α^* -Cohomology; from Deformation Quantization Theory Classification of Translation-Invariant Non-Commutative Quantum Field Theories

Amir Abbass Varshovi

J. Geom. Phys. 83, 2014: 53-68 [arXiv:1210.0695 [math-ph]]

J. Math. Phys. 54, 072301, 2013 [arXiv:1210.1004 [math-ph]]

Outline

- Deformation Quantization, Weil-Wigner Correspondence, Fedosov Approach and Kontsevich Formula
- Non-Commutative Field Theories, the Structure of Space-Time and Translation-Invariant * Products
- □ The Theory of α-Cohomology and Classification of Translation-Invariant ★ Products
- □ The Hodge Theorem in α -Cohomology, the Harmonic Forms and the Harmonic \star Products
- α^* -Cohomology and Classification of Translation-Invariant Non-Commutative Quantum Field Theories
- Harmonic Forms, Groenewold-Moyal * Products and Classification of Quantum Behaviors

- **Definition 1**; By quantization of 2n-dimensional phase space \mathbb{R}^{2n} , $n \geq 1$, with global coordinate chart $(x^1, ..., x^n, p^1, ..., p^n)$, we mean a Hilbert space \mathcal{H} , and a linear map $op: C^{\infty}(\mathbb{R}^{2n}) \to L(\mathcal{H}), f \mapsto \hat{f}$, such that;
 - a) $\hat{1} = 1$.
 - b) $\{\widehat{x^1}, \dots, \widehat{x^n}, \widehat{p^1}, \dots, \widehat{p^n}, 1\}$ generates the Heisenberg Lie algebra \mathfrak{h}_n .
 - c) \mathcal{H} is minimal, i.e. \mathfrak{h}_n is represented irreducibly over \mathcal{H} .
 - d) $\widehat{f}^* = \widehat{f}^*$.
 - e) $\widehat{fg} = (\widehat{f}\widehat{g} + \widehat{g}\widehat{f})/2$, for any $f, g \in C^{\infty}(\mathbb{R}^{2n})$.
 - f) $i\hbar\{\widehat{f},g\} = [\widehat{f},\widehat{g}]$, for any $f,g \in C^{\infty}(\mathbb{R}^{2n})$. (Dirac's analogy)

- Theorem 1; (Groenewold-van Hove No-Go Theorem) Quantization is impossible.
- Definition 2; Consider a Heisenberg algebra generated by elements $\{\widehat{x^1},...,\widehat{x^n},\widehat{p^1},...,\widehat{p^n},1\}$ represented irreducibly over a Hilbert space \mathcal{H} . Then the Weyl quantization of 2n-dimensional phase space \mathbb{R}^{2n} , $n\geq 1$, with global Darboux's coordinate chart $(\mathbb{R}^{2n};(x^1,...,x^n,p^1,...,p^n))$ is essentially a linear map $op: C^{\infty}(\mathbb{R}^{2n}) \to L(\mathcal{H}), f \mapsto \widehat{f}$, with;

$$\hat{f} = \int \frac{d^n \xi d^n \zeta}{(2\pi)^{2n}} \int d^n x \, d^n p \, e^{i \sum_{i=1}^n \xi_i(\hat{x}_i - x_i) + \sum_{i=1}^n \zeta_i(\hat{p}_i - p_i)} f(x, p) ,$$

 $f \in C^{\infty}(\mathbb{R}^{2n})$, mostly referred to as the Weyl map.

- Theorem 2; (Egorov's Weak Quantization Theorem) The Weyl map defines a quantization up to $\mathcal{O}(\hbar^2)$.
- Theorem 3; (Weyl-Wigner correspondense) (Wigner, 1932) The Weyl map is invertible.
- **Definition 3**; By definition the Groenewold-Moyal star product, mostly shown by \star_{G-M} , is defined with;

$$f \star_{G-M} g = op^{-1}(\hat{f}\hat{g}),$$

for $f, g \in C^{\infty}(\mathbb{R}^{2n})$.

To be well-defined, \star_{G-M} should be considered over $\mathcal{S}(\mathbb{R}^{2n})$.

For 2n-dimensional phase space the Groenewold-Moyal product is given by;

$$f \star_{G-M} g(x) = \exp\left(i\theta^{\mu\nu} \frac{\partial}{\partial y^{\mu}} \bigg|_{y=0} \frac{\partial}{\partial z^{\nu}} \bigg|_{z=0}\right) f(x+y)g(x+z),$$

 $f, g \in \mathcal{S}(\mathbb{R}^m)$, for anti-symmetric $\theta^{\mu\nu}$ with $\theta^{\mu\mu+n} = \hbar/2$, $0 \le \mu \le n-1$.

Definition 4; Suppose that M is a Poisson manifold with Poisson structure $\Xi \in \Gamma(\Lambda^2 TM)$. A deformation quantization of M is an associative product, say \star , over $C^{\infty}(M)[[\hbar]]$, for formal parameter \hbar , such that for any $f,g \in C^{\infty}(M)$:

$$\lim_{\hbar \to 0} f \star g = fg \qquad , \qquad \lim_{\hbar \to 0} (f \star g - g \star f) / i\hbar = \Xi(\mathrm{d}f, \mathrm{d}g) \, .$$

If such star product exists over $C^{\infty}(M)[[\hbar]]$, then M is said to be quantizable.

- Groenewold-Moyal star product is used to quantize the symplectic planes (tori) with constant symplectic forms: $\theta^{-1}_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$.
- Theorem 4; (Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer, 1977) Any Poisson manifold with torsion free flat Poisson connection is quanizable.
- Theorem 5; (DeWilde, Lecomte, 1983, Kasarev, Maslov, 1984) By patching together the Darboux's charts in an appropriate setting any symplectic manifold is quantizable.
- Theorem 6; (Fedosov, 1985) Any regular Poisson manifold *M* (a Poisson manifold with constant RankΞ) admits a flat connection over the Weyl algebra bundle, *W*(*TM*), due to the Lie algebras of Darboux's charts.

- Theorem 7; (Fedosov's Theorem) Using the Weyl structure for $\Gamma(W(TM))$ and $C^{\infty}(M)[[\hbar]]$, any regular Poisson manifold M is quantizable.
- Theorem 8; (Kontsevich Quantization Theorem) Any Poisson manifold *M* is quantizable. In fact there exists a one to one correspondence between the collection of deformation quantization and the set of Poisson structures over a manifold up to isomorphism. The quantization formula is then;

$$f \star g = fg + \sum_{n=1} \left(\frac{i\hbar}{2}\right)^n \sum_{\Gamma \in G_n(2)} w_\Gamma B_\Gamma(f,g)$$
,

 $f,g \in C^{\infty}(M)$, where $G_n(2)$ is the set of oriented graphs with 2n segments, 2 external vertices and with no loop. w_{Γ} is the number of equivalent graphs and B_{Γ} is a partial differential operator due to graph Γ .

- Examples in Quantum Physics:
- The phase space of quantum mechanics has a natural symplectic form.
 [Weyl-Wigner-Moyal formalism, 1949]
- 2. In string theory with background $B (= B_{\mu\nu} dx^{\mu} \wedge dx^{\nu})$ field the Groenewold-Moyal star product appears for B as a regular Poisson structure. [Witten, 1986]
- The true phase space of a quantum (semi-classical) theory with an intrinsic symmetry is a Poisson manifold which can be non-regular. [Marsden-Weinstein, 1974]

 \triangleright Non-commutative structure of space-time manifold, M, is given by:

$$\star : C_c^\infty(M) \otimes C_c^\infty(M) \to C_c^\infty(M) \, , f \otimes g \mapsto f \star g \, ,$$

for $f, g, h \in C_c^{\infty}(M)$, given by a deformation quantization.

For all $0 \le \mu, \nu \le m-1$, and for any $f, g \in C_c^{\infty}(\mathbb{R}^m)$:

$$\frac{\partial}{\partial x^{\mu}}(f\star_{G-M}g) = \left(\frac{\partial}{\partial x^{\mu}}f\right)\star_{G-M}g + f\star_{G-M}\left(\frac{\partial}{\partial x^{\mu}}g\right).$$

Definition 1; The star product \star on $C_c^{\infty}(\mathbb{R}^m)$ is translation-invariant if and only if there exists a global coordinate chart, say $(\mathbb{R}^m, \{x^{\mu}\}_{\mu=0}^{m-1})$, such that for any $0 \le \mu, \nu \le m-1$, and any $f, g \in C_c^{\infty}(\mathbb{R}^m)$:

$$\frac{\partial}{\partial x^{\mu}}(f\star g) = \left(\frac{\partial}{\partial x^{\mu}}f\right)\star g + f\star\left(\frac{\partial}{\partial x^{\mu}}g\right).$$

- Lemma 1; If \star is a translation-invariant product on $C_c^{\infty}(\mathbb{R}^m)$ then for any $f,g\in C_c^{\infty}(\mathbb{R}^m)$; $\mathcal{T}_a(f\star g)=\mathcal{T}_a(f)\star \mathcal{T}_a(g)$, for \mathcal{T}_a any translation operator along $(\mathbb{R}^m,\{x^{\mu}\}_{\mu=0}^{m-1})$, i.e.; $\mathcal{T}_a(f)(x)=f(x+a)$.
- Theorem 1; (Galluccio-Lizzi-Vitale) Put a global chart on \mathbb{R}^m , say $(\mathbb{R}^m, \{x^\mu\}_{\mu=0}^{m-1})$, then any translation-invariant star product over $C_c^\infty(\mathbb{R}^m)$ is given by;

$$(f \star g)(x) \coloneqq \int \frac{\mathrm{d}^m p}{(2\pi)^m} \frac{\mathrm{d}^m q}{(2\pi)^m} \tilde{f}(q) \tilde{g}(p) e^{\alpha(p+q,q)} e^{i(p+q)x} ,$$

for $\alpha \in C^{\infty}(\mathbb{R}^m \times \mathbb{R}^m)$ the **generator** of \star , which obeys the **cyclic property**: $\alpha(p,r+s) + \alpha(r+s,r) = \alpha(p,r) + \alpha(p-r,s)$,

for any $p, r, s \in \mathbb{R}^m$. (arXiv:0907.3640 [hep-th])

- In fact the cyclic property is equivalent to associativity of star product \star , i.e.; $(f \star g) \star h = f \star (g \star h), \forall f, g, h \in C_c^{\infty}(\mathbb{R}^m).$
- From now on we restrict ourselves to $(\mathbb{R}^m, \{x^{\mu}\}_{\mu=0}^{m-1})$.
- Lemma 2; Suppose $S_c(\mathbb{R}^m)$ is the set of Schwartz class functions with compactly supported Fourier transforms, then $S_c(\mathbb{R}^m)$ is closed under any translation-invariant star product. The algebra then is denoted by $S_c(\mathbb{R}^m)_{\star}$. Translation-invariant \star products can be extended to $S_{c,1}(\mathbb{R}^m) := S_c(\mathbb{R}^m) \oplus \mathbb{C}$ as a unital algebra. The unital algebra then is denoted by $S_{c,1}(\mathbb{R}^m)_{\star}$.
- Definition 2; α is a commutative generator if it generates a commutative star product.

- Theorem 2; $S_{c,1}(\mathbb{R}^m)_{\star_{G-M}}$ is an algebra in the category of $U(\mathcal{P}_m)_{\chi_{G-M}}$ modules, where \mathcal{P}_m is the m-Poincare Lie algebra of $\{P_\mu, M_{\mu\nu}\}_{\mu,\nu=0}^{m-1}$, and $U(\mathcal{P}_m)_{\chi_{G-M}}$ is the **Drinfeld twist** of its universal enveloping algebra due to the Groenewold-Moyal counital 2-cocycle $\chi_{G-M}=e^{-i\hbar^{-2}\theta^{\mu\nu}P_\mu\otimes P_\nu}$.
- Definition 3; A translation-invariant quantum field theory is a quantum field theory together with a translation-invariant star product, i.e. ϕ_{\star}^{4} -theory;

$$\mathcal{L}_{\phi^4 \star} = \frac{1}{2} \nabla \phi \star \nabla \phi - \frac{m^2}{2} \phi \star \phi - \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi.$$

Theorem 3; Any Groenewold-Moyal translation-invariant quantum field theory admits the twisted Poincare symmetry due to $U(\mathcal{P})_{\chi_{G-M}}$.

- Let $C^n(\mathbb{R}^m) \subseteq C^\infty(\mathbb{R}^m \times \cdots \times \mathbb{R}^m)$, $n \ge 0$ copies of \mathbb{R}^m , be the complex vector spaces generated by smooth functions f with properties of:
 - a) $C^0(\mathbb{R}^m) = \{0\}.$
 - b) For n = 1, f(0) = 0,
 - c) For n = 2, f(p, 0) = f(p, p) = 0,
 - d) For $n \ge 3$, $f(p_1, ..., p_{n-1}, 0) = f(p_1, ..., p_k, q, q, p_{k+1}, ..., p_{n-2}) = 0$, $k \le n-2$, for any $q, p, p_1, ..., p_{n-1} \in \mathbb{R}^m$.
- Consider the linear maps $\partial_n : C^n(\mathbb{R}^m) \to C^{n+1}(\mathbb{R}^m)$, commonly denoted by ∂ , defined by;

$$\partial_n f(p_0, ..., p_n) := \varepsilon_n \sum_{i=0}^n (-)^i f(p_0, ..., p_{i-1}, \hat{p}_i, p_{i+1}, ..., p_n) + \varepsilon_n (-)^{n+1} f(p_0 - p_n, ..., p_{n-1} - p_n) ,$$

 $f \in C^n(\mathbb{R}^m)$, with $\varepsilon_n = 1$ for odd n and $\varepsilon_n = i$ for n even.

- It is easily seen that; $\partial^2 = \partial_n \circ \partial_{n-1} = 0$ for any $n \in \mathbb{N}$.
- ightharpoonup Definition 1; (Galluccio-Lizzi-Vitale) By definition α-cohomology is the cohomology theory of complex;

$$0 = \mathsf{C}^0(\mathbb{R}^m) \overset{\partial_0}{\to} \mathsf{C}^1(\mathbb{R}^m) \overset{\partial_1}{\to} \dots \overset{\partial_{n-1}}{\longrightarrow} \mathsf{C}^n(\mathbb{R}^m) \overset{\partial_n}{\to} \dots \ .$$

Then the nth α -cohomology group is defined by; $H_{\alpha}^{n}(\mathbb{R}^{m}) \coloneqq Ker\partial_{n}/Im\partial_{n-1}$. As a generic convention the notation of $\alpha_{1} \sim \alpha_{2}$ is used for two α -cohomologous n-cocycles α_{1} and α_{2} . The cohomology class of $\alpha \in Ker\partial_{n}$ is shown by $[\alpha]$.

Lemma 1; $\alpha \in C^2(\mathbb{R}^m)$ generates a translation-invariant star product if and only if α is a 2-cocycle, i.e.; $\partial \alpha = 0$.

- Corollary 1; $H^2_{\alpha}(\mathbb{R}^m)$ classifies translation-invariant star products over $S_{c,1}(\mathbb{R}^m)$ modulo the coboundary terms.
- It can be easily seen that if $[\alpha] = 0$ (i.e. $\alpha = \partial \beta$ for some $\beta \in C^1(\mathbb{R}^m)$) then α is a commutative generator (i.e. α generates a commutative star product).
- Theorem 1; α is a commutative generator if and only if $[\alpha] = 0$. (arXiv:1210.0695 [math-ph])

Corollary 2; $H^2_{\alpha}(\mathbb{R}^m)$ classifies translation-invariant star products over $S_{c,1}(\mathbb{R}^m)$ up to commutativity.

Definition 2; An algebraic homomorphism from $S_{c,1}(\mathbb{R}^m)_{\star_1}$ to $S_{c,1}(\mathbb{R}^m)_{\star_2}$, say T, is translation-invariant if for any $f \in S_{c,1}(\mathbb{R}^m)$, $T(\partial_{\mu}f) = \partial_{\mu}T(f)$. If T is invertible we may write $\star_1 \sim \star_2$.

Theorem 2; $\star_1 \sim \star_2$ if and only if the generators of \star_1 and \star_2 are α-cohomologous (i.e. $\alpha_1 \sim \alpha_2$).

Corollary 3; $H^2_{\alpha}(\mathbb{R}^m)$ classifies all translation-invariant algebraic structures over $S_{c,1}(\mathbb{R}^m)$ up to isomorphism.

Example in Quantum Physics:

The Groenewold-Moyal product, \star_{G-M} , and the Wick-Voros product, \star_{W-V} , are respectively generated by 2-cocycles $\alpha_{G-M}(p,q)=iq^{\mu}\theta_{A\,\mu\nu}p^{\nu}$ and $\alpha_{W-V}(p,q)=\alpha_{G-M}(p,q)+q^{\mu}\theta_{S\,\mu\nu}(p-q)^{\nu}$, $p,q\in\mathbb{R}^m$, for θ_A an anti-symmetric and θ_S a symmetric real fixed matrix.

It is clear that α_{G-M} and α_{W-V} differ in a commutative 2-cocycle. Thus, α_{G-M} and α_{W-V} are α -cohomologous and belong to the same class of $H^2_{\alpha}(\mathbb{R}^m)$ commonly shown by $[\alpha_{G-M}]$. Moreover $\star_{G-M} \sim \star_{W-V}$.

The Hodge Theorem in α-Cohomology, the Harmonic Forms and the Harmonic * Products

Lemma 1; To any generator α one can correspond the other generator with;

$$\alpha'(p,q) \coloneqq \frac{1}{2} (\alpha(p,q) + \alpha(-p,-q)),$$

for $p, q \in \mathbb{R}^m$ (i.e. $\partial \alpha' = 0$).

- **Lemma 2**; For any 2-cocycle α , $\alpha \sim \alpha'$.
- **Lemma 3**; Any generator α can be written as a sum of two following generators;

$$\alpha_{-}(p,q) \coloneqq \frac{1}{2} (\alpha(p,q) - \alpha(-p,q-p)),$$

$$\alpha_{+}(p,q) \coloneqq \frac{1}{2} (\alpha(p,q) + \alpha(-p,q-p)),$$

for $p, q \in \mathbb{R}^m$ (i.e. $\partial \alpha_- = \partial \alpha_+ = 0$).

Lemma 4; For any 2-cocycle α , $\alpha \sim \alpha_{-}$.

The Hodge Theorem in α-Cohomology, the Harmonic Forms and the Harmonic * Products

- Corollary 1; For any 2-cocycle α , $\alpha \sim (\alpha')_- = (\alpha_-)' = \alpha'_-$.
- > It is easy to see that for any generator α ;

$$\begin{cases} \alpha'_{-}(p,q) = -\alpha'_{-}(p,p-q) \\ \alpha'_{-}(p,q) = \alpha'_{-}(-p,-q) \\ \alpha'_{-}(p,q) = -\alpha'_{-}(q,p) \end{cases} , \qquad (*)$$

for any $p, q \in \mathbb{R}^m$.

Theorem 1; (The Hodge Theorem in α -Cohomology) For any cohomology class of $H^2_{\alpha}(\mathbb{R}^m)$ there exists a unique element which satisfies the conditions (*). (arXiv:1210.0695 [math-ph])

The Hodge Theorem in α -Cohomology, the Harmonic Forms and the Harmonic \star Products

Definition 1; According to the Hodge theorem, any generator satisfying conditions (*) is called a harmonic form. Also a translation-invariant star product generated by a harmonic form is called a harmonic star product.

For any $[\alpha] \in H^2_{\alpha}(\mathbb{R}^m)$ the harmonic form is shown by α_H . Also \star_H is used for the relevant harmonic star product.

Lemma 5; Harmonic star products disappears under integration, i.e. for any $f, g \in S_c(\mathbb{R}^m)$;

$$\int_{\mathbb{R}^m} f \star_H g = \int_{\mathbb{R}^m} fg .$$

The Hodge Theorem in α -Cohomology, the Harmonic Forms and the Harmonic \star Products

Example in Quantum Physics:

It easy to see that α_{G-M} obeys the properties of harmonic forms. Thus it is the harmonic form of α -cohomology class $[\alpha_{G-M}]$. Moreover \star_{G-M} disappears under integration.

Lemma 6; For any arbitrary element of $[α] ∈ H^2_α(\mathbb{R}^m)$, say α;

$$\alpha_H(p,q) = \frac{1}{2} (\alpha(p+q,q) - \alpha(p+q,p)),$$

 $p,q \in \mathbb{R}^m$.

- ▶ Lemma 7; For any $r ∈ \mathbb{R}$ and any $p ∈ \mathbb{R}^m$; $\alpha_H(rp, p) = 0$.
- Corollary 2; The real line never admits non-commutative translationinvariant star product.

Definition 1; Star product \star is complex if and only if for any $f,g \in S_{c,1}(\mathbb{R}^m)$; $(f \star g)^* = g^* \star f^* \, .$

Lemma 1; Generator α generates a complex translation-invariant star product if and only if for any $p, q ∈ \mathbb{R}^m$;

$$\alpha^*(p,q) = \alpha(-p,q-p).$$

- Examples in Quantum Physics:
- To have a real valued Lagrangian density (action) or more precisely to have a Hermitian Hamiltonian only the complex star products are allowed in quantum physics.
- Groenewold-Moyal and Wick-Voros star products both are complex.

Definition 2; By definition α^* -cohomology is the cohomology of complex

$$0 = C^0_*(\mathbb{R}^m) \xrightarrow{\partial_0} C^1_*(\mathbb{R}^m) \xrightarrow{\partial_1} \dots \xrightarrow{\partial_{n-1}} C^n_*(\mathbb{R}^m) \xrightarrow{\partial_n} \dots ,$$

where $C^n_*(\mathbb{R}^m)$ is the cochain of elements $f \in C^n(\mathbb{R}^m)$, with property

$$f^*(p_1,\ldots,p_n) = f(-p_1,p_n-p_1,p_{n-1}-p_1,\ldots,p_2-p_1), \qquad p_1,\ldots,p_n \in \mathbb{R}^m.$$

In fact the nth α^* -cohomology group is; $H^n_{\alpha^*}(\mathbb{R}^m) := Ker\partial_n/Im\partial_{n-1}$ (i.e. complex n-cocycles modulo complex n-coboundaries).

- Lemma 2; Inclusions $i_n: C^n_*(\mathbb{R}^m) \hookrightarrow C^n(\mathbb{R}^m)$, lead to a family of injections; $i_{n_*}: H^n_{\alpha^*}(\mathbb{R}^m) \hookrightarrow H^n_{\alpha}(\mathbb{R}^m)$.
- Corollary 1; $H^2_{\alpha^*}(\mathbb{R}^m)$ classifies the complex translation-invariant star products up to commutativity.

- Lemma 3; The Hodge theorem of α -cohomology can be refine to $H^2_{\alpha^*}(\mathbb{R}^m)$.
- Corollary 2; If $[\alpha]$ belongs to $H^2_{\alpha^*}(\mathbb{R}^m) \subseteq H^2_{\alpha}(\mathbb{R}^m)$, then $[\alpha^*]$ is the dual of $[\alpha]$ in the sense of;

$$[\alpha] + [\alpha^*] = 0.$$

- This is called the pure imaginary condition for α -cohomology classes.
- Theorem 1; $H_{\alpha^*}^2(\mathbb{R}^m)$ is the collection of all pure imaginary classes of $H_{\alpha}^2(\mathbb{R}^m)$.
- Corollary 3; dim $H^2_{\alpha}(\mathbb{R}^m) = 2 \dim H^2_{\alpha^*}(\mathbb{R}^m)$.
- $\qquad \text{Corollary 4: } H^2_{\alpha}(\mathbb{R}^m) = H^2_{\alpha^*}(\mathbb{R}^m) \otimes_{\mathbb{R}} \mathbb{C}.$
- Example in Quantum Physics:

 α_{G-M} is a pure imaginary complex 2-cocycle thus it must be harmonic.

Theorem 2; (The Quantum Equivalence Theorem) Consider two complex translation-invariant star products \star_1 and \star_2 . Then $\star_1 \sim \star_2$ if and only if there exists a fixed $\beta \in C^{\infty}(\mathbb{R}^m)$, with $\beta(0) = 0$, such that for any $n \geq 1$, the equality

$$\tilde{G}_{\star_1 \text{ conn.}}(p_1, ..., p_n) = e^{\sum_{i=1}^n \beta(p_i)} \tilde{G}_{\star_2 \text{ conn.}}(p_1, ..., p_n)$$

holds for any given renormalizable quantum field theory, where $G_{\text{conn.}}$ is any connected n-point function, $G_{\star \text{ conn.}}$ is its non-commutative version for the star product \star and $\tilde{G}_{\star \text{ conn.}}(p_1, ..., p_n)$ is its Fourier transform for the modes $\{p_i\}_{i=1}^n$. Therefore α^* -cohomology produces the most general classification of translation-invariant quantum field theories via the view points of quantum physics. (arXiv:1210.0695 [math-ph])

- Corollary 5; All the quantum behaviors of Wick-Voros non-commutative quantum field theories coincide thoroughly with those of Groenewold-Moyal ones.
- Corollary 6; The Grosse-Wulkenhaar approach and the method of $1/p^2$ for renormalizing the Groenewold-Moyal non-commutative ϕ^4 -theory also work well for Wick-Voros non-commutative ϕ^4 -theory.
- Theorem 3; (The 2nd Version of Quantum Equivalence Theorem) Consider two complex translation-invariant star products \star_1 and \star_2 . Then $\star_1 \sim \star_2$ if and only if for any renormalizable quantum field theory \mathcal{L} , its two translation-invariant (non-commutative) version \mathcal{L}_{\star_1} and \mathcal{L}_{\star_2} have the same scattering matrix.

- Theorem 4; Suppose that \star is generated by complex 2-cocycle α . Then the structures of all quantum behaviors of a translation-invariant quantum field theory with star product \star , such as (non-) renormalizability, unitarity, causality, locality, the structure of UV/IR mixing, the forms of singularities of n-point functions, ..., are thoroughly explained by the harmonic form of $[\alpha] \in H^2_{\alpha^*}(\mathbb{R}^m)$.
- Corollary 7; $H^2_{\alpha^*}(\mathbb{R}^m)$ classifies the structures of all quantum behaviors of translation-invariant quantum field theories.
- Corollary 8; Any commutative translation-invariant ϕ^4 -theory (gauge theory) is local, causal, unitary and renormalizable.

- Recall that any Groenewold-Moyal 2-cocycle is a complex harmonic form.
- > Theorem 1; (The Theorem of Harmonic Forms) Any complex harmonic form is a Groenewold-Moyal 2-cocycle. (arXiv:1210.1004 [math-ph])
- Corollary 1; dim $H^2_{\alpha^*}(\mathbb{R}^m) = m(m-1)/2$. More precisely; $H^2_{\alpha^*}(\mathbb{R}^m) = \{\theta \in \mathbb{M}_{m \times m}(\mathbb{R}) | \theta \text{ is anti symmetric} \}.$
- Corollary 2; dim $H^2_{\alpha}(\mathbb{R}^m) = m(m-1)$. More precisely; $H^2_{\alpha}(\mathbb{R}^m) = \{\theta \in \mathbb{M}_{m \times m}(\mathbb{C}) | \theta \text{ is anti symmetric} \}.$

In fact any harmonic form α_H , is given by an anti-symmetric matrix θ_A , i.e. $\alpha_H(p,q) = p^{\mu}\theta_{A\,\mu\nu}q^{\nu}, p,q \in \mathbb{R}^m.$

 \triangleright Corollary 3; Any complex generator α can be uniquely written as;

$$\alpha = \alpha_{G-M} + \partial \beta ,$$

for $\beta \in C^1_*(\mathbb{R}^m)$ and for $\alpha \sim \alpha_{G-M}$.

- Corollary 4; According to quantum equivalence theorem for any general translation-invariant non-commutative quantum field theory there is a particular Gronwold-Moyal non-commutative quantum field theory with exactly the same quantum effects and physical out-comings such as n-point functions and the scattering matrix.
- Corollary 5; Studying the Groenewold-Moyal non-commutative quantum field theories covers the whole domain of translation-invariant noncommutative quantum field theories.

- The domain of translation-invariant star products can consistently be extended to the space of polynomials over coordinate functions.
- Lemma 1; Suppose that \star is a translation-invariant star product generated by 2-cocycle α . Then the non-commutative structure of space-time, i.e. $[x^{\mu}, x^{\nu}]_{\star} := x^{\mu} \star x^{\nu} x^{\nu} \star x^{\mu}$, $\mu, \nu = 0, ..., m 1$, is thoroughly determined by the α -cohomology class of generator α , $[\alpha] ∈ H^2_{\alpha}(\mathbb{R}^m)$. Moreover the matrix of commutators is the anti-symmetric matrix of α_H .
- Corollary 6; Consider two translation-invariant star products \star_1 and \star_2 . Then $\star_1 \sim \star_2$ if and only if \star_1 and \star_2 lead to the same non-commutative structure of space-time.

Corollary 7; (Kontsevich's Theorem for Translation-Invariant Star Products)

The non-commutative structure of space-time is sufficient for studding the structure of quantum behavior for any translation-invariant quantum field theory.

In fact from quantum physics point of view the only fundamental data is the non-commutative structure of space-time, but not the star product.

Corollary 8; There is no translation-invariant non-commutative star product on $S_{c,1}(\mathbb{R}^m)$ which is commutative at the level of coordinate functions. Thus, due to path integral formalism where the integration is taken over $S_{c,1}(\mathbb{R}^m)$, commutative space-time never admits non-commutative translation-invariant quantum field theories.

- Corollary 9; Due to Grosse-Wulkenhaar approach and the method of $1/p^2$ any translation-invariant non-commutative version of ϕ^4 -theory is renormalizable.
- Corollary 10; Any proposal for renormalizing the Groenewold-Moyal (non-commutative) gauge theories extends thoroughly to the collection of all translation-invariant non-commutative gauge theories.
- Corollary 11; Any translation-invariant star product is reflected by the Weyl-Wigner correspondence via a modified version of Weyl map, i.e.;

$$\hat{f} = \int \frac{d^m p}{(2\pi)^m} \int d^m x \, e^{i \sum_{i=1}^m p_i(\hat{x}_i - x_i)} f(x) \, e^{\beta(p)} \,,$$

 $f \in C^{\infty}(\mathbb{R}^m)$, for 1-cochain β and $[\hat{x}_{\mu}, \hat{x}_{\nu}] = \theta_{A \mu \nu}$, $0 \le \mu, \nu \le m-1$, leads to generator; $\alpha(p,q) = p^{\mu}\theta_{A \mu \nu}q^{\nu} + \partial \beta(p,q)$.

Corollary 12; For any translation-invariant star product \star , $S_{c,1}(\mathbb{R}^m)_{\star}$ is an algebra in the category of $U(\mathcal{P}_m)_{\chi}$ -modules, where \mathcal{P}_m is the m-Poincare Lie algebra of $\{P_{\mu}, M_{\mu\nu}\}_{\mu,\nu=0}^{m-1}$, and $U(\mathcal{P}_m)_{\chi}$ is the Drinfeld twist of its universal enveloping algebra due to counital 2-cocycle;

$$\chi = \chi_{G-M}(1 \otimes e^{\beta(\vec{P})})(e^{\beta(\vec{P})} \otimes 1)(e^{-\beta(\vec{P} \otimes 1 + 1 \otimes \vec{P})}).$$

- Theorem 2; Any translation-invariant quantum field theory admits the twisted Poincare symmetry due to $U(\mathcal{P})_{\chi}$.
- Lemma 2; For any translation-invariant star product \star , χ and χ_{G-M} are Hopf algebra cohomologous in cohomology space $H^2(U(\mathcal{P}_m))$ ($\chi = \chi_{G-M} \partial e^{\beta(\vec{P})}$). Moreover, $H^2(U(\mathcal{T}_m)) = H^2_\alpha(\mathbb{R}^m)$ for \mathcal{T}_m the translation algebra of $\{P_\mu\}_{\mu=0}^{m-1}$.

The End