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Outline

I Notions of dependence, association, and predictability
I Information approach to dependence

I Scale of predictability
I The mutual information

I Utility of dependence
I Dependence information index (absolutely continuous

distributions)

I Failure of traditional measures to capture dependence
I Location-scale family

I Gaussian, Student-t, Elliptical
I Dependence between sum and summands

I Regression (normal and beyond)
I Stochastic processes
I Measurement error

I Information index for singular models (if time allows)
I Marshall-Olkin family
I Gaver-Lewis family
I Test of sharp hypothesis
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Dependence

I X1 and X2 two random variables
I (X1,X2), random vector with a bivariate F with pdf f
I Marginal distributions Fi , with pdf fi , i = 1, 2

I Conditional distributions with pdf’s fi|j(xi |xj) =
f (x1, x2)

fj(xj)

I Independence is a stochastic notion

F (x1, x2) = F1(x1)F2(x2) for all (x1, x2) ∈ <2

A sharp state

I Dependence is a negation of the independence

F (x1, x2) 6= F1(x1)F2(x2) for some (x1, x2) ∈ <2

A multifarious notion
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Examples of Bivariate Distributions

Normal

Log-normal

Independent models Dependent models

a) Independent N b) Bivariate N c) Unimodal N d) Multimodal N

e) Independent LN f) Bivariate LN g) F-G-M LN h) Multimodal LN
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Association

I Association is a covariation

cov[φ1(X1), φ2(X2)] 6= 0

I φi (·), i = 1, 2 monotone functions
I Positive and negative cov[φ1(X1), φ2(X2)] are called positive

and negative quadrant dependence in reliability
I Correlation: linear association cov(X1),X2) 6= 0

I Diagram of relationships between two random variables

Dependent

Associated

Correlated
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Examples of Bivariate Distributions

Normal

Log-normal

Independent models Dependent models

a) Independent N b) Bivariate N c) Unimodal N d) Multimodal N

e) Independent LN f) Bivariate LN g) F-G-M LN h) Multimodal LN

Associated models

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee Information Measure of Dependence: Some Virtues and a Caveat



Some questions

I How much each dependent model deviates from its
independent version?

I Which of the dependent models represents a weaker or a
stronger dependence?

I Which of these models would enable you to better predict one
of the variables by using the other?

I Are more strongly associated models also more dependent?

I The information notion of dependence answers these
questions based on the departure of the joint distribution F
from the independent model G = F1F2.
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Data From Four Unassociated Models

I Bivariate normal: Independent
I Bivariate t: Not independent
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Data From Four Equally Associated Models
I Regression E (X1|x2) = .4x2

I Bivariate normal: Constant conditional variance
I Bivariate t: Quadratic conditional variance (not defined for Cauchy)
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Dependence & Predictability

I The independent state:
I Complete absence of probabilistic information about the

outcomes of each variable by the other
I Perfect unpredictability

I Complete dependence (Lancaster 1963):

P[Xi = φi (Xj)] = 1, i 6= j
I φi (·), a measureable one-to-one function
I Perfect predictability (Kimeldorf & Sampson 1978)

I Scale of predictability

Perfect unpredictability Perfect predictability

0 100%
Independence

If and only if for all (xi, xj),

F(x1, x2) = F1(x1)F2(x2)
F(xi|xj) = Fi(xi)

Complete dependence

For a one-to-one function φi(·)
P[Xi = φi(Xj)] = 1, i 6= j
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Information Approach to Dependence

I The information notion of dependence compares F with the
independent model G = F1F2

I The strength of dependence is measured by a divergence
function between D(F : F1F2) ≥ 0

I the equality holds if and only if
f (x1, x2) = f1(x1)f2(x2) for almost all (x1, x2) ∈ <2

I Scale of D(F : F1F2)

Perfect unpredictability Perfect predictability

0 100%D(F : F1F2)
Independence

If and only if for all (xi, xj),

F(x1, x2) = F1(x1)F2(x2)
F(xi|xj) = Fi(xi)

Complete dependence

For a one-to-one function φi(·)
P[Xi = φi(Xj)] = 1, i 6= j

(Lancaster 1963)
(Kimeldorf & Sampson 1978)
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Kullback-Leibler (KL) Information & Shannon Entropy

I The most well-known and widely-used divergence and
uncertainty functions

I The KL information divergence

K (F : G ) =

∫
S

f (x) log
f (x)

g(x)
dx

provided that the integral is finite
I S is the support of F , provided that the integral is finite
I F must be absolutely continuous with respect to G ,

denoted F � G
I It is also known as cross-entropy and relative entropy

I Shannon entropy (Shannon 1948)

H(X ) = H(F ) = −
∫
S

f (x) log f (x)dx

I Var(X ) < ∞⇒ H(X ) < ∞, converse does not hold
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The mutual information

I The mutual information of the bivariate distribution F :

M(F ) ≡ M(X1,X2)

= K (F : F1F2)

= Exj

{
H[Fi (xi )]− H[Fi |j(xi |Xj)]

}
, j 6= i = 1, 2

= Exj

{
K [Fi |j(xi |Xj) : Fi (xi )]

}
, j 6= i = 1, 2,

provided that F � F1F2

I M(X1,X2) ≥ 0, equality holds ⇔ X1 and X2 are independent.
I The absolute continuity requires P[X1 = φ1(X2)] = 0 and

P[X2 = φ2(X1)] = 0
I Inapplicable to singular distributions

I Lindley’s (1956) Bayesian measure of sample information
about a parameter M(X ,Θ)

I The expected utility interpretation (Bernardo 1979)
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Utility of dependence

I The predictability of outcomes of Xi without using
Xj , j 6= i = 1, 2, depends solely on the concentration of its
marginal distribution. H(Xi ) measures this uncertainty.

I Given an outcome xj of Xj , the predictability of outcomes of
Xi depends on, the concentration of the conditional
distribution of Xi given Xj = xj , measured by H(Fi |j).

I The expected utility of Xj for prediction of Xi is given by the
representation

M(X1,X2) = Exj

{
H[Fi (xi )]− H[Fi |j(xi |Xj)]

}
, j 6= i = 1, 2

I The bracketed quantity is known as the observed information
provided by xj for predicting Xi .

I When two variables are dependent, one is useful for
predicting the other, irrespective of whether or not
being associated
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Other Divergence measures

I Among the known divergence measures and generalizations of
Shannon entropy, only the KL information admits the expected
utility representation

I The immediate generalizations are Rènyi measures

Kr (F : G) =
1

r − 1
log

Z
f r (x)[g(x)]1−rdx , r 6= 1, r > 0,

Hr (X ) =
1

1− r
log

Z
f r (x)dx , r 6= 1, r > 0

I K1(F : G ) = K (F : G ),H1(X ) = H(X )

I Example: Bivariate normal distribution with correlation ρ:

Exj

n
Hr [Fi (xi )]− Hr [Fi|j(xi |Xj)]

o
= M(X1, X2) = −1

2
log(1− ρ2)

Kr (F : F1, F2) = M(X1, X2) +
1

2(1− r)
log

“
1− (1− r)2ρ2

”
Discrepancy with the independent normal is more (r > 1) or

less (r < 1) than the utility
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Fourth Representation

I The unique additive property of Shannon entropy also gives
the following representation

M(X1,X2) = H(X1) + H(X2)− H(X1,X2),

I Shared or redundant information
I The finiteness of the joint and marginal entropies are

necessary. However, this is not sufficient
I Particularly useful for calculating M by entropy expressions
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Copula information

I M(X1,X2) is invariant under 1-to-1 transformations of each Xi

I Copula of F
I Let Ui = Fi (Xi ), i = 1, 2. Then

C (u1, u2) = F (F−1
1 (u1),F

−1
2 (u2)), (u1, u2) ∈ [0, 1]2

(Sklar 1959)
I A widely used approach for modeling dependence

I Copula information

M(F ) = M(C ) = K (C : C0) = −H(C ) = I (C ) ≥ 0

I C0 denotes the product copula C0(u1, u2) = u1u2.
I I (C ) is referred to as the information measure of the

distribution (Lindley 1956, Zellner 1971), here the copula.
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Dependence Information Index

Perfect unpredictability Perfect predictability

0 M(X1, X2) ∞

If and only if
X1, X2 are independent

Whenever
P[Xi = φi(Xj)] = 1

0 δ2(X1, X2) 1

I For the absolutely continuous distributions:

δ2(F ) = δ2(X1,X2) = 1− e−2M(X1,X2)

I Entropy reduction

δ2(X1,X2) = 1−
exp{Exj [H(Xi |xj)]}2

exp{H(Xj)}2
= 1− exp{H(X1,X2)}2

exp{H(X1) + H(X2)}2

I Copula representation

δ2(F ) = δ2(C ) = 1− e−2I (C)
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0 M(X1, X2) ∞

If and only if
X1, X2 are independent

Whenever
P[Xi = φi(Xj)] = 1

0 δ2(X1, X2) 1

I For the absolutely continuous distributions:

δ2(F ) = δ2(X1,X2) = 1− e−2M(X1,X2)

I Entropy reduction

δ2(X1,X2) = 1−
exp{Exj [H(Xi |xj)]}2

exp{H(Xj)}2
= 1− exp{H(X1,X2)}2

exp{H(X1) + H(X2)}2

I Copula representation

δ2(F ) = δ2(C ) = 1− e−2I (C)
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Moment-based Indices

I Two popular indices
I Pearson correlation coefficient ρp:

I Subscript is for distinction between the correlation coefficient
and a model parameter ρ

I E(XiXj) < ∞, i , j = 1, 2
I Invariant under linear transformations (up to the sign)

I The fraction of expected variance reduction due to regression,
also known as the correlation fraction:

η2
i|j = 1−

Exj [Var(Xi |xj)]

Var(Xi )
≥ 0, j 6= i = 1, 2,

I Var(Xi ), Var(Xi |xj) < ∞, i , j = 1, 2
I Invariant under linear transformations
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Information Approach: Ways beyond the bivariate normal

I For the bivariate normal distribution

δ2(F ) = η2(F ) = ρ2
p(F ) = ρ2

I Information approach
I Linear relationship generalizes to any functional

relationship.

I Variance generalizes to an uncertainty function

(a) Concave function of f that measures the concentration,
H(F ) ≤ H(uniform)

(b) The variance does not always satisfy this condition
I The departure from independence is measured formally by

a divergence function between two probability distributions
D(P : Q) ≥ 0, where D = 0 if and only if the distributions are
identical dP(x) = dQ(x)

I Invariance under linear transformations generalizes to the
invariance under all one-to-one transformations
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Compare predictability of distributions

� Which of the two distributions in each panel have outcomes that can be 

predicted with a high probability? 

� Write your answer for each case as: “solid” or “dashed”

� With which distribution in each panel is more difficult to predict outcomes?
a) b)

c) d)
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Compare predictability of distributions

Both normal
____ Normal 

------- Cauchy (variance not defined)

Both Gamma (same variance)Both Gamma (same variance) Both Beta

Larger 

variance
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Association Indices

I Two popular indices
I Spearman’s rank correlation

ρs(F ) = 12

∫ ∫
<2

F1(x1)F2(x2)f (x1, x2)dx1dx2 − 3

I Kendall’s tau

τ(F ) = 4

∫ ∫
<2

F (x1, x2)f (x1, x2)dx1dx2 − 1

I Sign indicates the direction of association
I Invariant under monotone transformations
I Copula representations

ρs(F ) = ρs(C ), τ(F ) = τ(C )

I Two variables are unassociated if and only if ρs = τ = 0
I Unassociated dependent ρs = τ = 0, δ2 > 0

I One variable is useful for predicting the other

I ρp = η2 = ρs = τ = 0 6⇒ X1 and X2 are independent
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Example 1. Examples of Bivariate Distributions

Normal

Log-normal

Independent models Dependent models

a) Independent N b) Bivariate N c) Unimodal N d) Multimodal N

e) Independent LN f) Bivariate LN g) F-G-M LN h) Multimodal LN

Associated models

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee Information Measure of Dependence: Some Virtues and a Caveat



Figure 2. Examples of Bivariate Distributions

a) Cauchy b) t3 c) Pareto

d) F-G-M copula e) Uncorrelated dependent f) Uncorrelated copula

Associated models
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Elliptical & Pareto families

I Elliptical pdf

fh(x1, x2) =
1

2π(1− ρ2)1/2
h

(
x2
1 − 2ρx1x2 + x2

2

1− ρ2

)
, (x1, x2) ∈ <2, ρ2 < 1,

h(·) is a real function

I Gaussian (Figure 1b) h(z) = e−z/2

I Student-t (Figure 2a, ν = 3) h(z) =
(
1 +

z

ν

)−ν/2−1

I Cauchy (Figure 2b) h(z) = (1 + z)−3/2

I Log-normal (Figure 1f) is monotone transformation of normal

I Pareto Type II (Figure 2c)

f (x1, x2) = α(α+ 1)(1 + x1 + x2)
−α−2, xi ≥ 0, α > 0

Numerous other distributions are related to this model by monotone
transformations, including Pareto Types I, III & IV, exponential,
Weibull, logistic, Burr, and Calyton copula, among others
(Darbellay & Vajda 2000, Asadi et al. 2006, Balakrishnan & Lai 2009)
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Generalized Sarmanov families

I Families with bivariate pdf’s

fq(x1, x2) = f1(x1)f2(x2)[1 + βq(x1, x2)], (x1, x2) ∈ <2, β ≤ B−1

I fi (xi ), i = 1, 2 are the marginal pdf’s
I q(x1, x2) is a measurable bounded function |q(x1, x2)| ≤ B

I Sarmanov families: q(x1, x2) = q1(x1)q2(x2)

I F-G-M Copula (Figure 2d, β = 1)
fi (xi ) = 1, 0 ≤ xi ≤ 1, |β| ≤ 1, qi (xi ) = (1− 2xi )

I Unassociated log-normal (Figure 1h, β = 1)
fi (xi ) = LN(0, 1), xi > 0, |β| ≤ 1, qi (xi ) = sin(2π log xi )

I E(Xm
i |Xj) = E(Xm

i ), i 6= j , m = 1, 2, · · · (De Paula 2008)
I All polynomial functions of Xi and Xj are uncorrelated
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Generalized Sarmanov families

I A class of models for uncorrelated random variable

X1 + X2
st
= X o

2 + X o
2 , F o(x1, x2) = F1(x1)F2(x2)

Referred as the Summable Uncorrelated Marginals (SUM),
(Hamedani & Tata 1975, Ebrahimi et al. 2010)

I Unassociated normal unimodal (Figure 1c, β = .25e2)
fi (xi ) = N(0, 1), (x1, x2) ∈ <2, |β| ≤ .25e2,

q(x1, x2) = x1x2(x
2
1 − x2

2 )e−
1
2 (x2

1 +x2
2 )

I Unassociated normal multimodal (Figure 1d, β = 4)
fi (xi ) = N(0, 1), (x1, x2) ∈ <2, |β| ≤ 4,

q(x1, x2) = x1x2(x
2
1 − x2

2 )e−
1
2 (x2

1 +x2
2 )

I Uncorrelated dependent (Figure 2e, β = .5)
f1(x1) = .5 + x1, f2(x2) = 1, 0 ≤ xi ≤ 1,
|β| ≤ 1, q(x1, x2) = sin[2π(x2 − x1)]

I Uncorrelated Copula (Figure 2f, β = .6)
fi (xi ) = 1, 0 ≤ xi ≤ 1, |β| ≤ 1, q(x1, x2) = sin[2π(x2 − x1)]
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Common metric?

Example pdf
Family ρp ρs τ η2 δ2 Figure, δ2 (Rank∗)
Elliptical

Gaussian 1b, .160 (7)

Student-t 2a, .081 (10)

Cauchy 2b, .361 (2)
Pareto and related families

Pareto 2c, .836 (1)
Generalized Sarmanov

F-G-M copula 2d, .113 (9)

Uncorrelated dependent 0 2e, .136 (8)

Uncorrelated copula 0 0 2f, .172 (5)

Unassociated normal unimodal 0 0 0 1c, .173 (4)

Unassociated normal multimodal 0 0 0 1d, .168 (6)

Unassociated log-normal 0 0 0 0 1h, .249 (3)

Notes:
suitable within the family; undefined; unsuitable, dependence varies within the family, index does not;

0 unsuitable, dependence varies, index identically zero; Partially suitable, undefined for some parameter values;

undefined for some parameter values, dependence varies within the family, index does not;
∗ ranks are among ten dependent pdf’s in Figures 2 and 3.
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Multivariate Information

I G in K (F : G ) is a model for independence between two or
more subvectors of a d-dimensional random vector X

I The independent model G = F1 · · ·Fd

I Independence of two disjoint subvectors,
G (x) = Fj(xj)Fh(xh), j + h = d .

I Three properties of multivariate M’s:

M(X1, · · · ,Xd) increasing in d

M(X1, (X2, · · · ,Xd)) =
d∑

i=2

M(X1,Xi |X2, · · ·Xi−1) increasing in d

M(X) = M(Xj) + M(Xk) + M(Xj ,Xh) ≥ M(Xj) + M(Xh), j + h = d

I M(X1,Xi |X2, · · ·Xi−1) = Ex2,···xi−1 [M(X1,Xi |x2, · · · xi−1)],
partial mutual information

I The first two formalize the intuition that dependence increases
with the dimension

I The inequality formalizes the intuition that aggregation of
lower dependence underestimates the overall dependence
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Location-Scale (L-S) Family

I A pdf f (x|θ,µ,Σ) with location vector µ and scale matrix Σ

X
st
= µ + |Σ|1/2Xo ,

I θ, model parameters other than µ and Σ
I Xo , in the same family with µ = 0 and Σ = Id , identity matrix.

Location-scale

Elliptical

Pearson VII

Student-t
Normal Normal

Minimum dependence family

MNormal MexcessMLS = +

MAssoc MUnassoMEllipt = +
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Location-Scale Family

I The entropy of L-S family

H(X|θ,Σ) = H(Xo |θ) +
1

2
log |Σ| ≤ HG(Σ)

I H(Xo |θ) is free from µ and Σ
I HG(Σ), the entropy of Gaussian distribution (The maximum

entropy model)

I The mutual information measures

M(X|θ,Σ) = M(Ω) + M(X0|θ) ≥ M(Ω)

I Ω = D−1/2ΣD−1/2, D = Diag[σ11, · · · , σdd ]
I M(Ω), the portion of dependence induced by the rotation
I M(Ω) = MG(Ω), for the Gaussian model with correlation Ω
I M(X0|θ), the intrinsic dependence of the unrotated vector X0

I Among all distributions in the multivariate L-S family having
the same scale matrix Σ, the Gaussian model (copula) has the
minimum dependence model
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the same scale matrix Σ, the Gaussian model (copula) has the
minimum dependence model
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Multivariate Normal (Gaussian) Information Measures

Mutual Information MG(Ω) Index (δ2
G)

M(X) −.5 log |Ω| 1− |Ω|

M(X1,X2) −.5
min{dk}∑

j=1

log(1− λj) 1−
min{dk}∏

j=1

(1− λj)

M[Y , (X1, · · · ,Xd)] −.5 log
(
1− ρ2

y |x1,··· ,xd

)
ρ2

y |x1,··· ,xd

I Row 1. measures for shared information between all components.

I Row 2. measures for two disjoint subvectors

I λj , j = 1, · · · ,min{dk} are the nonzero eigenvalues of

Ω
−1/2
11 Ω12Ω

−1/2
22 Ω12Ω

−1/2
11 [Ωij partitions of Ω for (X1,X2)]

I The canonical correlations of the two subvectors (X1,X2)

I Row 3. regression information measures

I ρ2
y |x1,··· ,xd

, the normal regression fit index
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Elliptical families

I The pdf is in the form of

fh(x|Σ,µ) = k|Σ|−1/2h
(
(x− µ)′Σ−1(x− µ)

)
I h(·) is referred to as the scale or generator function which may

include a vector of parameters θ in addition to (µ,Σ)
I The marginal distributions are also elliptical with L-S

parameters (µi , σii ), but the generator of the marginals hi (·)
may be different than h(·).

I The Gaussian family N(µ,Σ): h(z) = ez2/2

I Student-t family t(ν,µ,Σ), ν, degrees of freedom:

h(z) =

(
1 +

z2

ν

)−(d+ν)/2

I For all elliptical families: τ =
2

π
sin−1(ρ); (Fang et al. 2002)
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Multivariate Student-t

I Relationships with multivariate normal
I Limiting distribution: t(ν,µ,Σ) → N(µ,Σ) as ν →∞

I Normal mixture:

f (x|φ) = N(µ, φΣ), φ ∼ Gamma(ν/2, ν/2), ν = 1, 2 · · ·
=⇒ f (x) = t(ν,µ,Σ)

I The information index:

δT (ν,Σ) = δG + (1− δG)δ(ν), ↑ δG, ↓ ν

I δG the index for Gaussian (normal)
I For the bivariate case:

δ2
t (ν, τ) = sin2

“τπ

2

”
+ cos2

“τπ

2

”
δ2(ν),

I Many applications
I Regression model with multivariate t errors (Zellner 1976)
I Dynamic stochastic general equilibrium model with Student-t errors

(Chib & Ramamurthy 2012)
I Copulas (Demarta & McNeil 2005), model for financial variables, . . .
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Student-t

I Student-t when τ (ρ) and the degrees of freedom ν are low
I Substantial gaps between the level of dependence
I The spectrum of dependence is narrow
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Student’s t & Pearson Type VII

I Student-t when τ (ρ) and the degrees of freedom ν are low
I Substantial gaps between the level of dependence
I The spectrum of dependence is narrow

I The spectrum of dependence of the t family is substantially widen and
refined by replacing ν/2 with a parameter α > 0.
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Convolution Models

I Noisy relationship between Y and X′ = (X1, · · · ,Xp):

Y = φ(X,β) + ε

I φ(·, ·), a scalar function, need not be linear
I β = (β1, · · · , βp)

′,
I X, β, or both can be stochastic
I ε, random noise, may not be independent of the signal φ(Xi ,β)

I Two known results for the sum of independent variables
I The sum has a larger entropy than each variable alone
I The amount of increase in the entropy is the M between the

sum and the summands (Blahut 1987)

I An enhanced version of Blahut’s result gives:

M(Y , φ(X,β)) = [H(Y )− H(ε)] + M(ε, φ(X,β))

I Blahut’s theorem is for M(ε, φ(X,β)) = 0:

M(Y , φ(X,β)) = H(Y )− H(ε)
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Normal Linear Regression

I φ(X,β) = X′β, Y |X,β, σ2 ∼ N(X′β, σ2), M(ε, φ(X,β)) = 0
I Two information measures are well-known

I β non-stochastic:

M(Y , φ(X,β)) = M(Y ,X) = −1

2
log(1− ρ2

y |x1,···xp
)

= −1

2

p∑
j=1

log(1− ρ2
xj |x1,···xj−1

),

I ρ2
xj |x1,···xj−1

is the squared partial correlation coefficient
I Theil and Chung (1988) proposed the above decomposition of

the sample version 2M̂(Y,X) = − log(1− R2) as
transformation of the regression index R2 for assessing the
relative importance of the predictors.

I X a design matrix (non-stochastic) and β|σ2 ∼ N(µ0, σ
2
0A0):

M(Y,β|η,A0) =
1

2
log

∣∣∣∣Ip +
σ2

0

σ2
A0X

′X

∣∣∣∣ .
The Bayesian sample information about regression parameter
(Lindley’s information)
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Bayesian Linear Regression Beyond Normal

I ε ∼ F (0, σ2)

I βj , j = 1, · · · , p are independent and have g -priors
βj ∼ F (0, σ2x−1

j ), j = 1, · · · , p
I Yi is convolution of p + 1 iid variables Zj = βjxj and ε

I If F is closed under convolution, Yi |σ2 ∼ F (0, (p + 1)σ2)

I Information quantities when F are normal and Cauchy
I Regression with t error has been proposed for capturing

outliers (Zellner 1976, Lang et al. 1989)

F H(Y ) H(ε) M(Y , β) δ2(Y , β)

Normal .5 log(2(p + 1)πeσ2) .5 log(2πeσ2) .5 log(p + 1)
p

p + 1

Cauchy log(4(p + 1)πσ2) log(4πσ2) log(p + 1)
p

p + 1
+

p

(p + 1)2
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Stochastic Process

I T1,T2, · · · inter-arrival times of failures of a repairable system
I Time to the nth failure, Yn =

∑n
i=1 Ti

I Distribution of the ith failure time is gamma, Ga(αi , λ)
I Failures are independent
I Distribution of Yn is Ga(βn, λ), βn =

∑n
j=1 αi

I The entropy of Ga(βk , 1)

HG (Yk) = log Γ(βk)− (βk − 1)ψ(βk) + βk

I The convolution result for the independent case is applicable

M(Yn,Yn+k) = HG (βn+k)− HG (βk),

I M(Yn,Yn+k) is the mutual information of the McKay’s
bivariate gamma distribution with parameters (βk , βn−k , λ)

I For the important case of Poisson process, βk = k.
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Convolution Models: Dependent Components

I Applications include:
I Endogenous regression
I Measurement error models

Y = X + ε, X ∼ N(µ, σ2), ε ∼ N(0, θ2)

I E (X ε) = 0 (X and ε uncorrelated)

F (x , ε) Independent normal F (x , ε) multimodal normal
(unassociated dependent)

E(ε|X )

How dependent are Y and X?
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Convolution Models: Dependent Components

I The easy case: F (x , ε) bivariate normal with correlation ρ
I The joint distribution of (Y ,X ) is also bivariate normal with

correlation
√
.5(1 + ρ)

M(Y ,X ) = .5 log 2− .5 log(1− ρ)

I More (less) than the independent case when ρ > 0 (ρ < 0)

I It is also easy to calculate H(Y ) and H(ε) when F (x , ε) is
Cauchy or F-G-M copula

I In general, direct computation is tedious
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A Class of Models for Uncorrelated Variables

I Summable Uncorrelated Marginals (Ebrahimi et al. 2010c)

I Defined by the stochastic equality Z1 + Z2
st
= Z∗

1 + Z∗
2

F ∗(z1, z2) = F1(z1)F2(z2) =⇒ H(Z1 + Z2) = H(Z∗
1 + Z∗

2 )

I ANOVA type decomposition of dependence

M(Y ,Zi ) = M(Y ,Z∗
i ) + M(Z1,Z2)

I Y = Z1 + Z2

I M(Y , Z∗
i ) = H(Y )− H(Zj), i 6= j = 1, 2

(the independent case)
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Examples

δ2(Y, X) = .700 δ2(Y, X) = .588 δ2(Y, X) = .591

δ2(Y, X) = .733 δ2(Y, X) = .616 δ2(Y, X) = .677
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Absence & Presence of a Probable Cause

I “Cause of dependence”, a functional relationship enabling the
perfect predictability

I ”Probable cause”, a legal terminology for a condition that calls for
prudence

I Absence of a probable cause P[Xi = φi (Xj)] = 0,
(absolutely continuous distributions)

I Presence of a probable cause P[Xi = φi (Xj)] > 0,
(singular distributions)

Functional relationship
Cause of dependence

P(X2 = X2
1) = 1

Absence of
probable cause

P[Xi = φi(Xj)] = 0

Presence of
probable cause

P(X2 = X2
1) = .3
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Scatter Plots of Data from a Financial Institution
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Singular distributions: Probable cause of dependence

I One variable is not completely dependent on the other

I A functional dependence is probable,

0 < P[Xi = φi (Xj)] = π < 1

I Probable cause of dependence

I The joint distribution F (x1, x2) is singular.

I The survival function has the following representation:

F̄ (x1, x2) = (1− π)F̄a(x1, x2) + πF̄s(x1, x2),

I F̄a(x1, x2) is the survival function with an absolutely
continuous bivariate pdf fa(x1, x2),

I F̄s(x1, x2) is the survival for a singular part with a univariate
pdf fs(x), xi = φi (xj)

π =

∫
fs(x)dx
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Singular distributions: Some Applications

I Shock models (Marshall & Olkin, 1967)
I A system with two components Ci

I Three types of shocks Sj , 1 = 1, 2, 3
I Sj kills Cj , j = 1, 2 and shock S3 kills both components

I Marshall-Olkin Bivariate Exponential (MOBE) distribution

I Bayesian test of sharp hypothesis (e.g., Bernardo & Rueda 2002)
I The first order exponential autoregressive (Gaver & Lewis, 1980)

Xn+1 = ρXn + εn+1,

I {Xn} is a sequence of identically distributed exponential
random variables P(Xn > x) = F̄ (x) = e−λx

I {εn} is an iid sequence, εn+1 and Xn are independent
I F (xn, xn+1) is singular π = ρ
I Pareto process (Yeh, et al. 1988), transformation of Xn

I Importance of s component for a system: Bivariate distribution of a
component’s lifetime Xi , i = 1, · · · , n and system’s lifetime given
by any one of the order statistics Y1 ≤ · · · ,≤ Yn

(Ebrahimi, Jalali, Soofi, & Soyer, forthcoming)
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Information Index for Singular distributions

I M is not defined since F 6� F1F2

I Generalized information index

δπ(X1,X2) = π + (1− π)δa(X1,X2)

I δa(X1,X2) is the dependence information index for the
absolutely continuous distribution F̄a

I δa(X1,X2) = 0 if and only if the variables are independent
I δπ(X1,X2) = 1 if π = 1
I δπ(X1,X2) = δa(X1,X2) if π = 0, the case when F � F1F2

I Invariant under one-to-one transformations of each variable
I Based on:

I the partition property of information
I applying the probabilistic argument of Marshall and Olkin

(1967) to dependence between X1 and X2

P[Xi = φi (Xj)] = π > 0

P[Xi 6= φi (Xj)] = 1− π > 0
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Examples

I Independent exponential with a singular part included (π = ρ = τ)
I The Marshall-Olkin Bivariate Exponential (π = ρ = τ)
I The exponential autoregressive (π = ρ = τ)

Ehsan Soofi Lubar School, University of Wisconsin-Milwaukee Information Measure of Dependence: Some Virtues and a Caveat



Bayesian Test of Sharp Hypothesis

I Two parameters (θ1, θ2) ∈ S, a continuous region in <2

I Test H1 : θi = αθj , j 6= i = 1, 2 against H1 : θi 6= αθj , j 6= i = 1, 2.

I The plausibility of H1 is described by prior probability P(H1) = π.

I The joint prior distribution P(θ1, θ2), (θ1, θ2) ∈ S has a singular
part with a univariate pdf ps(θi ) for θi = αθj and an absolutely
continuous part with a bivariate pdf pa(θ1, θ2), (θ1, θ2) ∈ S.

I The posterior distribution P(θ1, θ2|D) is also singular

I The updated probability of the singularity is given by

π∗ = P(H1|D) =
π

π + (1− π)B21
.

B21, the Bayes factor
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Example: Test equality of two normal means

I f (x|θ1, θ2, φΩ) = N
(
(θ1, θ2), φΩ

)
I H1 : θ1 = θ2 = θ with P(H1) = π, against H2 : θ1 6= θ2

I Normal-gamma prior under H2

P(θ1, θ2|φ,H2) = N
(
(m1,m2), hφΩ

)
P(φ) = Ga(ν/2, ν/2)

P(θ1, θ2|φ) P(θ1, θ2)

Absolutely continuous part Bivariate normal(ρ) Bivariate t(ρ, ν)
δ2
a(Θ1, Θ2) ρ2 δ2

a(ν, ρ)
δ2

π(Θ1, Θ2) π + (1− π)ρ2 π + (1− π)δ2
a(ν, ρ)

I Notes:
δ2
a(ν, ρ) = ρ2 + (1− ρ2)δ2(ν, 0)

δ2
π(Θ1,Θ2) ≥ δ2

π(Θ1,Θ2|φ) ≥ π

I Prior P(θ|H1) = fs(θ)

I Posterior dependence, replace π with π∗
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Example: Test equality of two exponential parameters

I f (xji |θj) = θje
−θjx , j = 1, 2

I H1 : θ1 = θ2 = θ with P(H1) = π, against H2 : θ1 6= θ2

I Independent exponential prior under H2 (Christensen et al. 2010)

P(θ1, θ2|H2) = e−θ1−θ2 , θi |H2, i =, 1, 2, independent

I In this case,
I δ2

a(Θ1, Θ2) = 0
I Dependence index δ2

π(Θ1, Θ2) = π
I Posterior dependence

I Two samples: xj = (xj1, · · · , xjnj ), j = 1, 2
I Prior P(θ|H1) = e−θ

I Bayes factor

B21 =
n1!n2!(S1 + S2 + 1)n+1

n!(S1 + 1)n1+1(S2 + 1)n2+1
, Sj =

njX
i=1

xji , j = 1, 2

I δ2
π∗(Θ1, Θ2|x1, x2) = π∗

I Other singular bivariate exponential priors: Marshall-Olkin, bivariate
autoregressive exponential, Gumbel and McKay with a singular part
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