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Definition 1; By quantization of 2n-dimensional phase space R*", n > 1,
with global coordinate chart (xl, ,x“,pl, ..,p™), we mean a Hilbert space

#, and a linear map op: C*(R?") = L(H), f = f, such that;
a)l=1.

b) {x1, ..., x®,p1, ..., p", 1} generates the Heisenberg Lie algebra b,,.
c) H is minimal, i.e. b, is represented irreducibly over H.

OF ="

e) fg = (fg +gf)/2 forany f,g € C=(R?™),

f) in{f,g} = [f,§], for any f, g € C®(R?*™). (Dirac’sanalogy)



> Theorem 1; (Groenewold-van Hove No-Go Theorem) Quantization is
impossible.
» Definition 2; Consider a Heisenberg algebra generated by elements

{;f, ey X ET, ...,p™, 1} represented irreducibly over a Hilbert space #. Then

the Weyl quantization of Zn-dimensional phase space R?", n > 1, with
global Darboux’s coordinate chart (R?™; (x1, ..., x™,p%, ...,p™)) is essentially

alinear map op: C®(R2") = L(H), f = f, with;

n dnéd™ o geo n ra
f =I (zi)szdﬂx dp el Li=1 §ixi—x)+Lizs (PP £ (x, p) |

f € C*(R?*™), mostly referred to as the Weyl map.




Theorem 2; (Egorov’s Weak Quantization Theorem) The Weyl map defines a

quantization up to O (h?).

» Theorem 3; (Weyl-Wigner correspondense) (Wigner, 1932) The Weyl map is

invertible.

» Definition 3; By definition the Groenewold-Moyal star product, mostly shown

by *;_u, is defined with;
f*e-m g = op_l(fg‘) ’

for f,g € C*(R?M).

To be well-defined, *;_,, should be considered over S(R?™").



For 2n-dimensional phase space the Groenewold-Moyal product is given by;

d
yznaz”

dyH

9
f*6-mg(x) = exp (iﬁ‘“’— )f (x+y)gx+2),

z=0

f, g € S(R™), for anti-symmetric 8*Y with 9##*" = h /2,0 <pu <n— 1.

» Definition 4; Suppose that M is a Poisson manifold with Poisson structure
Z € I'(A’TM). A deformation quantization of M is an associative product, say

*, over C“ (M)[[h]], for formal parameter A, such that for any f, g € C*(M):
imfxg=fg lim(f x g — g * f)/ih = E(df,dg) -

If such star product exists over C*(M)[[#]], then M is said to be quantizable.



Groenewold-Moyal star product is used to quantize the symplectic planes

(tori) with constant symplectic forms: 9_1.uv dx* A dxV.

Theorem 4; (Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer, 1977) Any

Poisson manifold with torsion free flat Poisson connection is quanizable.

Theorem 5; (DeWilde, Lecomte, 1983, Kasarev, Maslov, 1984) By patching
together the Darboux’s charts in an appropriate setting any symplectic

manifold is quantizable.

Theorem 6; (Fedosov, 1985) Any regular Poisson manifold M (a Poisson
manifold with constant RankZ) admits a flat connection over the Weyl

algebrabundle, W(TM), due to the Lie algebras of Darboux’s charts.



» Theorem 7; (Fedosov’'s Theorem) Using the Weyl structure for I'(W(TM))

and C°(M)[[#]], any regular Poisson manifold M is quantizable.

» Theorem 8; (Kontsevich Quantization Theorem) Any Poisson manifold M is
quantizable. In fact there exists a one to one correspondence between the
collection of deformation quantization and the set of Poisson structures
over a manifold up to isomorphism. The quantization formulais then;

. n
frg="rg +anl(§) > wrB(f,9).
FeG,(2)
f,g € C*(M), where G, (2) is the set of oriented graphs with 2n segments, 2
external vertices and with no loop. wr is the number of equivalent graphs

and By is a partial differential operator due to graph I'.



Examples in Quantum Physics:

The phase space of quantum mechanics has a natural symplectic form.
[Weyl-Wigner-Moyal formalism, 1949]

In string theory with background B(= B,,,,dx* A dx") field the Groenewold-
Moyal star product appears for B as a regular Poisson structure. [Witten,

1986]

The true phase space of a quantum (semi-classical) theory with an intrinsic

symmetry is a Poisson manifold which can be non-regular. [Marsden-

Weinstein, 1974]



Non-commutative structure of space-time manifold, M, is given by:
*CZ(M)®CE(M) » C2(M) ,f®g = f *g,

for f,g,h € C°(M), given by a deformation quantization.

Forall0 < u,v <m—1,andforany f,g € C.°(R™):

d d
ax“(f c-m9) = (Bx” )*G—Mg+f*G—M (@9)

Definition 1; The star product x on C:°(R™) is translation-invariant if and
only if there exists a global coordinate chart, say (Rm,{x“}L“;(,l), such that
forany0 < y,v <m-—1,andany f, g € C°(R™):

0 d 0
M—#(f*g)=(@) g+f* (ax#g)
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Lemma 1; If xis a translation-invariant product on CZ°(R™) then for any

f,g € CZ(R™); T,(f xg) =T,(f) »T,(g), for T, any translation operator

along (R™, {x*}1=3' ), i.e; T, () (x) = f(x + a).

Theorem 1; (Galluccio-Lizzi-Vitale) Put a global chart on R™, say
(R™, {x”}ﬁ‘;nl , then any translation-invariant star product over C:°(R™) is

given by;

(f*g)() = f (::;)m (gm)‘,_{n F(q) 3 (p)e®@+aD i +a)x

T

fora € C°(R™ x R™) the generator of x, which obeys the cyclic property:
a(p,r+s)+al+sr)=alpr)+alp-—rs),

forany p,r,s € R™. (arXiv:0907.3640 [hep-th])
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In fact the cyclic property is equivalent to associativity of star product *, i.e.;

(f*g)*h=[fx(gxh),¥f, g heCZR™).

From now on we restrict ourselves to (R™, {x”}an_ol).

Lemma 2; Suppose S.(R™) is the set of Schwartz class functions with
compactly supported Fourier transforms, then S.(R™) is closed under any
translation-invariant star product. The algebra then is denoted by S.(IR™)..

Translation-invariant x products can be extended to S, ; (R™) = S.(R™)®C

as a unital algebra. The unital algebra then is denoted by S, ; (R™)..

Definition 2; a is a commutative generator if it generates a commutative star

product.




» Theorem 2; S ;(R™),. . is an algebra in the category of U(%y),._,,-

modules, where 7, is the m-Poincare Lie algebra of {F, V}#V_O, and

U(Pm)yc_p is the Drinfeld twist of its universal enveloping algebra due to

the Groenewold-Moyal counital 2-cocycle yo_p = e~ 0¥ Pu®Py,

» Definition 3; A translation-invariant quantum field theory is a quantum field

theory together with a translation-invariant star product, i.e. ¢}-theory;

1 m? A
£¢4*=EV¢*V¢_7¢*¢_E¢*¢’*¢*¢-

» Theorem 3; Any Groenewold-Moyal translation-invariant quantum field

theory admits the twisted Poincare symmetry due to U(P),._,.-
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Let ("(R™) € C®(R™ x ---x R™), n > 0 copies of R™, be the complex

vector spaces generated by smooth functions f with properties of:

a) C°(R™) = {0}.

b)Forn =1, f(0) =0,

c) Forn =2, f(p,0) = f(p.p) =0,

d) Forn = 3, f(p1, - Pn-1,0) = f(P1, Pl @ @ Pics1s -+ Pn—2) = 0,k <n — 2,
foranygq,p, pq, ..., Pn—1 € R™.

Consider the linear maps d,: C"(R™) - ("*1(R™), commonly denoted by d,
defined by;

n
0uf o P) = £ ) (=) FPoy wesDims,PisPis1s )

1=0
+ En(_)n+1f(p0 — Pny s Pn—-1— pn) ’

f € C"(R™), with e, = 1 for odd n and &,, = i for n even.



- Itis easily seen that; 92 = 9,, © d,,_, = 0 for anyn € N.

» Definition 1; (Galluccio-Lizzi-Vitale) By definition a-cohomology is the

cohomology theory of complex;

— (0 my 201 omy 91 On-1 g oy On
0 =C"(R™) -CH(R™) - ...—C"(R™) — ...

Then the nth a-cohomology group is defined by; H} (R™) := Kerd,, /Imad,,_;.
As a generic convention the notation of a;~a, is used for two «a-
cohomologous n-cocycles a; and a,. The cohomology class of @ € Kerd,, is

shown by [a].

> Lemma 1; a € C*(R™) generates a translation-invariant star product if and

only if @ is a 2-cocycle, i.e.; da = 0.



Corollary 1; HZ(R™) classifies translation-invariant star products over

S¢1(R™) modulo the coboundary terms.

[t can be easily seen that if [a] = 0 (i.e. « = 9 for some € C}*(R™)) then a

is a commutative generator (i.e. « generates a commutative star product).

Theorem 1; a is a commutative generator if and only if [a] =0.

(arXiv:1210.0695 [math-ph])

Corollary 2; HZ(R™) classifies translation-invariant star products over

S¢1(R™) up to commutativity.



v

Definition 2; An algebraic homomorphism from S.;(R™), to S.;(R™),,,
say T, is translation-invariant if for any f € S_ ; (R™), T(aﬂf) =0,T(f). If T

is invertible we may write *x; ~ .

» Theorem 2; x; ~*, if and only if the generators of *; and %, are a-

cohomologous (i.e. a;~a,).

> Corollary 3; H2(R™) classifies all translation-invariant algebraic structures

over S¢ 1 (R™) up to isomorphism.



Example in Quantum Physics:
The Groenewold-Moyal product, *,_p;, and the Wick-Voros product,
*—y, are respectively generated by 2-cocycles ag_y(p,q) = iq"0 4 ,,p"

and ay_y(p,q) = ag_u(P. q) +q"05,, (P —q)", p,q €R™, for 6,4 an

anti-symmetric and 65 a symmetric real fixed matrix.

It is clear that a;_y and ay,_y differ in a commutative 2-cocycle. Thus,
ac_y and ay,_y are a-cohomologous and belong to the same class of

HZ(R™) commonly shown by [@;_]. Moreover *;_p ~ *y_y-



Lemma 1; To any generator a one can correspond the other generator with;

' (. q) =5 (a@p q) +al-p,—q)),
forp,q € R™ (i.e.da’ = 0).

» Lemma2; For any 2-cocycle a, a~a'.

» Lemma 3; Any generator a can be written as a sum of two following
generators,

1
a_(p,q) ==§(a(p,q) —a(-p,q—p)),

1
ar(p,q) =7 (alp,q) +al=p,q—-p)),
forp,q € R™ (i.e.da_ = da, = 0).

Lemma 4; For any 2-cocycle a, a~a_.



Corollary 1; For any 2-cocycle a, a~(a')_= (a_)'= a’.

» Itis easy to see that for any generator a;

a’l(p,q) = —al(p,p — q)
al(p,q) = aL(—p,—q) : (*)
al(p,q) = —al(q,p)

forany p,q € R™.

» Theorem 1; (The Hodge Theorem in a-Cohomology) For any cohomology

class of HZ(R™) there exists a unique element which satisfies the conditions

(*). (arXiv:1210.0695 [math-ph])
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Definition 1; According to the Hodge theorem, any generator satisfying

conditions (*) is called a harmonic form. Also a translation-invariant star

product generated by a harmonic form is called a harmonic star product.

For any [a] € HZ(R™) the harmonic form is shown by ay. Also * is used

for the relevant harmonic star product.

Lemma 5; Harmonic star products disappears under integration, i.e. for any
f19 € Sc(R™);

f*ug=1| fg.
R™M RM




Example in Quantum Physics:

[t easy to see that a;_,, obeys the properties of harmonic forms. Thus it is
the harmonic form of a-cohomology class [a;_;]. Moreover *._y

disappears under integration.

Lemma 6; For any arbitrary element of [a] € HZ(R™), say «;
ay(p,q) = %(a(p +q,9)—alp+aqp)),

p,q € R™,

Lemma 7; Foranyr € Rand any p € R™; ay(rp,p) = 0.

Corollary 2; The real line never admits non-commutative translation-

invariant star product.



GO NoMology and Classification of Trﬂ nslation-

VAT an N on=Commutative Quantum Field Theories

LIrd

Definition 1; Star product * is complex if and only if for any f, g € S, 1 (R™);
(frg)'=g *f".
~  Lemma 1; Generator a generates a complex translation-invariant star

product if and only if for any p, g € R™;

a*(p,q) = a(=p,q—p).
- Examples in Quantum Physics:

1. To have a real valued Lagrangian density (action) or more precisely to have
a Hermitian Hamiltonian only the complex star products are allowed in

quantum physics.

Groenewold-Moyal and Wick-Voros star products both are complex.



e GON0MmMology and Classification of T‘m nslation-

IVarantion=Commutative Quantu ‘jeld Theories

Definition Z; By definition «" -cohomologyis the cohomology of complex

60 61 an,—1 an
0=CE®R™-CGER)-..—C(R™) - ... ,
where C?(IR™) is the cochain of elements f € C"*(R™), with property
f @1, 00) = f(=P1,Pn — P1,Pn-1 — P1,»P2 —P1)s  P1,Pn € R™.

In fact the nth a*-cohomology group is; H):(R™) := Kerd,,/Imd,_, (i.e.

complex n-cocycles modulo complex n-coboundaries).

Lemma 2; Inclusions i,,: C}(R™) < C*(R™), lead to a family of injections;

ip.: H%(R™) & HE(R™).

Corollary 1; H}(Rm) classifies the complex translation-invariant star

products up to commutativity.



o0 mMology and Classification of Translation-

invarantion=Commutative Quantum Field Theories

Lemma 3; The Hodge theorem of a-cohomology can be refine to H3.(R™).

Corollary 2; If [a] belongs to HZ.(R™) € HZ(R™), then [a*] is the dual of [a]
in the sense of;

la] + [a®] =0.
This is called the pure imaginary condition for a-cohomology classes.

Theorem 1; H}(Hm) is the collection of all pure imaginary classes of
HZ(R™).

Corollary 3; dim HZ(R™) = 2 dim HZ.(R™).

Corollary 4; H2(R™) = HZ.(R™)®C.

Example in Quantum Physics:

@;_p 1S @ pure imaginary complex 2-cocycle thus it must be harmonic.



e CoNomology and Classification of Translation-

InvaniantionCommutative Quantum Field Theories

Theorem 2; (The Quantum Equivalence Theorem) Consider two complex
translation-invariant star products *; and *,. Then *x; ~*, if and only if there
exists a fixed f € C*(R™), with f(0) = 0, such that for any n > 1, the
equality

th conn.(P1, -, Pn) = eli- 1O G, *5 CONN. (P1) - Pn)

holds for any given renormalizable quantum field theory, where Gy, is any
connected n-point function, G, .onn. 1S its non-commutative version for the
star product * and G, .oy (P1, -, P) is its Fourier transform for the modes
{pi}ic1- Therefore a*-cohomology produces the most general classification

of translation-invariant quantum field theories via the view points of

quantum physics. (arXiv:1210.0695 [math-ph])



e CoNomology and Classification of Translation-

InvaniantionCommutative Quantum Field Theories

Corollary 5; All the quantum behaviors of Wick-Voros non-commutative
quantum field theories coincide thoroughly with those of Groenewold-Moyal

ones.

Corollary 6; The Grosse-Wulkenhaar approach and the method of 1/p? for
renormalizing the Groenewold-Moyal non-commutative ¢*-theory also

work well for Wick-Voros non-commutative ¢ *-theory.

Theorem 3; (The 2nd Version of Quantum Equivalence Theorem) Consider
two complex translation-invariant star products *; and *,. Then *;~x, if

and only if for any renormalizable quantum field theory L, its two
translation-invariant (non-commutative) version L, . and L*z have the same

scattering matrix.




e CoNomology and Classification of Translation-

InvaniantionCommutative Quantum Field Theories

Theorem 4; Suppose that x is generated by complex 2-cocycle a. Then the
structures of all quantum behaviors of a translation-invariant quantum field
theory with star product %, such as (non-) renormalizability, unitarity,
causality, locality, the structure of UV/IR mixing, the forms of singularities of

n-point functions, ..., are thoroughly explained by the harmonic form of

[a] € HZ.(R™).

Corollary 7; His(lfﬁm) classifies the structures of all quantum behaviors of
translation-invariant quantum field theories.

Corollary 8; Any commutative translation-invariant ¢*-theory (gauge
theory) is local, causal, unitary and renormalizable.



Recall that any Groenewold-Moyal 2-cocycle is a complex harmonic form.

» Theorem 1; (The Theorem of Harmonic Forms) Any complex harmonic form

is a Groenewold-Moyal 2-cocycle. (arXiv:1210.1004 [math-ph])

> Corollary 1;dim H2.(R™) = m(m — 1)/2. More precisely;
HZ.(R™) = {0 € M, (R)|0 is anti — symmetric} .

> Corollary 2; dim HZ(R™) = m(m — 1). More precisely;
HZ(R™) = {6 € M,,, ., (C)|8 is anti — symmetric}.

In fact any harmonic form ay, is given by an anti-symmetric matrix 8, i.e.

ay (@, q) =p*0,,,9", 0. q ER™.




hE

Corollary 3; Any complex generator a can be uniquely written as;
a=as_y+ap,
for B € C1(R™) and for a~ag_y.

Corollary 4; According to quantum equivalence theorem for any general
translation-invariant non-commutative quantum field theory there is a
particular Gronwold-Moyal non-commutative quantum field theory with
exactly the same quantum effects and physical out-comings such as n-point

functions and the scattering matrix.

Corollary 5; Studying the Groenewold-Moyal non-commutative quantum
field theories covers the whole domain of translation-invariant non-

commutative quantum field theories.
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The domain of translation-invariant star products can consistently be

extended to the space of polynomials over coordinate functions.

Lemma 1; Suppose that x is a translation-invariant star product generated
by 2-cocycle @. Then the non-commutative structure of space-time, i.e.
[xH, xV],=xH o x¥V —xV *xx*, u,v =0, ..,m—1, is thoroughly determined
by the a-cohomology class of generator a, [a] € HZ(R™). Moreover the

matrix of commutators is the anti-symmetric matrix of ay.

Corollary 6; Consider two translation-invariant star products *; and *,.
Then x;~x%, if and only if x; and *, lead to the same non-commutative

structure of space-time.




-
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Corollary 7; (Kontsevich's Theorem for Translation-Invariant Star Products)
The non-commutative structure of space-time is sufficient for studding the
structure of quantum behavior for any translation-invariant quantum field

theory.

In fact from quantum physics point of view the only fundamental data is the

non-commutative structure of space-time, but not the star product.

Corollary 8; There is no translation-invariant non-commutative star product
on S, 1 (R™) which is commutative at the level of coordinate functions. Thus,
due to path integral formalism where the integration is taken over S, ; (R™),
commutative space-time never admits non-commutative translation-

invariant quantum field theories.



-

Corollary 9; Due to Grosse-Wulkenhaar approach and the method of 1/p?
any translation-invariant non-commutative version of ¢* -theory is

renormalizable.

Corollary 10; Any proposal for renormalizing the Groenewold-Moyal (non-
commutative) gauge theories extends thoroughly to the collection of all

translation-invariant non-commutative gauge theories.

Corollary 11; Any translation-invariant star product is reflected by the Weyl-

Wigner correspundence via a modified version of Weyl map, i.e.;

_~

f= (Zn)m f dMyx el Ziz1 Pi(®i—xp) f(x) eP®)

f € C*(R™), for 1-cochain f and [X,, X, ] = 04 41, 0 < u,v <m — 1, leads to

generator; a(p, q) = p*0,4 ,,q" + B (P, q).




Mo
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Corollary 12; For any translation-invariant star product *, S. ;(R™), is an
algebra in the category of U(%,,),-modules, where 7, is the m-Poincare Lie
algebra of {F, }#v_ﬂ, and U(%®,,), is the Drinfeld twist of its universal

enveloping algebra due to counital 2-cocycle;

X = X6-u(18ePP))(eF(P) @ 1) (e~A(P ® 1+18P))

Theorem 2; Any translation-invariant quantum field theory admits the

twisted Poincare symmetry due to U(P),.
Lemma 2; For any translation-invariant star product *, ¥ and y;_,s are Hopf
algebra cohomologous in cohomology space H*(U(®,,)) (x =)((;_Maeﬁ(‘3)).

Moreover, H(U(J;,)) = HZ(R™) for Ty, the translation algebra of {P, }=¢'
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