} M(Y,\beta) \hspace{1cm} \delta^2(Y,\beta)$$

Normal
$$.5\log(2(p+1)\pi e\sigma^2)$$
 $.5\log(2\pi e\sigma^2)$ $.5\log(p+1)$ $\frac{p}{p+1}$

Cauchy
$$\log(4(p+1)\pi\sigma^2)$$
 $\log(4\pi\sigma^2)$ $\log(p+1)$ $\frac{p}{p+1}+\frac{p}{(p+1)^2}$

Stochastic Process

- $ightharpoonup T_1, T_2, \cdots$ inter-arrival times of failures of a repairable system
- ▶ Time to the *n*th failure, $Y_n = \sum_{i=1}^n T_i$
 - ▶ Distribution of the *i*th failure time is gamma, $Ga(\alpha_i, \lambda)$
 - Failures are independent
 - ▶ Distribution of Y_n is $Ga(\beta_n, \lambda)$, $\beta_n = \sum_{j=1}^n \alpha_i$
- ▶ The entropy of $Ga(\beta_k, 1)$

$$H_G(Y_k) = \log \Gamma(\beta_k) - (\beta_k - 1)\psi(\beta_k) + \beta_k$$

▶ The convolution result for the independent case is applicable

$$M(Y_n, Y_{n+k}) = H_G(\beta_{n+k}) - H_G(\beta_k),$$

- ▶ $M(Y_n, Y_{n+k})$ is the mutual information of the McKay's bivariate gamma distribution with parameters $(\beta_k, \beta_{n-k}, \lambda)$
- ▶ For the important case of Poisson process, $\beta_k = k$.

- Applications include:
 - Endogenous regression
 - Measurement error models

$$Y = X + \epsilon$$
, $X \sim N(\mu, \sigma^2)$, $\epsilon \sim N(0, \theta^2)$

• $E(X\epsilon) = 0$ (X and ϵ uncorrelated)

- Applications include:
 - Endogenous regression
 - Measurement error models

$$Y = X + \epsilon$$
, $X \sim N(\mu, \sigma^2)$, $\epsilon \sim N(0, \theta^2)$

• $E(X\epsilon) = 0$ (X and ϵ uncorrelated)

- Applications include:
 - Endogenous regression
 - Measurement error models

$$Y = X + \epsilon$$
, $X \sim N(\mu, \sigma^2)$, $\epsilon \sim N(0, \theta^2)$

• $E(X\epsilon) = 0$ (X and ϵ uncorrelated)

- ▶ The easy case: $F(x, \epsilon)$ bivariate normal with correlation ρ
 - ▶ The joint distribution of (Y, X) is also bivariate normal with correlation $\sqrt{.5(1+\rho)}$

$$M(Y, X) = .5 \log 2 - .5 \log(1 - \rho)$$

More (less) than the independent case when $\rho > 0$ ($\rho < 0$)

- ▶ The easy case: $F(x, \epsilon)$ bivariate normal with correlation ρ
 - ▶ The joint distribution of (Y, X) is also bivariate normal with correlation $\sqrt{.5(1+\rho)}$

$$M(Y, X) = .5 \log 2 - .5 \log(1 - \rho)$$

- ▶ More (less) than the independent case when $\rho > 0$ ($\rho < 0$)
- ▶ It is also easy to calculate H(Y) and $H(\epsilon)$ when $F(x,\epsilon)$ is Cauchy or F-G-M copula
- In general, direct computation is tedious

A Class of Models for Uncorrelated Variables

- **Summable Uncorrelated Marginals** (Ebrahimi et al. 2010c)
 - ▶ Defined by the **stochastic equality** $Z_1 + Z_2 \stackrel{st}{=} Z_1^* + Z_2^*$

$$F^*(z_1, z_2) = F_1(z_1)F_2(z_2) \Longrightarrow H(Z_1 + Z_2) = H(Z_1^* + Z_2^*)$$

ANOVA type decomposition of dependence

$$M(Y,Z_i) = M(Y,Z_i^*) + M(Z_1,Z_2)$$

- $Y = Z_1 + Z_2$
- $M(Y, Z_i^*) = H(Y) H(Z_i), i \neq i = 1, 2$ (the independent case)

Examples

$$\delta^2(Y,X)=.733$$

$$\delta^2(Y,X) = .616$$

$$\delta^2(Y,X) = .591$$

$$\delta^2(Y,X) = .677$$

Absence & Presence of a Probable Cause

- ▶ "Cause of dependence", a functional relationship enabling the perfect predictability
- "Probable cause", a legal terminology for a condition that calls for prudence
 - Absence of a probable cause $P[X_i = \phi_i(X_i)] = 0$, (absolutely continuous distributions)
 - Presence of a probable cause $P[X_i = \phi_i(X_i)] > 0$, (singular distributions)

Absence & Presence of a Probable Cause

- "Cause of dependence", a functional relationship enabling the perfect predictability
- "Probable cause", a legal terminology for a condition that calls for prudence
 - Absence of a probable cause $P[X_i = \phi_i(X_i)] = 0$, (absolutely continuous distributions)
 - Presence of a probable cause $P[X_i = \phi_i(X_i)] > 0$, (singular distributions)

Scatter Plots of Data from a Financial Institution

Scatter Plots of Data from a Financial Institution

Original data

Singular distributions: Probable cause of dependence

- One variable is not completely dependent on the other
- A functional dependence is probable,

$$0 < P[X_i = \phi_i(X_j)] = \pi < 1$$

- Probable cause of dependence
- ▶ The joint distribution $F(x_1, x_2)$ is singular.
- ▶ The survival function has the following representation:

$$\bar{F}(x_1, x_2) = (1 - \pi)\bar{F}_a(x_1, x_2) + \pi\bar{F}_s(x_1, x_2),$$

- $ightharpoonup \bar{F}_a(x_1,x_2)$ is the survival function with an absolutely continuous bivariate pdf $f_a(x_1, x_2)$,
- $ightharpoonup \bar{F}_s(x_1, x_2)$ is the survival for a singular part with a univariate pdf $f_s(x)$, $x_i = \phi_i(x_i)$ $\pi = \int f_s(x) dx$

Singular distributions: Some Applications

- Shock models (Marshall & Olkin, 1967)
 - ▶ A system with two components C_i
 - ▶ Three types of shocks S_i , 1 = 1, 2, 3
 - ▶ S_i kills C_i , j = 1, 2 and shock S_3 kills both components
 - Marshall-Olkin Bivariate Exponential (MOBE) distribution

Singular distributions: Some Applications

- Shock models (Marshall & Olkin, 1967)
 - ▶ A system with two components C_i
 - ▶ Three types of shocks S_i , 1 = 1, 2, 3
 - ▶ S_i kills C_i , j = 1, 2 and shock S_3 kills both components
 - Marshall-Olkin Bivariate Exponential (MOBE) distribution
- Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)

Singular distributions: Some Applications

- Shock models (Marshall & Olkin, 1967)
 - A system with two components C_i
 - ▶ Three types of shocks S_i , 1 = 1, 2, 3
 - ▶ S_i kills C_i , j = 1, 2 and shock S_3 kills both components
 - Marshall-Olkin Bivariate Exponential (MOBE) distribution
- Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)
- ▶ The first order exponential autoregressive (Gaver & Lewis, 1980)

$$X_{n+1} = \rho X_n + \epsilon_{n+1},$$

- \triangleright { X_n } is a sequence of identically distributed exponential random variables $P(X_n > x) = \bar{F}(x) = e^{-\lambda x}$
- lacksquare $\{\epsilon_n\}$ is an iid sequence, ϵ_{n+1} and X_n are independent
- $F(x_n, x_{n+1})$ is singular $\pi = \rho$
- ▶ Pareto process (Yeh, et al. 1988), transformation of X_n

Singular distributions: Some Applications

- Shock models (Marshall & Olkin, 1967)
 - A system with two components C_i
 - ▶ Three types of shocks S_i , 1 = 1, 2, 3
 - ▶ S_i kills C_i , j = 1, 2 and shock S_3 kills both components
 - ► Marshall-Olkin Bivariate Exponential (MOBE) distribution
- Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)
- ▶ The first order exponential autoregressive (Gaver & Lewis, 1980)

$$X_{n+1} = \rho X_n + \epsilon_{n+1},$$

- \setminus { X_n } is a sequence of identically distributed exponential random variables $P(X_n > x) = \bar{F}(x) = e^{-\lambda x}$
- lacksquare $\{\epsilon_n\}$ is an iid sequence, ϵ_{n+1} and X_n are independent
- $F(x_n, x_{n+1})$ is singular $\pi = \rho$
- ▶ Pareto process (Yeh, et al. 1988), transformation of X_n
- ▶ Importance of s component for a system: Bivariate distribution of a component's lifetime X_i , $i = 1, \dots, n$ and system's lifetime given by any one of the order statistics $Y_1 < \cdots < Y_n$ (Ebrahimi, Jalali, Soofi, & Soyer, forthcoming)

▶ *M* is not defined since $F \not \ll F_1F_2$

- ▶ *M* is not defined since $F \ll F_1 F_2$
- Generalized information index

$$\delta_{\pi}(X_1, X_2) = \pi + (1 - \pi)\delta_{a}(X_1, X_2)$$

• $\delta_a(X_1, X_2)$ is the dependence information index for the absolutely continuous distribution \bar{F}_a

- ▶ M is not defined since $F \not \ll F_1F_2$
- Generalized information index

$$\delta_{\pi}(X_1, X_2) = \pi + (1 - \pi)\delta_{a}(X_1, X_2)$$

- $\delta_a(X_1, X_2)$ is the dependence information index for the absolutely continuous distribution \bar{F}_a
- $\delta_a(X_1, X_2) = 0$ if and only if the variables are independent
- $\delta_{\pi}(X_1, X_2) = 1 \text{ if } \pi = 1$
- $\delta_{\pi}(X_1, X_2) = \delta_a(X_1, X_2)$ if $\pi = 0$, the case when $F \ll F_1 F_2$

- ▶ *M* is not defined since $F \not \ll F_1 F_2$
- Generalized information index

$$\delta_{\pi}(X_1, X_2) = \pi + (1 - \pi)\delta_{\mathsf{a}}(X_1, X_2)$$

- $\delta_a(X_1, X_2)$ is the dependence information index for the absolutely continuous distribution \bar{F}_a
- $\delta_a(X_1, X_2) = 0$ if and only if the variables are independent
- $\delta_{\pi}(X_1, X_2) = 1 \text{ if } \pi = 1$
- $\delta_{\pi}(X_1,X_2)=\delta_a(X_1,X_2)$ if $\pi=0$, the case when $F\ll F_1F_2$
- Invariant under one-to-one transformations of each variable

- ▶ *M* is not defined since $F \not \ll F_1F_2$
- Generalized information index

$$\delta_{\pi}(X_1, X_2) = \pi + (1 - \pi)\delta_{a}(X_1, X_2)$$

- $\delta_a(X_1, X_2)$ is the dependence information index for the absolutely continuous distribution \bar{F}_a
- $\delta_a(X_1, X_2) = 0$ if and only if the variables are independent
- $\delta_{\pi}(X_1, X_2) = 1$ if $\pi = 1$
- $\delta_{\pi}(X_1, X_2) = \delta_a(X_1, X_2)$ if $\pi = 0$, the case when $F \ll F_1 F_2$
- Invariant under one-to-one transformations of each variable
- Based on:
 - the partition property of information
 - ▶ applying the probabilistic argument of Marshall and Olkin (1967) to dependence between X_1 and X_2

$$P[X_i = \phi_i(X_j)] = \pi > 0$$

$$P[X_i \neq \phi_i(X_j)] = 1 - \pi > 0$$

Examples

- Independent exponential with a singular part included ($\pi = \rho = \tau$)
- The Marshall-Olkin Bivariate Exponential ($\pi = \rho = \tau$)
- The exponential autoregressive $(\pi = \rho = \tau)$

Bayesian Test of Sharp Hypothesis

- ▶ Two parameters $(\theta_1, \theta_2) \in \mathcal{S}$, a continuous region in \Re^2
- ► Test $H_1: \theta_i = \alpha \theta_i, j \neq i = 1, 2$ against $H_1: \theta_i \neq \alpha \theta_i, j \neq i = 1, 2$.
- ▶ The plausibility of H_1 is described by prior probability $P(H_1) = \pi$.

Bayesian Test of Sharp Hypothesis

- ▶ Two parameters $(\theta_1, \theta_2) \in \mathcal{S}$, a continuous region in \Re^2
- ► Test $H_1: \theta_i = \alpha \theta_i, j \neq i = 1, 2$ against $H_1: \theta_i \neq \alpha \theta_i, j \neq i = 1, 2$.
- The plausibility of H_1 is described by prior probability $P(H_1) = \pi$.
- ▶ The joint prior distribution $P(\theta_1, \theta_2)$, $(\theta_1, \theta_2) \in \mathcal{S}$ has a singular part with a univariate pdf $p_s(\theta_i)$ for $\theta_i = \alpha \theta_i$ and an absolutely continuous part with a bivariate pdf $p_a(\theta_1, \theta_2)$, $(\theta_1, \theta_2) \in \mathcal{S}$.

Bayesian Test of Sharp Hypothesis

- ▶ Two parameters $(\theta_1, \theta_2) \in \mathcal{S}$, a continuous region in \Re^2
- ► Test $H_1: \theta_i = \alpha \theta_i, j \neq i = 1, 2$ against $H_1: \theta_i \neq \alpha \theta_i, j \neq i = 1, 2$.
- ▶ The plausibility of H_1 is described by prior probability $P(H_1) = \pi$.
- ▶ The joint prior distribution $P(\theta_1, \theta_2)$, $(\theta_1, \theta_2) \in \mathcal{S}$ has a singular part with a univariate pdf $p_s(\theta_i)$ for $\theta_i = \alpha \theta_i$ and an absolutely continuous part with a bivariate pdf $p_a(\theta_1, \theta_2), (\theta_1, \theta_2) \in \mathcal{S}$.
- ▶ The posterior distribution $P(\theta_1, \theta_2 | D)$ is also singular
- ▶ The updated probability of the singularity is given by

$$\pi^* = P(H_1|D) = \frac{\pi}{\pi + (1-\pi)B_{21}}.$$

 B_{21} , the Bayes factor

- $f(\mathbf{x}|\theta_1, \theta_2, \phi\Omega) = N((\theta_1, \theta_2), \phi\Omega)$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$

- $f(\mathbf{x}|\theta_1, \theta_2, \phi\Omega) = N((\theta_1, \theta_2), \phi\Omega)$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$
- ► Normal-gamma prior under H₂

$$P(\theta_1, \theta_2 | \phi, H_2) = N((m_1, m_2), h\phi\Omega)$$

$$P(\phi) = Ga(\nu/2, \nu/2)$$

- $f(\mathbf{x}|\theta_1, \theta_2, \phi\Omega) = N((\theta_1, \theta_2), \phi\Omega)$
- ▶ $H_1: \theta_1 = \theta_2 = \theta$ with $P(H_1) = \pi$, against $H_2: \theta_1 \neq \theta_2$
- ► Normal-gamma prior under H₂

$$P(\theta_1, \theta_2 | \phi, H_2) = N((m_1, m_2), h\phi\Omega)$$

$$P(\phi) = Ga(\nu/2, \nu/2)$$

	$P(heta_1, heta_2 \phi)$	$P(heta_1, heta_2)$
Absolutely continuous part	Bivariate normal (ρ)	Bivariate $t(\rho, \nu)$
$\delta_a^2(\Theta_1,\Theta_2)$	$ ho^2$	$\delta_{\sf a}^2(u, ho)$
$\delta_{\pi}^2(\Theta_1,\Theta_2)$	$\pi + (1-\pi) ho^2$	$\pi + (1-\pi)\delta_a^2(u, ho)$

- $f(\mathbf{x}|\theta_1, \theta_2, \phi\Omega) = N((\theta_1, \theta_2), \phi\Omega)$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$
- ► Normal-gamma prior under H₂

$$P(\theta_1, \theta_2 | \phi, H_2) = N((m_1, m_2), h\phi\Omega)$$

$$P(\phi) = Ga(\nu/2, \nu/2)$$

	$P(heta_1, heta_2 \phi)$	$P(heta_1, heta_2)$
Absolutely continuous part	Bivariate normal(ρ)	Bivariate $t(\rho, \nu)$
$\delta_a^2(\Theta_1,\Theta_2)$	ρ^2	$\delta_{a}^2(u, ho)$
$\delta_{\pi}^{2}(\Theta_{1},\Theta_{2})$	$\pi + (1-\pi)\rho^2$	$\pi + (1-\pi)\delta_a^2(\nu,\rho)$

$$\begin{split} \delta_{a}^{2}(\nu,\rho) &= \rho^{2} + (1-\rho^{2})\delta^{2}(\nu,0) \\ \delta_{\pi}^{2}(\Theta_{1},\Theta_{2}) &\geq \delta_{\pi}^{2}(\Theta_{1},\Theta_{2}|\phi) \geq \pi \end{split}$$

- $f(\mathbf{x}|\theta_1, \theta_2, \phi\Omega) = N((\theta_1, \theta_2), \phi\Omega)$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$
- ► Normal-gamma prior under H₂

$$P(\theta_1, \theta_2 | \phi, H_2) = N((m_1, m_2), h\phi\Omega)$$

$$P(\phi) = Ga(\nu/2, \nu/2)$$

	$P(heta_1, heta_2 \phi)$	$P(heta_1, heta_2)$
Absolutely continuous part	Bivariate normal(ρ)	Bivariate $t(\rho, \nu)$
$\delta_a^2(\Theta_1,\Theta_2)$	ρ^2	$\delta_{\sf a}^2(u, ho)$
$\delta_{\pi}^{2}(\Theta_{1},\Theta_{2})$	$\pi + (1-\pi)\rho^2$	$\pi + (1-\pi)\delta_{a}^2(u, ho)$

Notes:

$$\begin{aligned} \delta_{\mathsf{a}}^2(\nu,\rho) &= \rho^2 + (1-\rho^2)\delta^2(\nu,0) \\ \delta_{\pi}^2(\Theta_1,\Theta_2) &\geq \delta_{\pi}^2(\Theta_1,\Theta_2|\phi) \geq \pi \end{aligned}$$

- $ightharpoonup Prior <math>P(\theta|H_1) = f_s(\theta)$
- ▶ Posterior dependence, replace π with π^*

- $f(x_{ii}|\theta_i) = \theta_i e^{-\theta_j x}, j = 1, 2$
- ▶ $H_1: \theta_1 = \theta_2 = \theta$ with $P(H_1) = \pi$, against $H_2: \theta_1 \neq \theta_2$

- $f(x_{ii}|\theta_i) = \theta_i e^{-\theta_j x}, j = 1, 2$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$
- Independent exponential prior under H_2 (Christensen et al. 2010)

$$P(\theta_1, \theta_2 | H_2) = e^{-\theta_1 - \theta_2}, \quad \theta_i | H_2, i = 1, 2, \text{ independent}$$

- ▶ In this case.
 - $\delta_2^2(\Theta_1,\Theta_2)=0$
 - ▶ Dependence index $\delta_{\pi}^2(\Theta_1, \Theta_2) = \pi$

- $f(x_{ii}|\theta_i) = \theta_i e^{-\theta_j x}, i = 1, 2$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$
- Independent exponential prior under H_2 (Christensen et al. 2010)

$$P(\theta_1, \theta_2 | H_2) = e^{-\theta_1 - \theta_2}, \ \theta_i | H_2, i = 1, 2, \text{ independent}$$

- In this case.
 - $\delta_2^2(\Theta_1,\Theta_2)=0$
 - Dependence index $\delta_{\pi}^2(\Theta_1, \Theta_2) = \pi$
- Posterior dependence
 - ▶ Two samples: $\mathbf{x}_{j} = (x_{j1}, \dots, x_{jn_{i}}), j = 1, 2$
 - Prior $P(\theta|H_1) = e^{-\theta}$
 - Bayes factor

$$B_{21} = \frac{n_1! n_2! (S_1 + S_2 + 1)^{n+1}}{n! (S_1 + 1)^{n_1 + 1} (S_2 + 1)^{n_2 + 1}}, \quad S_j = \sum_{i=1}^{n_j} x_{ji}, \ j = 1, 2$$

 $\delta_{\pi^*}^2(\Theta_1,\Theta_2|\mathbf{x}_1,\mathbf{x}_2)=\pi^*$

- $f(x_{ii}|\theta_i) = \theta_i e^{-\theta_j x}, j = 1, 2$
- $ightharpoonup H_1: \theta_1=\theta_2=\theta$ with $P(H_1)=\pi$, against $H_2: \theta_1\neq\theta_2$
- Independent exponential prior under H_2 (Christensen et al. 2010)

$$P(\theta_1, \theta_2 | H_2) = e^{-\theta_1 - \theta_2}, \ \theta_i | H_2, i = 1, 2, \text{ independent}$$

- In this case.
 - $\delta_2^2(\Theta_1,\Theta_2)=0$
 - Dependence index $\delta_{\pi}^2(\Theta_1, \Theta_2) = \pi$
- Posterior dependence
 - ▶ Two samples: $\mathbf{x}_{j} = (x_{j1}, \dots, x_{jn_{i}}), j = 1, 2$
 - Prior $P(\theta|H_1) = e^{-\theta}$
 - Bayes factor

$$B_{21} = \frac{n_1! n_2! (S_1 + S_2 + 1)^{n+1}}{n! (S_1 + 1)^{n_1 + 1} (S_2 + 1)^{n_2 + 1}}, \quad S_j = \sum_{i=1}^{n_j} x_{ji}, \ j = 1, 2$$

- $\delta_{\pi^*}^2(\Theta_1,\Theta_2|\mathbf{x}_1,\mathbf{x}_2)=\pi^*$
- Other singular bivariate exponential priors: Marshall-Olkin, bivariate autoregressive exponential, Gumbel and McKay with a singular part

