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Outline

» Notions of dependence, association, and predictability
» Information approach to dependence

» Scale of predictability

» The mutual information

» Utility of dependence

> Dependence information index (absolutely continuous
distributions)

» Failure of traditional measures to capture dependence
» Location-scale family

» Gaussian, Student-t, Elliptical
» Dependence between sum and summands

» Regression (normal and beyond)
» Stochastic processes

» Measurement error
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Notions of dependence, association, and predictability
Information approach to dependence
» Scale of predictability
» The mutual information
» Utility of dependence
> Dependence information index (absolutely continuous
distributions)
Failure of traditional measures to capture dependence
Location-scale family
» Gaussian, Student-t, Elliptical
Dependence between sum and summands
» Regression (normal and beyond)
» Stochastic processes
» Measurement error
Information index for singular models (if time allows)
» Marshall-Olkin family
» Gaver-Lewis family
» Test of sharp hypothesis
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vy

v

v
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» Xj and X5 two random variables
» (X1, X3), random vector with a bivariate F with pdf f
» Marginal distributions F;, with pdf f;,i =1,2
f(X17X2)

» Conditional distributions with pdf's f;;(x;|x;) = )
i\

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee = Information Measure of Dependence: Some Virtues and a Ca



» X; and X5 two random variables

» (X1, X3), random vector with a bivariate F with pdf f
» Marginal distributions F;, with pdf f;,i =1,2
f(X17X2)

» Conditional distributions with pdf's f;;(x;|x;) = )
i\

» Independence is a stochastic notion
F(Xl,XQ) = F]_(X]_)F2(X2) for all (X1,X2) S %2

A sharp state
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» X; and X5 two random variables

» (X1, X3), random vector with a bivariate F with pdf f
» Marginal distributions F;, with pdf f;,i =1,2
f(X17X2)

» Conditional distributions with pdf's f;;(x;|x;) = )
i\

» Independence is a stochastic notion
F(Xl,XQ) = F]_(X]_)F2(X2) for all (X1,X2) S %2

A sharp state

» Dependence is a negation of the independence
F(Xl,Xg) 75 F]_(Xl)Fz(X2) for some (X1,X2) € %2

A multifarious notion
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Examples of Bivariate Distributions

Independent models Dependent models

a) Independent N b) Bivariate N c) Unimodal N d) Multimodal N

Normal

Log-normal
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Association

» Association is a covariation

cov[p1(X1), p2(X2)] # 0

> ¢;(-), i =1,2 monotone functions

» Positive and negative cov[p1(X1), ¢2(X2)] are called positive
and negative quadrant dependence in reliability

» Correlation: linear association cov(X), X3) # 0
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cov[p1(X1), p2(X2)] # 0

» ¢i(-), i = 1,2 monotone functions
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and negative quadrant dependence in reliability
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» Diagram of relationships between two random variables

Dependent
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Association

» Association is a covariation

cov[p1(X1), p2(X2)] # 0

» ¢i(-), i = 1,2 monotone functions

» Positive and negative cov[¢p1(X1), #2(Xz)] are called positive
and negative quadrant dependence in reliability

» Correlation: linear association cov(X), X3) # 0

» Diagram of relationships between two random variables

Dependent

Associated
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Examples of Bivariate Distributions

Independent models

Dependent models

a) Independent N

b) Bivariate N

f) Bivariate LN

Associated models

c) Unimodal N d) Multimodal N

g) F-G-M LN

Normal

Log-normal
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Some questions

» How much each dependent model deviates from its
independent version?
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Some questions

» How much each dependent model deviates from its
independent version?

» Which of the dependent models represents a weaker or a
stronger dependence?
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Some questions

» How much each dependent model deviates from its
independent version?

» Which of the dependent models represents a weaker or a
stronger dependence?

» Which of these models would enable you to better predict one
of the variables by using the other?
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Some questions

» How much each dependent model deviates from its
independent version?

» Which of the dependent models represents a weaker or a
stronger dependence?

» Which of these models would enable you to better predict one
of the variables by using the other?

» Are more strongly associated models also more dependent?
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Some questions

» How much each dependent model deviates from its
independent version?

» Which of the dependent models represents a weaker or a
stronger dependence?

» Which of these models would enable you to better predict one
of the variables by using the other?

» Are more strongly associated models also more dependent?

» The information notion of dependence answers these

questions based on the departure of the joint distribution F
from the independent model G = F; F,.
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Data From Four Unassociated Models

» Bivariate normal: Independent
» Bivariate t: Not independent

Bivaraite Normal Bivaraite student's t, df=5
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Data From Four Equally Associated Models

> Regression E(Xi|x2) = .4x
» Bivariate normal: Constant conditional variance
» Bivariate t: Quadratic conditional variance (not defined for Cauchy)

Bivaraite Normal Bivaraite student'’s t, df=5
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Dependence & Predictability

» The independent state:
» Complete absence of probabilistic information about the
outcomes of each variable by the other
» Perfect unpredictability
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Dependence & Predictability

» The independent state:
» Complete absence of probabilistic information about the
outcomes of each variable by the other
» Perfect unpredictability

» Complete dependence (Lancaster 1963):
PIXi=¢i(X)] =1, i#j

> ¢;(-), a measureable one-to-one function
» Perfect predictability (Kimeldorf & Sampson 1978)
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Dependence & Predictability

» The independent state:
» Complete absence of probabilistic information about the
outcomes of each variable by the other
» Perfect unpredictability

» Complete dependence (Lancaster 1963):
PIXi=¢i(X)] =1, i#j

> ¢;(-), a measureable one-to-one function
» Perfect predictability (Kimeldorf & Sampson 1978)
» Scale of predictability

Perfect unpredictability‘ Perfect predictability

0 100%
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Dependence & Predictability

» The independent state:
» Complete absence of probabilistic information about the
outcomes of each variable by the other
» Perfect unpredictability

» Complete dependence (Lancaster 1963):
PIXi=¢i(X)] =1, i#j

> ¢;(-), a measureable one-to-one function
» Perfect predictability (Kimeldorf & Sampson 1978)
» Scale of predictability

Perfect unpredictability‘ Perfect predictability
0 100%
Independence

If and only if for all (xi, x;),

F(x1,x2) = Fi(x1)F2(x2)
F(xilxj) = Fi(x:)
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Dependence & Predictability

» The independent state:
» Complete absence of probabilistic information about the
outcomes of each variable by the other
» Perfect unpredictability

» Complete dependence (Lancaster 1963):
PIXi=¢i(X)] =1, i#j

> ¢;(-), a measureable one-to-one function
» Perfect predictability (Kimeldorf & Sampson 1978)
» Scale of predictability

Perfect unpredictability | Perfect predictability |
0 100%
Independence Complete dependence
If and only if for all (xi, x;), For a one-to-one function ¢;(-)
F(x1,%2) = Fi(x1)F2(x2) PIXi = ¢i(X})] = 1,i #j

F(xilxj) = Fi(x:)
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Information Approach to Dependence

» The information notion of dependence compares F with the
independent model G = F1F»
» The strength of dependence is measured by a divergence
function between D(F : F1F,) >0
> the equality holds if and only if
f(x1,x2) = f(x1)fa(x2) for almost all (x1,x,) € R?
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Information Approach to Dependence

» The information notion of dependence compares F with the
independent model G = F1F»
» The strength of dependence is measured by a divergence
function between D(F : F1F,) >0
> the equality holds if and only if
f(x1,x2) = f(x1)fa(x2) for almost all (x1,x,) € R?
» Scale of D(F : F1Fp)

Perfect unpredictability | | Perfect predictability |
0 D(F : F1F,) 100%
Independence Complete dependence
If and only if for all (xi, x;), For a one-to-one function ¢;(-)
F(x1,x2) = F1(x1)F2(x2) P[Xi = ¢i(X)] = 1,i #

F(xilxj) = Fi(xi) (Lancaster 1963)

(Kimeldorf & Sampson 1978)
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Kullback-Leibler (KL) Information & Shannon Entropy

» The most well-known and widely-used divergence and
uncertainty functions

» The KL information divergence

K(F : G):/Sf(x)logg))gdx

provided that the integral is finite

» S is the support of F, provided that the integral is finite

» F must be absolutely continuous with respect to G,
denoted F < G

> It is also known as cross-entropy and relative entropy

» Shannon entropy (Shannon 1948)

H(X) = H(F) = — /S f(x) log f(x)dx

> Var(X) < co = H(X) < o0, converse does not hold
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The mutual information

» The mutual information of the bivariate distribution F:

M(F) = M(Xl,Xg)
K(F : F1F,)

- %{MEW”_HHMM&ﬂ}j¢i:L2
= EXJ{K[FI|J(XI|X/) : F;(X,-)]}’ _]75 i = 1’2’

provided that F <« F1 >
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The mutual information

» The mutual information of the bivariate distribution F:

M(F) = M(Xl,Xg)
K(F : F1F,)

- %{MEW”_HHMM&ﬂ}j¢i:L2
= EXJ{K[FI|J(XI|X/) : F;(X,-)]}’ J?é i = 1’2’

provided that F <« F1 >
» M(Xy1, X3) > 0, equality holds < X; and X, are independent.
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The mutual information

» The mutual information of the bivariate distribution F:

M(F) = M(Xl,Xg)
K(F : F1F,)

- EXJ{H[F"(X")]_H[Fflj(xi\xj)]}, j#i=1,2
= EXJ{K[FI|J(XI|X/) : F;(X,-)]}’ J?é i = 1’2’

provided that F <« F1 >

» M(Xy1, X3) > 0, equality holds < X; and X, are independent.
» The absolute continuity requires P[X; = ¢1(X2)] = 0 and
PlXo = ¢2(X1)] = 0

> Inapplicable to singular distributions
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The mutual information

» The mutual information of the bivariate distribution F:

M(F) = M(Xl,Xg)
K(F : F1F,)

- %{MEW”_HHMM&ﬂ}j¢i:L2
= EXJ{K[FI|J(XI|X/) : F;(X,-)]}’ _/7& i = 1’2’

provided that F <« F1 >

» M(Xy1, X3) > 0, equality holds < X; and X, are independent.
» The absolute continuity requires P[X; = ¢1(X2)] = 0 and
P[Xa = ¢2(X1)] =0
> Inapplicable to singular distributions

» Lindley's (1956) Bayesian measure of sample information
about a parameter M(X,O)

> The expected utility interpretation (Bernardo 1979)
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Utility of dependence

» The predictability of outcomes of X; without using
Xj,j # 1 =1,2, depends solely on the concentration of its
marginal distribution. H(X;) measures this uncertainty.
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Utility of dependence

» The predictability of outcomes of X; without using
Xj,j # 1 =1,2, depends solely on the concentration of its
marginal distribution. H(X;) measures this uncertainty.

> Given an outcome x; of Xj, the predictability of outcomes of
X; depends on, the concentration of the conditional
distribution of X; given X; = x;, measured by H(Fj;).
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Utility of dependence

» The predictability of outcomes of X; without using
Xj,j # 1 =1,2, depends solely on the concentration of its
marginal distribution. H(X;) measures this uncertainty.

> Given an outcome x; of Xj, the predictability of outcomes of
X; depends on, the concentration of the conditional
distribution of X; given X; = x;, measured by H(Fj;).

» The expected utility of X; for prediction of X; is given by the
representation

M(X1, X2) = EXJ'{H[FI(Xi)] - H[Fi\j(Xi|Xj)]}, j#i=1,2

» The bracketed quantity is known as the observed information
provided by x; for predicting Xi.

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee  Information Measure of Dependence: Some Virtues and a Ca



Utility of dependence

» The predictability of outcomes of X; without using
Xj,j # 1 =1,2, depends solely on the concentration of its
marginal distribution. H(X;) measures this uncertainty.

> Given an outcome x; of Xj, the predictability of outcomes of
X; depends on, the concentration of the conditional
distribution of X; given X; = x;, measured by H(Fj;).

» The expected utility of X; for prediction of X; is given by the
representation

M(X, %) = Ex{ HIFi(x)] = HIFiy(x| )]}, j #7=1,2
» The bracketed quantity is known as the observed information
provided by x; for predicting Xi.

» When two variables are dependent, one is useful for
predicting the other, irrespective of whether or not
being associated
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Other Divergence measures

» Among the known divergence measures and generalizations of

Shannon entropy, only the KL information admits the expected
utility representation

» The immediate generalizations are Rényi measures

1

K(F:6)= 1o |og/f’(x)[g(x)]1*'dx, r£1, r>0,

1

H(X) = 1 Iog/ Fr(x)dx, r#1, r>0

» Ki(F: G)=K(F:G),H(X)=H(X)
» Example: Bivariate normal distribution with correlation p:
1
Ey { HIF(0)] = HIFy(x1X)] | = M(X:, Xe) = = log(1 = )
. _ 1 (122
KiF  Fiy F2) = M0, o) + 50 s log (1 1-r)p )

Discrepancy with the independent normal is more (r > 1) or
less (r < 1) than the utility
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Fourth Representation

» The unique additive property of Shannon entropy also gives
the following representation

M(X1, X2) = H(X1) + H(X2) — H(X1, X2),

» Shared or redundant information

» The finiteness of the joint and marginal entropies are
necessary. However, this is not sufficient

» Particularly useful for calculating M by entropy expressions
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Copula information

» M(X1, X3) is invariant under 1-to-1 transformations of each X;
» Copula of F
» Let U; = Fi(X;), i=1,2. Then
C(ur, ) = F(Fy H(w), Fy Y (w2)), (w1, w2) € [0, 1]

(Sklar 1959)
» A widely used approach for modeling dependence
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Copula information

» M(X1, X3) is invariant under 1-to-1 transformations of each X;
» Copula of F
» Let U; = Fi(X;), i=1,2. Then

Clur, wp) = F(F (), Fy (1), (. w2) € [0,1F

(Sklar 1959)
» A widely used approach for modeling dependence

» Copula information
M(F)=M(C)=K(C: CG)=—-H(C)=1(C)>0
» (p denotes the product copula Co(us, tp) = uyus.

» [(C) is referred to as the information measure of the
distribution (Lindley 1956, Zellner 1971), here the copula.
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Dependence Information Index

’ Perfect unpredictability‘ ’ Perfect predictability‘
0 M(Xla X2) S
If and only if Whenever
X1, X, are independent P[Xi = ¢i(Xj)] =1
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Dependence Information Index

’ Perfect unpredictability‘ ’ Perfect predictability‘
0 M(Xla X2) S
C8(Xa, Xa) > @
If and only if Whenever
X1, X, are independent P[Xi = ¢i(Xj)] =1

» For the absolutely continuous distributions:
52(F) = 6%(X1, Xo) = 1 — e 2MX0%2)
» Entropy reduction
Cexp{Eg[HXi)Y . ep{H(X1, X))
exp{H(X;)}? exp{H(X1) + H(X2) 2
» Copula representation
§(F)=06*(C)=1-e2)

82X, X)) =1
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Moment-based Indices

» Two popular indices

» Pearson correlation coefficient p,:
> Subscript is for distinction between the correlation coefficient

and a model parameter p

> E(XiXj) < oo, i,j=1,2

> Invariant under linear transformations (up to the sign)
» The fraction of expected variance reduction due to regression,
also known as the correlation fraction:

, o EgVar(Xlx)]

L 4 " >0, j#£i=12
7),\1 Var(X,-) = Y J;él ) &y

> Var(X;), Var(Xj|xj) < oo, i,j=1,2
» Invariant under linear transformations
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Information Approach: Ways beyond the bivariate normal

» For the bivariate normal distribution
§2(F) =n*(F) = p3(F) = p°
» Information approach

» Linear relationship generalizes to any functional
relationship.
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Information Approach: Ways beyond the bivariate normal

» For the bivariate normal distribution
§2(F) =n*(F) = p3(F) = p°
» Information approach

» Linear relationship generalizes to any functional
relationship.
» Variance generalizes to an uncertainty function
(a) Concave function of f that measures the concentration,
H(F) < H(uniform)
(b) The variance does not always satisfy this condition
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Information Approach: Ways beyond the bivariate normal

» For the bivariate normal distribution

83 (F) = 1*(F) = pp(F) = p*
» Information approach

» Linear relationship generalizes to any functional
relationship.

» Variance generalizes to an uncertainty function
(a) Concave function of f that measures the concentration,

H(F) < H(uniform)

(b) The variance does not always satisfy this condition

» The departure from independence is measured formally by
a divergence function between two probability distributions
D(P: Q) >0, where D = 0 if and only if the distributions are
identical dP(x) = dQ(x)
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Information Approach: Ways beyond the bivariate normal

» For the bivariate normal distribution

83 (F) = 1*(F) = pp(F) = p*
» Information approach

» Linear relationship generalizes to any functional
relationship.

» Variance generalizes to an uncertainty function
(a) Concave function of f that measures the concentration,

H(F) < H(uniform)

(b) The variance does not always satisfy this condition

» The departure from independence is measured formally by
a divergence function between two probability distributions
D(P: Q) >0, where D = 0 if and only if the distributions are
identical dP(x) = dQ(x)

» Invariance under linear transformations generalizes to the
invariance under all one-to-one transformations
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Compare predictability of distributions

m Which of the two distributions in each panel have outcomes that can be
predicted with a high probability?
= \Write your answer for each case as: “solid” or “dashed”

= With which distribution in each panel is more difficult to predict outcomes?
a) b)
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Compare predictability of distributions

Normal

Bothnormal . Cauchy (variance not defined)

Both Beta

Larger
variance
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Association Indices

» Two popular indices
» Spearman’s rank correlation

pS(F) = 12// Fl(Xl)F2(X2)f(X1,X2)dX1dX2 -3
§R2
Kendall's tau

7(F) = 4//%2 F(x1,%0)f(x1,x0)dxydxp — 1

v

v

Sign indicates the direction of association
Invariant under monotone transformations
Copula representations

ps(F) = ps(C)v T(F) = T(C)

Two variables are unassociated if and only if ps =7=10
Unassociated dependent p; = 7 =0, 4> >0
> One variable is useful for predicting the other

v

v

vy

> pp=n>=ps=7=0 % X; and Xz are independent

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee = Information Measure of Dependence: Some Virtues and a Ca



Example 1. Examples of Bivariate Distribution

Independent models

Dependent models

a) Independent N

b) Bivariate N

f) Bivariate LN

Associated models

c) Unimodal N d) Multimodal N

g) F-G-M LN

Normal

Log-normal
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Figure 2. Examples

of Bivariate Distributions

a) Cauchy
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c) Pareto

Figure 2. Examples of Bivariate Distributions

b) t3

a) Cauchy
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Elliptical & Pareto families

» Elliptical pdf

1 2 2 2
folx1, %) = <x1 PX1X2 + X5

2 2
27(1 — p?)1/2 Ty > s (x1,x2) € RE, p” < 1,

h(+) is a real function

v

Gaussian (Figure 1b) h(z) = e~%/2

z\ —v/2-1
Student-t (Figure 2a, v = 3) h(z) = (1 + f)

14

Cauchy (Figure 2b) h(z) = (1 4 z)~3/?
Log-normal (Figure 1f) is monotone transformation of normal

v

v

v
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Elliptical & Pareto families

» Elliptical pdf

1 <x12 —2px1%0 + X3

fh(X15X2) = 27T(1 — p2)1/2 1_ p2 > 7(X17X2) € %27 p2 < 17

h(+) is a real function
Gaussian (Figure 1b) h(z) = e~%/2
z\ —v/2-1
Student-t (Figure 2a, v = 3) h(z) = (1 + f)
14

Cauchy (Figure 2b) h(z) = (1 4 z)~3/?
Log-normal (Figure 1f) is monotone transformation of normal

v

v

v

v

» Pareto Type Il (Figure 2c)
fxi,x)=ala+ D)1 +x+x)" 2 x>0, a>0

Numerous other distributions are related to this model by monotone
transformations, including Pareto Types I, Ill & 1V, exponential,
Weibull, logistic, Burr, and Calyton copula, among others
(Darbellay & Vajda 2000, Asadi et al. 2006, Balakrishnan & Lai 2009)
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Generalized Sarmanov families

» Families with bivariate pdf’s
fo(x1,2) = A(x1) ()1 + Bq(x1, )], (4, x) € K%, B< B

> fi(x;),i = 1,2 are the marginal pdf's
» g(x1, x2) is a measurable bounded function |g(x1,x)| < B

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee = Information Measure of Dependence: Some Virtues and a Ca



Generalized Sarmanov families

» Families with bivariate pdf’s

fo(x1,2) = A(x1) ()1 + Bq(x1, )], (4, x) € K%, B< B
> fi(x;),i = 1,2 are the marginal pdf's
» g(x1, x2) is a measurable bounded function |g(x1,x)| < B

» Sarmanov families: q(x1,x2) = q1(x1)g2(x2)

» F-G-M Copula (Figure 2d, 8 = 1)
fi(Xi):la OSXI'S]W |/6| Sl, qi(Xi):(1_2Xi)
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Generalized Sarmanov families

» Families with bivariate pdf’s
fo(x1,2) = A(x1) ()1 + Bq(x1, )], (4, x) € K%, B< B

> fi(x;),i = 1,2 are the marginal pdf's
» g(x1, x2) is a measurable bounded function |g(x1,x)| < B

» Sarmanov families: q(x1,x2) = q1(x1)g2(x2)

» F-G-M Copula (Figure 2d, 8 = 1)
fi(Xi):la OSXI'S]W |/6| Sl, qi(Xi):(1_2Xi)

» Unassociated log-normal (Figure 1h, 3 =1)
fi(x;) = LN(0,1), x; >0, |B] <1, gi(x;) =sin(27 log x;)
> E(X"X;) = E(X"),i#j, m=1,2,--- (De Paula 2008)
> All polynomial functions of X; and X are uncorrelated
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Generalized Sarmanov families

» A class of models for uncorrelated random variable
X+ Xo Z XS+ X2, FO(x1,%) = Fi(x1)Fa(x)

Referred as the Summable Uncorrelated Marginals (SUM),
(Hamedani & Tata 1975, Ebrahimi et al. 2010)
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Generalized Sarmanov families

» A class of models for uncorrelated random variable
X+ Xo Z XS+ X2, FO(x1,%) = Fi(x1)Fa(x)

Referred as the Summable Uncorrelated Marginals (SUM),
(Hamedani & Tata 1975, Ebrahimi et al. 2010)

» Unassociated normal unimodal (Figure 1c, 8 = .25¢?)
fi(x;) = N(0,1), (x1,x2) € R2, |B| < .25¢€2,
q(x1, %) = xyx(x2 — x2)e2(4+%)

» Unassociated normal multimodal (Figure 1d, 3 = 4)
f;'(XI') = N(07 1)7 (X17X2) S %27 ‘/6| S 47
q(x1, %) = x1x(x2 — x%)e_%(xf"')‘%)
» Uncorrelated dependent (Figure 2e, 3 = .5)
A(a) =5+x, Hhle)=1, 0<x<1,
1Bl <1, qlxi,x) = sin2m(x — x1)]

» Uncorrelated Copula (Figure 2f, 3 = .6)
filxi) =1,0<x <1, [B] <1, q(x1,x) = sin[2m(x2 — x1)]
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Common metric?

Example pdf

Family Pp Ps T n? 8%  Figure, 6% (Rank*)
Elliptical

Gaussian @ @ ® @ © 1b, .160 (7)

Student-t © © © @ @ 2a, .081 (10)

Cauchy O @ @ O @ 2b, 361 (2)
Pareto and related families

Pareto e @ @ ¢ © 2c, .836 (1)
Generalized Sarmanov

F-G-M copula @ @ @ @ @ 2d, 113 (9)

Uncorrelated dependent © @ @ @ © 2e, 136 (8)

Uncorrelated copula © © @ @ © 2f, .172  (5)

Unassociated normal unimodal © © © @ @ lc, .173 (4)

Unassociated normal multimodal © © © @ @ 1d, .168 (6)

Unassociated log-normal © © © © @ 1h, .249 (3)

Notes:
@ suitable within the family; O undefined; © unsuitable, dependence varies within the family, index does not;
Yy P Y;
© unsuitable, dependence varies, index identically zero; O Partially suitable, undefined for some parameter values;
P! Yy Y P:

@ undefined for some parameter values, dependence varies within the family, index does not;
* ranks are among ten dependent pdf’s in Figures 2 and 3.
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Multivariate Information

» G in K(F : G) is a model for independence between two or
more subvectors of a d-dimensional random vector X
» The independent model G = F;--- Fy4
» Independence of two disjoint subvectors,
G(x) = Fj(xj)Fn(xpn), j+h=d.
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Multivariate Information

» G in K(F : G) is a model for independence between two or
more subvectors of a d-dimensional random vector X
» The independent model G = F;--- Fy4
» Independence of two disjoint subvectors,
G(x) = Fj(xj)Fn(xn), j+h=d.
» Three properties of multivariate M's:
M(Xq,---, Xq) increasing in d
d
M(Xy, (X2, -+, Xa)) = > M(X1, Xi| Xz, - - Xi_1) increasing in d
i=2
M(X) = M(X;) + M(Xy) + M(X;, Xp) = M(X;) + M(Xy), j+h=d

> M(Xl, X,'|X2, s X,'_]_) = EX27...XI.71 [M(Xl, X,'|X2, s X,'_1)],
partial mutual information

» The first two formalize the intuition that dependence increases
with the dimension

» The inequality formalizes the intuition that aggregation of
lower dependence underestimates the overall dependence

Information Measure of Dependence: Some Virtues and a Ca
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Location-Scale (L-S) Family

> A pdf f(x|0, i, X) with location vector p and scale matrix X

X 2+ [X]2Xe,
» 6, model parameters other than g and
» X, in the same family with 4 = 0 and ¥ = /,, identity matrix.
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Location-Scale (L-S) Family

> A pdf f(x|0, i, X) with location vector p and scale matrix X

X2 p+[X]2X,
» 6, model parameters other than g and
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Location-Scale (L-S) Family

> A pdf f(x|0, i, X) with location vector p and scale matrix X

X2 p+[X]2X,
» 6, model parameters other than g and
» X°, in the same family with . = 0 and ¥ = I, identity matrix.

Location-scale

Minimum dependence family
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Location-Scale Family

» The entropy of L-S family
1
H(X|0,X) = H(X°|0) + 7 log x| < Hg(X)
» H(X°|0) is free from p and X

» Hg(X), the entropy of Gaussian distribution (The maximum
entropy model)
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Location-Scale Family

» The entropy of L-S family

1
H(X|, ) = H(X°|6) + - log|¥| < Hg(F)

» H(X°|0) is free from p and X
» Hg(X), the entropy of Gaussian distribution (The maximum
entropy model)

» The mutual information measures
M(X|6,%) = M(Q) + M(X°|8) > M(Q)

Q= D-Y?2¥ D=2 D = Diaglo11,--- ,04d]

M(R), the portion of dependence induced by the rotation
M(Q2) = Mg(2), for the Gaussian model with correlation Q
M(X°|0), the intrinsic dependence of the unrotated vector X°

vV vy VvYy
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Location-Scale Family

» The entropy of L-S family

1
H(X|, ) = H(X°|6) + - log|¥| < Hg(F)

» H(X°|0) is free from p and X
» Hg(X), the entropy of Gaussian distribution (The maximum
entropy model)

» The mutual information measures
M(X|6,%) = M(Q) + M(X°|8) > M(Q)
Q= D-Y?2¥ D=2 D = Diaglo11,--- ,04d]
M(R), the portion of dependence induced by the rotation
M(Q2) = Mg(2), for the Gaussian model with correlation Q
M(X°|0), the intrinsic dependence of the unrotated vector X°
» Among all distributions in the multivariate L-S family having
the same scale matrix X, the Gaussian model (copula) has the
minimum dependence model

vV vy VvYy
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Multivariate Normal (Gaussian) Information Measures

Mutual Information  Mg(Q) Index (83)
M) —5log [ -0
min{dx} min{dx}

M(X1,X5) -5 3 log(1-x) 1- J[ a-x)
Jj=1 j=1

M[Y7 (le"' 7Xd)] _~5|Og (1 _p}2/|><1,~~~,xd) p}2/|x1,~~,xd

» Row 1. measures for shared information between all components.
» Row 2. measures for two disjoint subvectors
» )\, j=1,--- ,min{di} are the nonzero eigenvalues of
Q1 1/29129221 2912911 [Qj partitions of Q for (X1, X2)]
> The canonical correlations of the two subvectors (X1, X3)
» Row 3. regression information measures

2 . . .
> Pyixg xa? the normal regression fit index

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee  Information Measure of Dependence: Some Virtues and a Ca



Elliptical families

» The pdf is in the form of

(XIZ, 1) = KIZ| 2 ((x = ) =71 (x — 1))

» h(-) is referred to as the scale or generator function which may
include a vector of parameters 0 in addition to (u,X)

» The marginal distributions are also elliptical with L-S
parameters (u;, o), but the generator of the marginals h;(-)
may be different than h(+).
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Elliptical families

» The pdf is in the form of

(XIZ, 1) = KIZ| 2 ((x = ) =71 (x — 1))

» h(-) is referred to as the scale or generator function which may
include a vector of parameters 0 in addition to (u,X)

» The marginal distributions are also elliptical with L-S
parameters (u;, o), but the generator of the marginals h;(-)
may be different than h(+).

» The Gaussian family N(p, X): h(z) = e=/2
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Elliptical families

» The pdf is in the form of

(XIZ, 1) = KIZ| 2 ((x = ) =71 (x — 1))

» h(-) is referred to as the scale or generator function which may
include a vector of parameters 0 in addition to (u,X)

» The marginal distributions are also elliptical with L-S
parameters (u;, o), but the generator of the marginals h;(-)
may be different than h(+).

> The Gaussian family N(u, X): h(z) = e=’/2

» Student-t family t(v, u, X), v, degrees of freedom:

L2 ~(d+v)/2
h(z) = (1 + >
v
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Elliptical families

» The pdf is in the form of

(XIZ, 1) = KIZ| 2 ((x = ) =71 (x — 1))

» h(-) is referred to as the scale or generator function which may
include a vector of parameters 0 in addition to (u,X)

» The marginal distributions are also elliptical with L-S
parameters (u;, o), but the generator of the marginals h;(-)
may be different than h(+).

» The Gaussian family N(p, X): h(z) = e=/2
» Student-t family t(v, u, X), v, degrees of freedom:

L2 ~(d+v)/2
h(z) = (1 + >
v

2
» For all elliptical families: 7 = = sin~1(p); (Fang et al. 2002)
s
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Multivariate Student-t

» Relationships with multivariate normal
» Limiting distribution: t(v, p,Y) — N(u,X) as v — oo
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Multivariate Student-t

» Relationships with multivariate normal
» Limiting distribution: t(v, p,Y) — N(u,X) as v — oo
» Normal mixture:
f(x|¢) = N(p, ¢X), ¢ ~ Gamma(v/2,v/2), v=1,2---
— F(x) =t 1)
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Multivariate Student-t

» Relationships with multivariate normal
» Limiting distribution: t(v, p,Y) — N(u,X) as v — oo
» Normal mixture:
f(x|¢) = N(p, 0X), ¢~ Gamma(v/2,v/2), v=1,2---
— F(x) =t 1)
» The information index:
5T(V,Z) :§g+(175g)5(1/), Tog, v

> Jg the index for Gaussian (normal)
> For the bivariate case:

62(v, ) = sin’ (%) + cos’ (%) 82 (v),
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Multivariate Student-t

» Relationships with multivariate normal
» Limiting distribution: t(v, p,Y) — N(u,X) as v — oo
» Normal mixture:
f(x|¢) = N(p, ¢X), ¢ ~ Gamma(v/2,v/2), v=1,2---
— F(x) =t 1)

» The information index:

d0r(v,L) =0dg + (1 —dg)o(v), Tdg, lv

> Jg the index for Gaussian (normal)
> For the bivariate case:

62(v, ) = sin’ (%) + cos’ (%) 82 (v),

» Many applications
> Regression model with multivariate t errors (Zellner 1976)
» Dynamic stochastic general equilibrium model with Student-t errors
(Chib & Ramamurthy 2012)
> Copulas (Demarta & McNeil 2005), model for financial variables, ...
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Student’s t

(Cauchy) .-~

 sed™

(Gaussian)
T T
0.0 0.5 1.0

o ®

Il

» Student-t when 7 (p) and the degrees of freedom v are low
> Substantial gaps between the level of dependence
> The spectrum of dependence is narrow

Information Measure of Dependence:

Some Virtues and a Ca
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Student’'s t & Pearson

Student'’s t Pearson VIl

(Cauchy)

(Gaussian) o (Gaussian)
T T T T T T

0.0 05 1.0 0.0 05 1.0

1l Id

» Student-t when 7 (p) and the degrees of freedom v are low

> Substantial gaps between the level of dependence
» The spectrum of dependence is narrow

» The spectrum of dependence of the t family is substantially widen and
refined by replacing v/2 with a parameter o > 0.
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Convolution Models

» Noisy relationship between Y and X' = (X1, , Xp):
Y =¢(X,8)+e

&(-,-), a scalar function, need not be linear

B= (B, Bp),
X, 3, or both can be stochastic
€, random noise, may not be independent of the signal ¢(X;, 3)

vV vy vVvYyYy
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Convolution Models

» Noisy relationship between Y and X' = (X1, , Xp):
Y =¢(X,8)+e

&(-,-), a scalar function, need not be linear
B= (B, Bp),
X, 3, or both can be stochastic
€, random noise, may not be independent of the signal ¢(X;, 3)
» Two known results for the sum of independent variables

» The sum has a larger entropy than each variable alone

» The amount of increase in the entropy is the M between the
sum and the summands (Blahut 1987)

vV vy

v
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Convolution Models

» Noisy relationship between Y and X' = (X1, , Xp):
Y =¢(X,8)+e

&(-,-), a scalar function, need not be linear
B= (B, Bp),
X, 3, or both can be stochastic
€, random noise, may not be independent of the signal ¢(X;, 3)
» Two known results for the sum of independent variables

» The sum has a larger entropy than each variable alone

» The amount of increase in the entropy is the M between the
sum and the summands (Blahut 1987)

» An enhanced version of Blahut's result gives:
MY, (X, B)) = [H(Y) — H(e)] + M(e, 6(X, B))
» Blahut's theorem is for M(e, ¢(X, 3)) = 0:
M(Y, ¢(X,B)) = H(Y) — H(e)

vV vy vVvYyYy
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Normal Linear Regression

> ¢(X,B8) =X'B, YIX,B8,0% ~ N(X'B,0?), M(c,5(X, 3)) = 0

» Two information measures are well-known
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Normal Linear Regression

> ¢(X,8) =X'B, Y|X, 8,02 ~ N(X'B,5%), M(e,p(X,3)) =0
» Two information measures are well-known
» (3 non-stochastic:

MY, 8) = M(Y.X) = — log(L— 4}, )

1S )
= _§Z|Og(l _pxj-|x1,~~-xj_1)7

> pij‘muxjil is the squared partial corlJeT%tion coefficient

> Theil and Chung (1988) proposed the above decomposition of
the sample version 2M (Y, X) = — log(1 — R?) as
transformation of the regression index R? for assessing the
relative importance of the predictors.
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Normal Linear Regression

> ¢(X,8) =X'B, Y|X, 8,02 ~ N(X'B,5%), M(e,p(X,3)) =0
» Two information measures are well-known
» (3 non-stochastic:

MY, 8) = M(Y.X) = — log(L— 4}, )

18
= _5 Z Iog(l - p)2<j|x1,~~-xj_1)7
> pij‘muxjil is the squared partial corlJeT%tion coefficient
> Theil and Chung (1988) proposed the above decomposition of
the sample version 2M (Y, X) = — log(1 — R?) as
transformation of the regression index R? for assessing the
relative importance of the predictors.
» X a design matrix (non-stochastic) and B|o? ~ N(pg, 03A0):

1 o2
MY Bln, Ao) = 5 log |l + gngx’x‘ .

The Bayesian sample information about regression parameter
(Lindley's information)
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Bayesian Linear Regression Beyond Normal

> e~ F(0,0?)
» (;,j=1,---,p are independent and have g-priors
B~ F(0,0°x70), j=1,---.p
> Y; is convolution of p + 1 iid variables Z; = §;x; and ¢
» If F is closed under convolution, Y;|o2 ~ F(0, (p + 1)o?)
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Bayesian Linear Regression Beyond Normal

> e~ F(0,0?)
» (;,j=1,---,p are independent and have g-priors
B~ F(0,0°x70), j=1,---.p
> Y; is convolution of p + 1 iid variables Z; = §;x; and ¢
» If F is closed under convolution, Y;|o2 ~ F(0, (p + 1)o?)
» Information quantities when F are normal and Cauchy

» Regression with t error has been proposed for capturing
outliers (Zellner 1976, Lang et al. 1989)

F H(Y) H(e) M(Y, B) (Y, B)

p

Normal .5log(2(p + 1)mec®) .5log(2reo?) .5log(p+1) Py}

p p

Cauchy log(4(p + 1)mo?) log(475?) log(p+ 1) P + g
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Stochastic Process

» T1, To,--- inter-arrival times of failures of a repairable system
» Time to the nth failure, Y, =7, T;

» Distribution of the ith failure time is gamma, Ga(a;, A)
» Failures are independent
» Distribution of Y, is Ga(3n, \), Bn =Y 1

J
» The entropy of Ga(f, 1)
He(Yi) = log T'(Bk) — (Bk — 1)¥(Bk) + Br
» The convolution result for the independent case is applicable

M(Yna Yn+k) - HG(ﬂn—&—k) - HG(Bk)y

» M(Y,, Yoik) is the mutual information of the McKay's
bivariate gamma distribution with parameters (8k, Bn—k, A)
» For the important case of Poisson process, G = k.
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Convolution Models: Dependent Components

» Applications include:
» Endogenous regression
» Measurement error models

Y=X+e¢ X~ N(uo®), e~ NO,6%)
» E(Xe) =0 (X and € uncorrelated)
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Convolution Models: Dependent Components

» Applications include:
» Endogenous regression
» Measurement error models

Y=X+e¢ X~ N(uo®), e~ NO,6%)
» E(Xe) =0 (X and € uncorrelated)

F(x, €) Independent normal F(x, €) multimodal normal
(unassociated dependent)

o
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Convolution Models: Dependent Components

» Applications include:
» Endogenous regression
» Measurement error models

Y=X+e¢ X~ N(uo®), e~ NO,6%)
» E(Xe) =0 (X and € uncorrelated)

F(x, €) Independent normal F(x, €) multimodal normal
(unassociated dependent)
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Convolution Models: Dependent Components

» The easy case: F(x,€) bivariate normal with correlation p

» The joint distribution of (Y, X) is also bivariate normal with
correlation /.5(1 + p)

M(Y,X)= .5log2— 5log(l —p)

» More (less) than the independent case when p > 0 (p < 0)
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Convolution Models: Dependent Components

» The easy case: F(x,€) bivariate normal with correlation p

» The joint distribution of (Y, X) is also bivariate normal with
correlation /.5(1 + p)

M(Y,X)= .5log2— 5log(l —p)

» More (less) than the independent case when p > 0 (p < 0)

» It is also easy to calculate H(Y') and H(e) when F(x,¢€) is
Cauchy or F-G-M copula

» In general, direct computation is tedious
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A Class of Models for Uncorrelated Variables

» Summable Uncorrelated Marginals (Ebrahimi et al. 2010c)
» Defined by the stochastic equality Z; + Z, = Z; + Z;

F(z1,22) = Fi(z1)Fa(z) = H(Z + 2b) = H(Z] + Z7)
» ANOVA type decomposition of dependence
M(Y, Z;) = M(Y, Z") + M(Zy, 22)
> Y=4L+2

(the independent case)
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Examples

82(Y, X) = .700 52(Y, X) = .588

(@)p= 4. (4,.262,.385, .16, .16)

(b) p=.25¢% (0, 0,0,.130, .173)

=)
L%

Al
=)

(9) B =1,(333,.333, 222, 111, .113) (h)B =5, (0,.076, 029, 041, .136)

RN

s~
NS 7
== 2 NS
S0 N\
S OSSSSSSSSIRSSIELRL ALY 774
g 7
S ORSRSRIR AL ATAL 77
ERLLRL /1 i
‘.:.:‘:‘0‘0~W i
0% X

52(Y, X) = .591

(c)B=4.(0,0,0,.022,.168)

(iyp=6,(0,0,.018, .054, .172)

7
)
i
N
XN/
\ B
NS
N\
5o/
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Absence & Presence of a Probable Cause

» “Cause of dependence”, a functional relationship enabling the
perfect predictability
» " Probable cause”, a legal terminology for a condition that calls for
prudence
> Absence of a probable cause P[X; = ¢i(X;)] =0,
(absolutely continuous distributions)
> Presence of a probable cause P[X; = ¢;(X;)] > 0,
(singular distributions)
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Absence & Presence of a Probable Cause

» “Cause of dependence”, a functional relationship enabling the

perfect predictability
» " Probable cause”, a legal terminology for a condition that calls for

prudence
> Absence of a probable cause P[X; = ¢;i(X;)] =0,
(absolutely continuous distributions)
> Presence of a probable cause P[X; = ¢;(X;)] > 0,

(singular distributions)

Presence of

Functional relationship Absence of
probable cause probable cause

Cause of dependence
P(Xy = X2) = 1 PIX; = ¢i(X})] = 0 P(Xa =X}) = 3
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Scatter Plots of Data from a Financial Institution
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Scatter Plots of Data from a Financial Institution

Log-transformed data
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Singular distributions: Probable cause of dependence

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee

» One variable is not completely dependent on the other

» A functional dependence is probable,
0< P[X,' = gb,()(_,)] =r<1
» Probable cause of dependence

» The joint distribution F(x1, x2) is singular.

» The survival function has the following representation:

I_:(Xl,Xz) = (1 — W)I_:a(Xl,X2) + 7TI_:5(X1,X2),

» F,(x1,x2) is the survival function with an absolutely
continuous bivariate pdf fa(x1, x2),
» Fy(x1,x2) is the survival for a singular part with a univariate

pdf f5(x), xi = ¢i(x))
W—/f
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Singular distributions: Some Applications

» Shock models (Marshall & Olkin, 1967)
> A system with two components C;
> Three types of shocks S;,1 =1,2,3
» S; kills G, j = 1,2 and shock Sz kills both components
» Marshall-Olkin Bivariate Exponential (MOBE) distribution
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Singular distributions: Some Applications

» Shock models (Marshall & Olkin, 1967)
> A system with two components C;
> Three types of shocks S;,1 =1,2,3
» S; kills G, j = 1,2 and shock Sz kills both components
» Marshall-Olkin Bivariate Exponential (MOBE) distribution

» Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)
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Singular distributions: Some Applications

» Shock models (Marshall & Olkin, 1967)
> A system with two components C;
> Three types of shocks S;,1 =1,2,3
» S; kills G, j = 1,2 and shock Sz kills both components

» Marshall-Olkin Bivariate Exponential (MOBE) distribution
» Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)
» The first order exponential autoregressive (Gaver & Lewis, 1980)

Xnt1 = pXn + €nt1,

v

{Xn} is a sequence of identically distributed exponential
random variables P(X, > x) = F(x) = e™

{€n} is an iid sequence, €,+1 and X, are independent
F(Xn, Xn+1) is singular T = p

Pareto process (Yeh, et al. 1988), transformation of X,

v

v

v
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Singular distributions: Some Applications

» Shock models (Marshall & Olkin, 1967)
> A system with two components C;
> Three types of shocks S;,1 =1,2,3
» S; kills G, j = 1,2 and shock Sz kills both components

» Marshall-Olkin Bivariate Exponential (MOBE) distribution
» Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)
» The first order exponential autoregressive (Gaver & Lewis, 1980)

Xnt1 = pXn + €nt1,

v

{Xn} is a sequence of identically distributed exponential
random variables P(X, > x) = F(x) = e™

» {e,} is an iid sequence, €,41 and X, are independent

> F(xp, Xpt1) is singular m = p

» Pareto process (Yeh, et al. 1988), transformation of X,

» Importance of s component for a system: Bivariate distribution of a
component’s lifetime X;, i = 1,--- ,n and system’s lifetime given
by any one of the order statistics Y1 < ---, <Y,

(Ebrahimi, Jalali, Soofi, & Soyer, forthcoming)
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Information Index for Singular distributions

» M is not defined since F &« F1F>
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Information Index for Singular distributions

» M is not defined since F &« F1F>
» Generalized information index
57|-(X1,X2) =7+ (1 — 7T)53(X1,X2)

> 0,(X1, X2) is the dependence information index for the
absolutely continuous distribution F,
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Information Index for Singular distributions

» M is not defined since F &« F1F>
» Generalized information index

57|-(X1,X2) =7+ (1 — 7T)53(X1,X2)

d2(X1, X2) is the dependence information index for the
absolutely continuous distribution F,

da(X1, X2) = 0 if and only if the variables are independent
(Sﬂ(Xl,Xg) =1lifr=1

57‘—(X1,X2) = 53(X1,X2) if T =0, the case when F < F1F,

v

v

\4

v
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Information Index for Singular distributions

» M is not defined since F &« F1F>
» Generalized information index

57|-(X1,X2) =7+ (1 — 7T)53(X1,X2)

d2(X1, X2) is the dependence information index for the
absolutely continuous distribution F,

da(X1, X2) = 0 if and only if the variables are independent
(Sﬂ(Xl,Xg) =1lifr=1

57‘—(X1,X2) = 53(X1,X2) if T =0, the case when F < F1F,

» Invariant under one-to-one transformations of each variable

v

v

\4

v
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Information Index for Singular distributions

M is not defined since F « F1F;
Generalized information index

57|-(X1,X2) =7+ (1 — W)(Sa(Xl,Xz)

> 5,(X1, X2) is the dependence information index for the
absolutely continuous distribution F,
» 5,(X1, X2) = 0 if and only if the variables are independent
> (Sﬂ(Xl,Xg) =lifr=1
> 57‘—(X1,X2) = 53(X1,X2) if T =0, the case when F < F1F,
Invariant under one-to-one transformations of each variable
Based on:
> the partition property of information
» applying the probabilistic argument of Marshall and Olkin
(1967) to dependence between X; and X,

P[Xi = ¢i(Xj)] =7 >0
PIXi # ¢i(X))] =1 -7 >0

vy

vy
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Examples

» Independent exponential with a singular part included (7 = p = 7)
» The Marshall-Olkin Bivariate Exponential (7 = p = 1)
» The exponential autoregressive (7 = p = 7)
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Bayesian Test of Sharp Hypothesis

» Two parameters (0,60,) € S, a continuous region in R2
> Test Hy :0; =ab;, j#i=1,2against Hy : 0; #ab;, j #i=1,2.
» The plausibility of H; is described by prior probability P(H;) = .
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Bayesian Test of Sharp Hypothesis

Two parameters (61,6,) € S, a continuous region in )2
Test Hy : 0; =ab}, j #i=1,2 against H; : 0; #ab;, j#i=1,2.
The plausibility of H; is described by prior probability P(H;) = .

The joint prior distribution P(6y,60,), (61,602) € S has a singular
part with a univariate pdf ps(6;) for 8; = af; and an absolutely
continuous part with a bivariate pdf p,(0y,62), (61,602) € S.

vvyVvVvyy
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Bayesian Test of Sharp Hypothesis

Two parameters (61,6,) € S, a continuous region in )2
Test Hy : 0; =ab}, j #i=1,2 against H; : 0; #ab;, j#i=1,2.
The plausibility of H; is described by prior probability P(H;) = .

The joint prior distribution P(6y,60,), (61,602) € S has a singular
part with a univariate pdf ps(6;) for 8; = af; and an absolutely
continuous part with a bivariate pdf p,(0y,62), (61,602) € S.

vvyVvVvyy

v

The posterior distribution P(61,6,|D) is also singular
» The updated probability of the singularity is given by

™

7= P(HLID) =

By1, the Bayes factor
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Example: Test equality of two normal means

> f(x[01, 02, 9Q2) = N((91,92)7¢Q>
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 75 0>
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Example: Test equality of two normal means

> f(x[01, 02, 9Q2) = N((91,92)7¢Q>
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 75 0>

» Normal-gamma prior under H,

P61, 02|¢, H) = N((ml, ms), thQ)
P(¢) = Ga(v/2,v/2)
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Example: Test equality of two normal means

> f(x[01,02, Q) = N((91,92)7¢Q>
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 75 0>
» Normal-gamma prior under H,
P(0y,0]6, Hy) = N((ml, ms), thQ)
P(¢) = Ga(v/2,v/2)

P(61, 6|¢) P(61,02)
Absolutely continuous part  Bivariate normal(p)  Bivariate t(p, v)
65(61762) p2 53(”7 p)
52(O1,02) T+ (1= 1)’ 7+ (1= 1), )
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Example: Test equality of two normal means

> f(x[01,02, Q) = N((91,92)7¢Q>
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 75 0>
» Normal-gamma prior under H,
P(0y,0]6, Hy) = N((ml, ms), thQ)
P(¢) = Ga(v/2,v/2)

P(61, 6|¢) P(61,02)
Absolutely continuous part  Bivariate normal(p)  Bivariate t(p, v)
55(©1,02) r? 53 (v, p)
52(O1,02) T+ (1= 1)’ 7+ (1= 1), )
> Notes:
53w, p) = p* + (1 = p*)6*(v,0)

§2(01,02) > 62(01,02]¢) > 7
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Example: Test equality of two normal means

> f(x[01,02, Q) = N((91,92)7¢Q>
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 75 0>
» Normal-gamma prior under H,
P(0y,0]6, Hy) = N((ml, ms), thQ)
P(¢) = Ga(v/2,v/2)

P(61, 6|¢) P(61,02)
Absolutely continuous part  Bivariate normal(p)  Bivariate t(p, v)
55(©1,02) r? 53 (v, p)
52(O1,02) T+ (1= 1)’ 7+ (1= 1), )
> Notes:
53w, p) = p* + (1 = p*)6*(v,0)

§2(01,02) > 62(01,02]¢) > 7

» Prior P(0|H:) = £:(0)

» Posterior dependence, replace m with 7*
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Example: Test equality of two exponential parameters

> f(x;l0;) = 0%, j=1,2
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 7é 0>
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Example: Test equality of two exponential parameters

> f(x;l0;) = 0%, j=1,2
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 7é 0>
» Independent exponential prior under H, (Christensen et al. 2010)

P(61,0:|Hy) = e 0102 0i|H>,i =,1,2, independent

> In this case,
> 5?(@1, 62) =0
» Dependence index 62(©1,0,) =7
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Example: Test equality of two exponential parameters

> f(x;l0;) = 0%, j=1,2
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 7& 0>
» Independent exponential prior under H, (Christensen et al. 2010)

P(61,0:|Hy) = e 0102 0i|H>,i =,1,2, independent

> In this case,

> 53(@1,@2) =0

» Dependence index 62(©1,0,) =7
» Posterior dependence

> Two samples: x; = (X1, , Xjn;), J = 1,2

> Prior P(6|H;) = e~ °

» Bayes factor

mIm!(Sy + Sy + 1) LI
Bxn = n!(.lsl jr(l)t'l‘*'l(zSg n i)nz+1’ S = ’Z;in, Jj=12

> 5727*(61,@2|X1,X2) =7*
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Example: Test equality of two exponential parameters

> f(x;l0;) = 0%, j=1,2
» Hi: 01 =0, =0 with P(Hl) =, against H, : 01 7& 0>
» Independent exponential prior under H, (Christensen et al. 2010)

P(61,0:|Hy) = e 0102 0i|H>,i =,1,2, independent

> In this case,
> 53(@1, 62) =0
» Dependence index 62(©1,0,) =7
» Posterior dependence
> Two samples: x; = (X1, , Xjn;), J = 1,2
> Prior P(6|H;) = e~ °
» Bayes factor
miml(Si+ S, + 1) R
Bxn = n!(.151 jr(l)t'l‘*'l(zSg n i)nz+1’ S = ’Z;in, Jj=12
> 5721.* (61, @2|X1,X2) =7*
» Other singular bivariate exponential priors: Marshall-Olkin, bivariate
autoregressive exponential, Gumbel and McKay with a singular part
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