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Metric dimension
Definition

Metric representation

Definition (Slater 1975, Harary and Melter 1976)

For an ordered set W = {wy, wa, ..., wi} of vertices in a
connected graph G and a vertex v of G, the metric representation
of v with respect to W is the k-vector

r(viW) = (d(v,mw1),d(v,w2),...,d(v, w))

where d(x, y) represents the distance between the vertices x and y.
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Metric dimension
Definition

Metric dimension

Definition (Slater 1975, Harary and Melter 1976)

A set W is called a resolving set for G if the vertices of G have
distinct representations with respect to W. The members of a
resolving set are called landmarks.

A resolving set containing a minimum number of vertices is called
a basis for G. The number of vertices in a basis for G is its metric
dimension and denoted by dim(G). If dim(G) = k, then G is
called a k-dimensional graph.
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Metric dimension
Definition

A graph with metric dimension 2. Metric representations are

shown on the vertices. The red vertices are landmarks.
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Robot navigation
Coin Weighing
Mastermind
Network Discovery

Applications

Robot navigation (Khuller and Raghavachari 1996)

A moving point in a graph may be located by finding the distance
from the point to a collection of sonar stations which have been
properly positioned in the graph.

@ Problem

Finding a minimal sufficiently large set of labelled vertices
such that robot can find its position.
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Robot navigation (Khuller and Raghavachari 1996)

A moving point in a graph may be located by finding the distance
from the point to a collection of sonar stations which have been
properly positioned in the graph.

@ Problem
Finding a minimal sufficiently large set of labelled vertices
such that robot can find its position.

@ Technique
Sufficiently large set of labelled vertices is a resolving set for
the graph space.
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Coin Weighing (Sebo and Tannier 2004)

Given n coins, each with one of two distinct weights, determine the
weight of each coin with the minimum number of weighings.
Weighings a set S of coins determine how many light coins are in
S and no further information.

@ Problem
Determining the weight of each coin with the minimum

number of weighings.
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Coin Weighing (Sebo and Tannier 2004)

Given n coins, each with one of two distinct weights, determine the
weight of each coin with the minimum number of weighings.
Weighings a set S of coins determine how many light coins are in
S and no further information.

o Problem
Determining the weight of each coin with the minimum
number of weighings.

@ Static variant
The choice of sets of coins to be weighed is determined in
advance.

@ Technique
In static variant the minimum number of weighings differs
from dim(Q,) by at most 1.
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Mastermind

Mastermind is a game for two player, one code setter and the code
breaker. The code setter chooses a secret vector
s=[s1,5,...,5n] € {1,2,...,k}". The task of code breaker is to
infer the secret code by a series of questions, each a vector
t=[t1,to,...,tg) €{1,2,...,k}". The code setter answer the
number of positions in which the secret vector and the question
agree, denoted by a(s,t) = [{i: s;=1t;,1<i<n}|
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Mastermind (Caceres et al. 2007)

@ Problem
Finding the minimum number of questions required to
determine the secret code, where the secret code and
questions are in {1,2,... k}".
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Mastermind (Caceres et al. 2007)

e Problem
Finding the minimum number of questions required to
determine the secret code, where the secret code and
questions are in {1,2,... k}".

@ Static variant
The questions are determined in advance.

e Technique
In the static variant the minimum number of questions is
dim(Hp«), where H, , = K OKO...OK is the cartesian

n
product of n copy of complete graph Kj.
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Scheme of proof (Caceres et al. 2007)

@ Let S be the secret code, T be a question and a(S, T) be the
answer of T.
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@ Let S be the secret code, T be a question and a(S, T) be the
answer of T.

@ S and T are vertices of H, .
e d(5,T)=n—a(S, T).
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Scheme of proof (Caceres et al. 2007)

@ Let S be the secret code, T be a question and a(S, T) be the
answer of T.

@ S and T are vertices of H, .

e d(5,T)=n—a(S, T).

@ The vector (a(S, T1),a(S, T2),...,a(S, Tm)) uniquely
determines S if and only if (d(S, Tl), d(S, Ta),...,d(S, Tm))

uniquely determines it.
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Scheme of proof (Caceres et al. 2007)

@ Let S be the secret code, T be a question and a(S, T) be the
answer of T.

@ S and T are vertices of H, .
e d(5,T)=n—a(S, T).
@ The vector (a(S, T1),a(S, T2),...,a(S, Tm)) uniquely

determines S if and only if (d(S, T1),d(S, T2),...,d(S, Tm))
uniquely determines it.

@ Questions Ty, To, ..., T, are sufficient for determining each
secret code if and only if {T1, To,..., T} is a resolving set
for Hp, k.
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Network Discovery (Beerliova et al. 2001)

A real world problem is the study of networks whose structure has
not been imposed by a central authority but arisen from local and
distributed processes. It is very difficult and costly to obtain a map
of all nodes and the links between them. A commonly used
technique is to obtain local view of the network from various
locations and combine them to obtain a good approximation for
the real network.

o Problem

Determining edges and none-edges of a network.
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Network Discovery (Beerliova et al. 2001)

A real world problem is the study of networks whose structure has
not been imposed by a central authority but arisen from local and
distributed processes. It is very difficult and costly to obtain a map
of all nodes and the links between them. A commonly used
technique is to obtain local view of the network from various
locations and combine them to obtain a good approximation for
the real network.
o Problem
Determining edges and none-edges of a network.
@ Technique
Combining local maps of the network from landmarks.
@ Local map at a vertex v
The induced subgraph on the set of all edges on shortest

paths between v and any other vertex.
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Complexity
Specific graphs
Characterization

Some known results Graph operators
Bounds

Theorem (Khuller and Raghavachari 1996)

The problem of finding the metric dimension of a graph is
NP-complete. But there is a polynomial time algorithm for finding
the metric dimension of a tree. Also, there is a

2 log n-approximation algorithm for the metric dimension of each
graph.
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Bounds

Theorem (Khuller and Raghavachari 1996)

The problem of finding the metric dimension of a graph is
NP-complete. But there is a polynomial time algorithm for finding
the metric dimension of a tree. Also, there is a

2 log n-approximation algorithm for the metric dimension of each
graph.

Theorem (Diaz et al. 2012)

Finding the metric dimension of a planar graph is NP-complete.
But there is a polynomial time algorithm for finding the metric
dimension of an outer planar graph.
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Metric dimension of specific graphs

o dim(P,) =1,
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o dim(K,) = n— 1, because dim(K,) + 14m(Ka) > p.

e dim(C,) = 2, each pair of adjacent vertex is a resolving set for
it, and each vertex can not resolve its neighbours.

@ The metric dimension of Petersen graph, P, is 3.
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Metric dimension of specific graphs

e dim(P,) = 1, each end vertices of P, resolves it.

o dim(K,) = n— 1, because dim(K,) + 14m(Ka) > p.

e dim(C,) = 2, each pair of adjacent vertex is a resolving set for
it, and each vertex can not resolve its neighbours.

@ The metric dimension of Petersen graph, P, is 3. Because
2422 <10 = n(P).
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Metric dimension of Johnson and Kneser graphs

The Kneser graph K(n, k), n > 2k, has the collection of all
k-subsets of the set [n] = {1,...,n} as vertices and edges
connecting disjoint subsets.
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Theorem (Valencia et al. 2005)

For every two vertices U, V in J(n, k),
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Metric dimension of Johnson and Kneser graphs

Theorem (Valencia et al. 2005)

For every two vertices U, V in J(n, k),
d(U,V)=k—|UN V]

For every two vertices U, V' in K(2k + b, k), where |[UN V| =5,

d(U, V) = min{2 [k;ﬂ 2 m +1}

15/37



Complexity

Specific graphs

Characterization
Some known results Graph operators

Bounds

Metric dimension of Johnson and Kneser graphs

Theorem (Valencia et al. 2005)

For every two vertices U, V in J(n, k),
d(U,V)=k—|UN V]

For every two vertices U, V' in K(2k + b, k), where |[UN V| =5,

d(U, V) = min{2 [k;ﬂ 2 m +1}

Any resolving set for the Kneser graph K(n, k) is a resolving set for
J(n, k). Thus, dim(J(n, k)) < dim(K(n, k)).
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An algebraic approach
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incidence matrix of S is the t X n matrix whose rows are the
incidence vectors of Sy,...,S;.
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An algebraic approach

Let S = {S1,...,S:}, where each S; is a k-subset of [n]. Then the
incidence matrix of S is the t x n matrix whose rows are the
incidence vectors of Sy,...,S;.

Theorem (Bailey et al. 2013)

If S is a family of k-subsets of [n] whose incidence matrix has rank
n, then S is a resolving set for J(n, k).

| \

Corollary

For every integer n, k, the metric dimension of the Johnson graph
J(n, k) is at most n.

A\
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A combinatorial approach

A t-design with parameters (n, k, A) is a pair (X, B), where X is a
set of n points, and B is a family of k-subsets of X, called blocks,

such that any t elements of distinct points are contained in exactly
A blocks.
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A combinatorial approach

A t-design with parameters (n, k, \) is a pair (X, B), where X is a

set of n points, and B is a family of k-subsets of X, called blocks,

such that any t elements of distinct points are contained in exactly
A blocks.

A symmetric design is a 2-design on n points which the number of
blocks is n.

The blocks of a symmetric design D with parameters (n, k, \) form
a resolving set for J(n, k).

17 /37
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A combinatorial approach

Theorem (Bailey et al. 2013)

Suppose there exists a Steiner System (k — 1) — (n, k, 1), where
n >4k — 2. Then its block form a resolving set for K(n, k). Thus,

dim(K(n, k)) < }((k 4 1).
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A partial geometry with parameter (s, t,«), pg(s, t,«), is a pair
(P, L), consisting of a set of points P and a set of lines £
satisfying the following conditions:
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A combinatorial approach

A partial geometry with parameter (s, t,«), pg(s, t,«), is a pair
(P, L), consisting of a set of points P and a set of lines £
satisfying the following conditions:

@ any line is incident with s 4+ 1 points, and the intersection of
any two lines is at most a single point;

@ any point is incident with t + 1 lines, and any two points are
in at most one line;

@ if a point p and a line L are not incident, then exactly «
points of L are collinear with p and exactly « lines incident
with p are concurrent with L.
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A combinatorial approach

Theorem (Bailey et al. 2013)

Let I' be a partial geometry pg(s, t,«) with point set P and line
set £ and t > s. Then L is a resolving set for the Kneser graph
K(v,s+1).
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Theorem (Bailey et al. 2013)

Let I' be a partial geometry pg(s, t,«) with point set P and line
set £ and t > s. Then L is a resolving set for the Kneser graph
K(v,s+1).

Fors=q—1,t=gqand o = g we have v = ¢°.
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A combinatorial approach

Theorem (Bailey et al. 2013)

Let I' be a partial geometry pg(s, t,«) with point set P and line
set £ and t > s. Then L is a resolving set for the Kneser graph
K(v,s+1).

Fors=q—1,t=gqand o = g we have v = ¢°.

If g > 3 is a prime power, then dim(K(q?,q)) < ¢°> + q.
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The metric dimension of ...

using ... is bounded by ...
J(n, k) lk(n+1)/(k+1)]
K(2k +1,k) = Ok41 partitioning [n] 2k
K(n, k) e, ((Zk;l) —-1)
K(n, k), diameter 3 2(”;’()
k-set system whose incidence
J(n, k) matrix has rank n n
(n, k, \) symmetric design
J@®+q+1,qg+1) projective plane of order g P +qg+1
J(4m —1,2m — 1),
K(4m —1,2m —1) = Oop Hadamard design 4m —1
K(n,3) Steiner triple STS(n) n(n—1)/6
K(n, k) Steiner triple STS(k — 1, k, n) (.")/k
K(v,s+1),
v=(s+1)(st+a)/a partial geometry pg(s, t, &) (t+1)(st+ a)/a
K(q?%,q) affine plane of order g q(g+1)
K(q>,q) 9*(q+2)

K((q +1)(¢° +1),q+1)

K((¢* +1)(¢° +1),¢° +1)

generalized quadrangle

(" +1)(¢°+1)

(@+D(@+1)

K(n,4)

K(n,5)

K(n,6)

toroidal grid Cp,0Cp

2ab =2n
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Characterization

Theorem (Chartrand et al. 2000)

let G be a connected graph of order n > 1. Then
e dim(G) =1if and only if G = P,.
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Characterization

Theorem (Chartrand et al. 2000)

let G be a connected graph of order n > 1. Then

e dim(G) =1 if and only if G = P,. Let {w} be a basis, for
each v, r(v|W) = d(v, w), thus there exists u with
dluyw)=n—1,s0 G = P,,.

e dim(G) = n—1if and only if G = K,,otherwise there are
u,v,w € V(G) such that u ~ v and u = w that is
V(G)\ {v,w} is a resolving set.

o for n >4, dim(G) =n—2ifandonly if G = K, 5, r,s > 1,
G=K VKs, r>1s>20rG=K,V(KiUK;), r,s>1.
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Characterization

@ Graphs with metric dimension two are characterized.

@ Graphs with metric dimension n(G) — diam(G) are
characterized.

@ The n-vertex graphs with metric dimension n — 3 are
characterized.

@ Graphs with metric dimension n(G) — girth(G) + 2 are
characterized.

23/37



Some known results

Graph operators

Theorem (Erdos and Renyi 1963)
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Graph operators
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Some known results

Graph operators

Theorem (Erdos and Renyi 1963)

Complexity
Specific graphs

Characterization
Graph operators

Bounds

|
lim dim(Qy).—2" = 2.
n—o0 n
Theorem (Caceres et al. 2007)
n 2 3 45 6 7 8 10 15
dim(Q) |2 3 4 4 5 6 6 <7 <10

N
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nlog k
logn

dim(Hpk) = (2 + o(1))
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Graph operators

Theorem (Erdos and Renyi 1963)

nlog k

dim(H k) 2 (24 0(1)) 72"

Theorem (Chvatal 1983)

1+ 2log k

dim(H, ) < (2 _—
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Graph operators

Theorem (Erdos and Renyi 1963)

nlog k
logn

dim(Hpk) = (2 + o(1))

Theorem (Chvatal 1983)

1+ 2log k

dim(H, ) < (2 _—
im(Hnk) < ( +6)n|ogn—|ogk

Theorem (Caceres et al. 2007)

12

dim( ) = |5(2k — 1)].
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Graph operators

@ The metric dimension of corona products of graphs.
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Certainly, if G is a nontrivial connected k-dimensional graph of
order nthen 1 < k< n-—1.
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Some bounds for metric dimension

Certainly, if G is a nontrivial connected k-dimensional graph of
order nthen 1 < k< n-—1.

Theorem (Chartrand et al. 2000)

For positive integers d and n with d < n, define f(n, d) as the
least positive integer k such that k + d* > n. Then for a
connected graph G of order n > 2 and diameter d,

f(n,d) <dim(G) < n—d.
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@ Let u=w,v1,...,vq = v be a path of length d in G.
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Scheme of proof (Chartrand et al. 2000)

@ Let u=w,v1,...,vq = v be a path of length d in G.
@ Foreach i,1<i<d, d(u,v;)=1.

e V(G)\{v1,v,...,v4} is a resolving set for G and
dim(G) < n-—d.
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@ Let B be a basis of G of size k.
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@ Let B be a basis of G of size k.

@ For each v € V(G) \ B, every coordinate of r(v|B) is a
positive integer not exceeding d, and all n — k representations
are distinct.
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Scheme of proof (Chartrand et al. 2000)

@ Let B be a basis of G of size k.

@ For each v € V(G) \ B, every coordinate of r(v|B) is a
positive integer not exceeding d, and all n — k representations
are distinct.

o d“>n—kand f(n,d) < k = dim(G).
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Some bounds for metric dimension

Theorem (Chartrand et al. 2000)
If G is a connected graph, then [log3(A(G) +1)] < dim(G).

Definition

A set of vertices S is a determining set of a graph G if every
automorphism of G is uniquely determined by its action on S. The
determining number of G, det(G), is the minimum cardinality of a
determining set of G.
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Definition

A set of vertices S is a determining set of a graph G if every
automorphism of G is uniquely determined by its action on S. The
determining number of G, det(G), is the minimum cardinality of a
determining set of G.

Theorem (Bailey et al. 2011)

If det(G) is the determining number of a connected graph G, then
det(G) < dim(G).
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Definition

A set of vertices S is a dominating set of a graph G if every vertex
not in S has a neighbour in S. The domination number of G,
~(G), is the cardinality of a minimum dominating set of G.
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Some bounds for metric dimension

Definition

A set of vertices S is a dominating set of a graph G if every vertex
not in S has a neighbour in S. The domination number of G,
~(G), is the cardinality of a minimum dominating set of G.

N

Theorem (Bagheri, Jannesari and O.. 2013)

If G is a graph of order n, then dim(G) < n— v(G). Moreover,
dim(G) = n—~(G) if and only if G is a complete graph or a
complete bipartite graph Ks¢, s,t > 2.

A
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Scheme of proof

Two vertices u, v € V(G) are called false twin vertices if
N(u) = N(v).

@ In every connected graph there exists a minimum dominating
set with no pair of false twin vertices.
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Scheme of proof

Two vertices u, v € V(G) are called false twin vertices if
N(u) = N(v).

@ In every connected graph there exists a minimum dominating
set with no pair of false twin vertices.

@ If S is a minimum dominating with no pair of false twin
vertices, then V(G) \ S is a resolving set for G.
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Example

The following example shows that this bound can give a better
upper bound for dim(G) compared to the upper bound
n — diam(G).

Let G be a connected graph of order 3k + 1, kK > 6, obtained from
the wheel W) by replacing each spoke by a path of length three
(i.e. every spoke subdivided twice). It is easy to see that

v(G) = k+ 1 and diam(G) < 6. Hence, we have

dim(G) < n—v(G) = 2k and dim(G) < 3k + 1 — diam(G).
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A list of new bounds for metric dimension

Corollary

For every connected graph G of order n and girth g,
o if g > 5, then dim(G) < n—6(G).
e if g > 6, then dim(G) < n—24(G) + 2.
o dim(G) < n-— [ﬁ(@—‘ .

@ if G has degree sequence (di, da, ..., d,) with d; > di;1, then
dim(G) < n—min{k | k+ (d1 +dor + --- + di) > n}.

e if 6(G) > 2 and g > 7, then dim(G) < n— A(G).

@ if up > pp—1 > -+ > py be the eigenvalues of Laplacian
matrix of G, then dim(G) < n — ﬁ

34/37



Complexity

Specific graphs

Characterization
Some known results Graph operators

Bounds

Randomly k-dimensional graphs

A connected graph G is called randomly k-dimensional graph if
each k-set of vertices of G is a basis of G.

Theorem (Chartrand et al. 2000)

A graph G is randomly 2-dimensional if and only if G is an odd
cycle.

Chartrand et al. provided the following question.
Question. Are there only randomly k-dimensional graphs other
than complete graph and odd cycles?
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Randomly k-dimensional graphs

Theorem (Jannesari and O. 2012)

Let G be a graph with dim(G) = k > 1. Then, G is a randomly
k-dimensional graph if and only if G is a complete graph Ky or
an odd cycle.
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Thank you
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