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.. Metric representation

.
Definition (Slater 1975, Harary and Melter 1976)
..

......

For an ordered set W = {w1,w2, . . . ,wk} of vertices in a
connected graph G and a vertex v of G , the metric representation
of v with respect to W is the k-vector

r(v |W ) = (d(v ,w1), d(v ,w2), . . . , d(v ,wk))

where d(x , y) represents the distance between the vertices x and y .
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.. Metric dimension

.
Definition (Slater 1975, Harary and Melter 1976)
..

......

A set W is called a resolving set for G if the vertices of G have
distinct representations with respect to W . The members of a
resolving set are called landmarks.

A resolving set containing a minimum number of vertices is called
a basis for G . The number of vertices in a basis for G is its metric
dimension and denoted by dim(G ). If dim(G ) = k, then G is
called a k-dimensional graph.
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.. Warm up!

.
Example
..

......

A graph with metric dimension 2. Metric representations are
shown on the vertices. The red vertices are landmarks.
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.. Robot navigation (Khuller and Raghavachari 1996)

A moving point in a graph may be located by finding the distance
from the point to a collection of sonar stations which have been
properly positioned in the graph.

Problem
Finding a minimal sufficiently large set of labelled vertices
such that robot can find its position.

Technique
Sufficiently large set of labelled vertices is a resolving set for
the graph space.
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.. Coin Weighing (Sebo and Tannier 2004)

Given n coins, each with one of two distinct weights, determine the
weight of each coin with the minimum number of weighings.
Weighings a set S of coins determine how many light coins are in
S and no further information.

Problem
Determining the weight of each coin with the minimum
number of weighings.

Static variant
The choice of sets of coins to be weighed is determined in
advance.

Technique
In static variant the minimum number of weighings differs
from dim(Qn) by at most 1.

7 / 37
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.. Mastermind

Mastermind is a game for two player, one code setter and the code
breaker. The code setter chooses a secret vector
s = [s1, s2, . . . , sn] ∈ {1, 2, . . . , k}n. The task of code breaker is to
infer the secret code by a series of questions, each a vector
t = [t1, t2, . . . , tn] ∈ {1, 2, . . . , k}n. The code setter answer the
number of positions in which the secret vector and the question
agree, denoted by a(s, t) = |{i : si = ti , 1 ≤ i ≤ n}|.
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.. Mastermind (Caceres et al. 2007)

Problem
Finding the minimum number of questions required to
determine the secret code, where the secret code and
questions are in {1, 2, . . . , k}n.
Static variant
The questions are determined in advance.
Technique
In the static variant the minimum number of questions is
dim(Hn,k), where Hn,k = Kk□Kk□ . . .□Kk︸ ︷︷ ︸

n

is the cartesian

product of n copy of complete graph Kk .
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.. Scheme of proof (Caceres et al. 2007)

Let S be the secret code, T be a question and a(S ,T ) be the
answer of T .

S and T are vertices of Hn,k .

d(S ,T ) = n − a(S ,T ).

The vector (a(S ,T1), a(S ,T2), . . . , a(S ,Tm)) uniquely
determines S if and only if (d(S ,T1), d(S ,T2), . . . , d(S ,Tm))
uniquely determines it.

Questions T1,T2, . . . ,Tm are sufficient for determining each
secret code if and only if {T1,T2, . . . ,Tm} is a resolving set
for Hn,k .
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.. Network Discovery (Beerliova et al. 2001)

A real world problem is the study of networks whose structure has
not been imposed by a central authority but arisen from local and
distributed processes. It is very difficult and costly to obtain a map
of all nodes and the links between them. A commonly used
technique is to obtain local view of the network from various
locations and combine them to obtain a good approximation for
the real network.

Problem
Determining edges and none-edges of a network.

Technique
Combining local maps of the network from landmarks.

Local map at a vertex v
The induced subgraph on the set of all edges on shortest
paths between v and any other vertex.

11 / 37
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..

.
Theorem (Khuller and Raghavachari 1996)
..

......

The problem of finding the metric dimension of a graph is
NP-complete. But there is a polynomial time algorithm for finding
the metric dimension of a tree. Also, there is a
2 log n-approximation algorithm for the metric dimension of each
graph.

.
Theorem (Diaz et al. 2012)
..

......

Finding the metric dimension of a planar graph is NP-complete.
But there is a polynomial time algorithm for finding the metric
dimension of an outer planar graph.
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.. Metric dimension of specific graphs

dim(Pn) = 1, each end vertices of Pn resolves it.

dim(Kn) = n − 1, because dim(Kn) + 1dim(Kn) ≥ n.

dim(Cn) = 2, each pair of adjacent vertex is a resolving set for
it, and each vertex can not resolve its neighbours.

The metric dimension of Petersen graph, P , is 3. Because
2 + 22 < 10 = n(P).
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The metric dimension of Petersen graph, P , is 3. Because
2 + 22 < 10 = n(P).
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.. Metric dimension of Johnson and Kneser graphs

The Kneser graph K (n, k), n ≥ 2k, has the collection of all
k-subsets of the set [n] = {1, . . . , n} as vertices and edges
connecting disjoint subsets. The vertices of Johnson graph J(n, k)
is the same as Kneser graph, but two k-subsets are adjacent when
their intersection has size k − 1.

14 / 37
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.. Metric dimension of Johnson and Kneser graphs

.
Theorem (Valencia et al. 2005)
..

......

For every two vertices U,V in J(n, k),

d(U,V ) = k − |U ∩ V |

For every two vertices U,V in K (2k + b, k), where |U ∩ V | = s,

d(U,V ) = min

{
2

⌈
k − s

b

⌉
, 2

⌈ s
b

⌉
+ 1

}
.
Corollary
..

......

Any resolving set for the Kneser graph K (n, k) is a resolving set for
J(n, k). Thus, dim(J(n, k)) ≤ dim(K (n, k)).

15 / 37
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.. An algebraic approach

Let S = {S1, . . . , St}, where each Si is a k-subset of [n]. Then the
incidence matrix of S is the t × n matrix whose rows are the
incidence vectors of S1, . . . , St .
.
Theorem (Bailey et al. 2013)
..

......

If S is a family of k-subsets of [n] whose incidence matrix has rank
n, then S is a resolving set for J(n, k).

.
Corollary
..

......

For every integer n, k, the metric dimension of the Johnson graph
J(n, k) is at most n.

16 / 37
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.. A combinatorial approach

A t-design with parameters (n, k, λ) is a pair (X ,B), where X is a
set of n points, and B is a family of k-subsets of X , called blocks,
such that any t elements of distinct points are contained in exactly
λ blocks.
A symmetric design is a 2-design on n points which the number of
blocks is n.
.
Corollary
..

......

The blocks of a symmetric design D with parameters (n, k, λ) form
a resolving set for J(n, k).

17 / 37



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Metric dimension
Applications

Some known results

Complexity
Specific graphs
Characterization
Graph operators
Bounds

.. A combinatorial approach

A t-design with parameters (n, k, λ) is a pair (X ,B), where X is a
set of n points, and B is a family of k-subsets of X , called blocks,
such that any t elements of distinct points are contained in exactly
λ blocks.
A symmetric design is a 2-design on n points which the number of
blocks is n.
.
Corollary
..

......

The blocks of a symmetric design D with parameters (n, k, λ) form
a resolving set for J(n, k).

17 / 37



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Metric dimension
Applications

Some known results

Complexity
Specific graphs
Characterization
Graph operators
Bounds

.. A combinatorial approach

A t-design with parameters (n, k, λ) is a pair (X ,B), where X is a
set of n points, and B is a family of k-subsets of X , called blocks,
such that any t elements of distinct points are contained in exactly
λ blocks.
A symmetric design is a 2-design on n points which the number of
blocks is n.
.
Corollary
..

......

The blocks of a symmetric design D with parameters (n, k, λ) form
a resolving set for J(n, k).

17 / 37



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Metric dimension
Applications

Some known results

Complexity
Specific graphs
Characterization
Graph operators
Bounds

.. A combinatorial approach

.
Theorem (Bailey et al. 2013)
..

......

Suppose there exists a Steiner System (k − 1)− (n, k, 1), where
n ≥ 4k − 2. Then its block form a resolving set for K (n, k). Thus,

dim(K (n, k)) ≤ 1

k

(
n

k − 1

)
.
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.. A combinatorial approach

A partial geometry with parameter (s, t, α), pg(s, t, α), is a pair
(P,L), consisting of a set of points P and a set of lines L
satisfying the following conditions:

any line is incident with s + 1 points, and the intersection of
any two lines is at most a single point;

any point is incident with t + 1 lines, and any two points are
in at most one line;

if a point p and a line L are not incident, then exactly α
points of L are collinear with p and exactly α lines incident
with p are concurrent with L.

19 / 37
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.. A combinatorial approach

.
Theorem (Bailey et al. 2013)
..

......

Let Γ be a partial geometry pg(s, t, α) with point set P and line
set L and t > s. Then L is a resolving set for the Kneser graph
K (v , s + 1).

For s = q − 1, t = q and α = q we have v = q2.
.
Corollary
..

......If q ≥ 3 is a prime power, then dim(K (q2, q)) ≤ q2 + q.

20 / 37
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The metric dimension of ... using ... is bounded by ...
J(n, k) ⌊k(n + 1)/(k + 1)⌋

K(2k + 1, k) = Ok+1 partitioning [n] 2k

K(n, k) ⌈ n
2k−1

⌉(
(2k−1

k

)
− 1)

K(n, k), diameter 3 2
(n−k

k

)
k-set system whose incidence

J(n, k) matrix has rank n n
(n, k, λ) symmetric design

J(q2 + q + 1, q + 1) projective plane of order q q2 + q + 1
J(4m − 1, 2m − 1),

K(4m − 1, 2m − 1) = O2m Hadamard design 4m − 1
K(n, 3) Steiner triple STS(n) n(n − 1)/6
K(n, k) Steiner triple STS(k − 1, k, n)

( n
k−1

)
/k

K(v , s + 1),
v = (s + 1)(st + α)/α partial geometry pg(s, t, α) (t + 1)(st + α)/α

K(q2, q) affine plane of order q q(q + 1)
K(q3, q) q2(q + 2)

K((q + 1)(q3 + 1), q + 1) generalized quadrangle (q2 + 1)(q3 + 1)
K((q2 + 1)(q5 + 1), q2 + 1) (q3 + 1)(q5 + 1)

K(n, 4)
K(n, 5) toroidal grid Cb□Cb 2ab = 2n
K(n, 6)
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.. Characterization

.
Theorem (Chartrand et al. 2000)
..

......

let G be a connected graph of order n ≥ 1. Then

dim(G ) = 1 if and only if G = Pn. Let {w} be a basis, for
each v , r(v |W ) = d(v ,w), thus there exists u with
d(u,w) = n − 1, so G = Pn.

dim(G ) = n − 1 if and only if G = Kn,otherwise there are
u, v ,w ∈ V (G ) such that u ∼ v and u ≁ w that is
V (G ) \ {v ,w} is a resolving set.

for n ≥ 4, dim(G ) = n − 2 if and only if G = Kr ,s , r , s ≥ 1,
G = Kr ∨ K s , r ≥ 1, s ≥ 2, or G = Kr ∨ (K1 ∪ Ks), r , s ≥ 1.
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each v , r(v |W ) = d(v ,w), thus there exists u with
d(u,w) = n − 1, so G = Pn.

dim(G ) = n − 1 if and only if G = Kn,otherwise there are
u, v ,w ∈ V (G ) such that u ∼ v and u ≁ w that is
V (G ) \ {v ,w} is a resolving set.

for n ≥ 4, dim(G ) = n − 2 if and only if G = Kr ,s , r , s ≥ 1,
G = Kr ∨ K s , r ≥ 1, s ≥ 2, or G = Kr ∨ (K1 ∪ Ks), r , s ≥ 1.
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.. Characterization

Graphs with metric dimension two are characterized.
(Sudhakara and Kumar 2009)

Graphs with metric dimension n(G )− diam(G ) are
characterized. (Hernando et al. 2010)

The n-vertex graphs with metric dimension n − 3 are
characterized. (Jannesari and O. 2012)

Graphs with metric dimension n(G )− girth(G ) + 2 are
characterized. (Jannesari. 2012)
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.. Graph operators

.
Theorem (Erdos and Renyi 1963)
..

......
lim
n→∞

dim(Qn).
log n

n
= 2.

.
Theorem (Caceres et al. 2007)
..

......

n 2 3 4 5 6 7 8 10 15

dim(Qn) 2 3 4 4 5 6 6 ≤ 7 ≤ 10
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.. Graph operators

.
Theorem (Erdos and Renyi 1963)
..

......
dim(Hn,k) ≥ (2 + o(1))

n log k

log n
.

.
Theorem (Chvatal 1983)
..

......
dim(Hn,k) ≤ (2 + ϵ)n

1 + 2 log k

log n − log k
.

.
Theorem (Caceres et al. 2007)
..

......
dim(H2,k) = ⌊2

3
(2k − 1)⌋.
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The metric dimension of corona products of graphs.
(Yero et al. 2011).

The metric dimension of lexicographic products of graphs.
(Jannesari. and O. 2012).

The metric dimension of strong products of graphs.
(Juan et al. 2013).
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.. Some bounds for metric dimension

Certainly, if G is a nontrivial connected k-dimensional graph of
order n then 1 ≤ k ≤ n − 1.
.
Theorem (Chartrand et al. 2000)
..

......

For positive integers d and n with d < n, define f (n, d) as the
least positive integer k such that k + dk ≥ n. Then for a
connected graph G of order n ≥ 2 and diameter d ,

f (n, d) ≤ dim(G ) ≤ n − d .
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.. Scheme of proof (Chartrand et al. 2000)

Let u = v0, v1, . . . , vd = v be a path of length d in G .

For each i , 1 ≤ i ≤ d , d(u, vi ) = i .

V (G ) \ {v1, v2, . . . , vd} is a resolving set for G and
dim(G ) ≤ n − d .

28 / 37
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.. Scheme of proof (Chartrand et al. 2000)

Let B be a basis of G of size k.

For each v ∈ V (G ) \ B, every coordinate of r(v |B) is a
positive integer not exceeding d , and all n − k representations
are distinct.

dk ≥ n − k and f (n, d) ≤ k = dim(G ).

29 / 37
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.. Some bounds for metric dimension

.
Theorem (Chartrand et al. 2000)
..
......If G is a connected graph, then ⌈log3(∆(G ) + 1)⌉ ≤ dim(G ).

.
Definition
..

......

A set of vertices S is a determining set of a graph G if every
automorphism of G is uniquely determined by its action on S . The
determining number of G , det(G ), is the minimum cardinality of a
determining set of G .

.
Theorem (Bailey et al. 2011)
..

......

If det(G ) is the determining number of a connected graph G , then
det(G ) ≤ dim(G ).
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.. Some bounds for metric dimension

.
Definition
..

......

A set of vertices S is a dominating set of a graph G if every vertex
not in S has a neighbour in S . The domination number of G ,
γ(G ), is the cardinality of a minimum dominating set of G .

.
Theorem (Bagheri, Jannesari and O.. 2013)
..

......

If G is a graph of order n, then dim(G ) ≤ n − γ(G ). Moreover,
dim(G ) = n − γ(G ) if and only if G is a complete graph or a
complete bipartite graph Ks.t , s, t ≥ 2.
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.. Scheme of proof

Two vertices u, v ∈ V (G ) are called false twin vertices if
N(u) = N(v).

In every connected graph there exists a minimum dominating
set with no pair of false twin vertices.

If S is a minimum dominating with no pair of false twin
vertices, then V (G ) \ S is a resolving set for G .
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.. Example

The following example shows that this bound can give a better
upper bound for dim(G) compared to the upper bound
n − diam(G ).
.
Example
..

......

Let G be a connected graph of order 3k + 1, k ≥ 6, obtained from
the wheel Wk by replacing each spoke by a path of length three
(i.e. every spoke subdivided twice). It is easy to see that
γ(G ) = k + 1 and diam(G ) ≤ 6. Hence, we have
dim(G) ≤ n − γ(G ) = 2k and dim(G) ≤ 3k + 1− diam(G ).

33 / 37



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Metric dimension
Applications

Some known results

Complexity
Specific graphs
Characterization
Graph operators
Bounds

.. A list of new bounds for metric dimension

.
Corollary
..

......

For every connected graph G of order n and girth g ,

if g ≥ 5, then dim(G) ≤ n − δ(G ).

if g ≥ 6, then dim(G) ≤ n − 2δ(G ) + 2.

dim(G) ≤ n −
⌈

n
1+∆(G)

⌉
.

if G has degree sequence (d1, d2, . . . , dn) with di ≥ di+1, then
dim(G) ≤ n −min{k | k + (d1 + d2 + · · ·+ dk) ≥ n}.
if δ(G ) ≥ 2 and g ≥ 7, then dim(G) ≤ n −∆(G ).

if µn ≥ µn−1 ≥ · · · ≥ µ1 be the eigenvalues of Laplacian
matrix of G , then dim(G) ≤ n − n

µn(G) .
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.. Randomly k-dimensional graphs

.
Definition
..

......

A connected graph G is called randomly k-dimensional graph if
each k-set of vertices of G is a basis of G .

.
Theorem (Chartrand et al. 2000)
..

......

A graph G is randomly 2-dimensional if and only if G is an odd
cycle.

Chartrand et al. provided the following question.
Question. Are there only randomly k-dimensional graphs other
than complete graph and odd cycles?
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.. Randomly k-dimensional graphs

.
Theorem (Jannesari and O. 2012)
..

......

Let G be a graph with dim(G ) = k > 1. Then, G is a randomly
k-dimensional graph if and only if G is a complete graph Kk+1 or
an odd cycle.
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Thank you
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