Metric Dimension of Graphs

Behnaz Omoomi

Department of Mathematical Sciences Isfahan University of Technology

IPM-Esfahan 22 May 2014 (1 Khordad 93)

Outline

- Metric dimension
- 2 Applications
- Some known results
 - Complexity
 - Specific graphs
 - Characterization
 - Graph operators
 - Bounds

Outline

- Metric dimension
- 2 Applications
- Some known results
 - Complexity
 - Specific graphs
 - Characterization
 - Graph operators
 - Bounds

Outline

- Metric dimension
- 2 Applications
- 3 Some known results
 - Complexity
 - Specific graphs
 - Characterization
 - Graph operators
 - Bounds

Metric representation

Definition (Slater 1975, Harary and Melter 1976)

For an ordered set $W = \{w_1, w_2, \dots, w_k\}$ of vertices in a connected graph G and a vertex v of G, the metric representation of v with respect to W is the k-vector

$$r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$$

where d(x, y) represents the distance between the vertices x and y.

Metric dimension

Definition (Slater 1975, Harary and Melter 1976)

A set W is called a resolving set for G if the vertices of G have distinct representations with respect to W. The members of a resolving set are called landmarks.

A resolving set containing a minimum number of vertices is called a basis for G. The number of vertices in a basis for G is its metric dimension and denoted by $\dim(G)$. If $\dim(G) = k$, then G is called a k-dimensional graph.

Warm up!

A graph with metric dimension 2. Metric representations are shown on the vertices. The red vertices are landmarks.

Robot navigation (Khuller and Raghavachari 1996)

A moving point in a graph may be located by finding the distance from the point to a collection of sonar stations which have been properly positioned in the graph.

Problem

Finding a minimal sufficiently large set of labelled vertices such that robot can find its position.

Technique
 Sufficiently large set of labelled vertices is a resolving set for the graph space.

Robot navigation (Khuller and Raghavachari 1996)

A moving point in a graph may be located by finding the distance from the point to a collection of sonar stations which have been properly positioned in the graph.

Problem

Finding a minimal sufficiently large set of labelled vertices such that robot can find its position.

Technique

Sufficiently large set of labelled vertices is a resolving set for the graph space.

Coin Weighing (Sebo and Tannier 2004)

Given n coins, each with one of two distinct weights, determine the weight of each coin with the minimum number of weighings. Weighings a set S of coins determine how many light coins are in S and no further information.

Problem

Determining the weight of each coin with the minimum number of weighings.

Static variant

The choice of sets of coins to be weighed is determined in advance.

Technique

In static variant the minimum number of weighings differs from $\dim(Q_n)$ by at most 1.

Coin Weighing (Sebo and Tannier 2004)

Given n coins, each with one of two distinct weights, determine the weight of each coin with the minimum number of weighings. Weighings a set S of coins determine how many light coins are in S and no further information.

Problem

Determining the weight of each coin with the minimum number of weighings.

Static variant

The choice of sets of coins to be weighed is determined in advance.

Technique

In static variant the minimum number of weighings differs from $\dim(Q_n)$ by at most 1.

Coin Weighing (Sebo and Tannier 2004)

Given n coins, each with one of two distinct weights, determine the weight of each coin with the minimum number of weighings. Weighings a set S of coins determine how many light coins are in S and no further information.

Problem

Determining the weight of each coin with the minimum number of weighings.

Static variant

The choice of sets of coins to be weighed is determined in advance.

Technique

In static variant the minimum number of weighings differs from $\dim(Q_n)$ by at most 1.

Mastermind

Mastermind is a game for two player, one code setter and the code breaker. The code setter chooses a secret vector $s = [s_1, s_2, \ldots, s_n] \in \{1, 2, \ldots, k\}^n$. The task of code breaker is to infer the secret code by a series of questions, each a vector $t = [t_1, t_2, \ldots, t_n] \in \{1, 2, \ldots, k\}^n$. The code setter answer the number of positions in which the secret vector and the question agree, denoted by $a(s, t) = |\{i : s_i = t_i, 1 \le i \le n\}|$.

Problem

Finding the minimum number of questions required to determine the secret code, where the secret code and questions are in $\{1, 2, ..., k\}^n$.

- Static variant

 The questions are determined in a
- **Technique**In the static variant the minimum number of questions is $\dim(H_{n,k})$, where $H_{n,k} = \underbrace{K_k \square K_k \square \ldots \square K_k}_{n}$ is the cartesian

product of n copy of complete graph K_k .

Problem

Finding the minimum number of questions required to determine the secret code, where the secret code and questions are in $\{1, 2, ..., k\}^n$.

- Static variant
 The questions are determined in advance
- In the static variant the minimum number of questions is $\dim(H_{n,k})$, where $H_{n,k} = \underbrace{K_k \square K_k \square \ldots \square K_k}_n$ is the cartesian product of n copy of complete graph K_k .

Problem

Finding the minimum number of questions required to determine the secret code, where the secret code and questions are in $\{1, 2, ..., k\}^n$.

- Static variant
 - The questions are determined in advance.
- Technique

In the static variant the minimum number of questions is $\dim(H_{n,k})$, where $H_{n,k} = \underbrace{K_k \square K_k \square \ldots \square K_k}_n$ is the cartesian product of n copy of complete graph K_k .

Problem

Finding the minimum number of questions required to determine the secret code, where the secret code and questions are in $\{1, 2, ..., k\}^n$.

- Static variant
 The questions are determined in advance.
- Technique

In the static variant the minimum number of questions is $\dim(H_{n,k})$, where $H_{n,k} = \underbrace{K_k \square K_k \square \ldots \square K_k}_n$ is the cartesian product of n copy of complete graph K_k .

- Let S be the secret code, T be a question and a(S,T) be the answer of T.
- S and T are vertices of $H_{n,k}$.
- d(S,T) = n a(S,T).
- The vector $(a(S, T_1), a(S, T_2), \ldots, a(S, T_m))$ uniquely determines S if and only if $(d(S, T_1), d(S, T_2), \ldots, d(S, T_m))$ uniquely determines it.
- Questions $T_1, T_2, ..., T_m$ are sufficient for determining each secret code if and only if $\{T_1, T_2, ..., T_m\}$ is a resolving set for $H_{n,k}$.

- Let S be the secret code, T be a question and a(S,T) be the answer of T.
- S and T are vertices of $H_{n,k}$.
- d(S,T) = n a(S,T).
- The vector $(a(S, T_1), a(S, T_2), \ldots, a(S, T_m))$ uniquely determines S if and only if $(d(S, T_1), d(S, T_2), \ldots, d(S, T_m))$ uniquely determines it.
- Questions $T_1, T_2, ..., T_m$ are sufficient for determining each secret code if and only if $\{T_1, T_2, ..., T_m\}$ is a resolving set for $H_{n,k}$.

- Let S be the secret code, T be a question and a(S,T) be the answer of T.
- S and T are vertices of $H_{n,k}$.
- d(S, T) = n a(S, T).
- The vector $(a(S, T_1), a(S, T_2), \ldots, a(S, T_m))$ uniquely determines S if and only if $(d(S, T_1), d(S, T_2), \ldots, d(S, T_m))$ uniquely determines it.
- Questions T_1, T_2, \ldots, T_m are sufficient for determining each secret code if and only if $\{T_1, T_2, \ldots, T_m\}$ is a resolving set for $H_{n,k}$.

- Let S be the secret code, T be a question and a(S,T) be the answer of T.
- S and T are vertices of $H_{n,k}$.
- d(S, T) = n a(S, T).
- The vector $(a(S, T_1), a(S, T_2), \ldots, a(S, T_m))$ uniquely determines S if and only if $(d(S, T_1), d(S, T_2), \ldots, d(S, T_m))$ uniquely determines it.
- Questions T_1, T_2, \ldots, T_m are sufficient for determining each secret code if and only if $\{T_1, T_2, \ldots, T_m\}$ is a resolving set for $H_{n,k}$.

- Let S be the secret code, T be a question and a(S, T) be the answer of T.
- S and T are vertices of $H_{n,k}$.
- d(S, T) = n a(S, T).
- The vector $(a(S, T_1), a(S, T_2), \ldots, a(S, T_m))$ uniquely determines S if and only if $(d(S, T_1), d(S, T_2), \ldots, d(S, T_m))$ uniquely determines it.
- Questions T_1, T_2, \ldots, T_m are sufficient for determining each secret code if and only if $\{T_1, T_2, \ldots, T_m\}$ is a resolving set for $H_{n,k}$.

Network Discovery (Beerliova et al. 2001)

A real world problem is the study of networks whose structure has not been imposed by a central authority but arisen from local and distributed processes. It is very difficult and costly to obtain a map of all nodes and the links between them. A commonly used technique is to obtain local view of the network from various locations and combine them to obtain a good approximation for the real network.

- Problem
 Determining edges and none-edges of a network.
- Technique
 Combining local maps of the network from landmarks
- Local map at a vertex vThe induced subgraph on the set of all edges on shortest paths between v and any other vertex.

Network Discovery (Beerliova et al. 2001)

A real world problem is the study of networks whose structure has not been imposed by a central authority but arisen from local and distributed processes. It is very difficult and costly to obtain a map of all nodes and the links between them. A commonly used technique is to obtain local view of the network from various locations and combine them to obtain a good approximation for the real network.

- Problem
 Determining edges and none-edges of a network.
- Technique
 Combining local maps of the network from landmarks.
- Local map at a vertex *v*The induced subgraph on the set of all edges on shortest paths between *v* and any other vertex.

Network Discovery (Beerliova et al. 2001)

A real world problem is the study of networks whose structure has not been imposed by a central authority but arisen from local and distributed processes. It is very difficult and costly to obtain a map of all nodes and the links between them. A commonly used technique is to obtain local view of the network from various locations and combine them to obtain a good approximation for the real network.

- Problem
 Determining edges and none-edges of a network.
- Technique
 Combining local maps of the network from landmarks.
- Local map at a vertex *v*The induced subgraph on the set of all edges on shortest paths between *v* and any other vertex.

Complexity Specific graphs Characterization Graph operators Bounds

Theorem (Khuller and Raghavachari 1996)

The problem of finding the metric dimension of a graph is *NP*-complete. But there is a polynomial time algorithm for finding the metric dimension of a tree. Also, there is a $2 \log n$ -approximation algorithm for the metric dimension of each graph.

Theorem (Diaz et al. 2012)

Finding the metric dimension of a planar graph is *NP*-complete But there is a polynomial time algorithm for finding the metric dimension of an outer planar graph.

Theorem (Khuller and Raghavachari 1996)

The problem of finding the metric dimension of a graph is *NP*-complete. But there is a polynomial time algorithm for finding the metric dimension of a tree. Also, there is a 2 log *n*-approximation algorithm for the metric dimension of each graph.

Theorem (Diaz et al. 2012)

Finding the metric dimension of a planar graph is *NP*-complete. But there is a polynomial time algorithm for finding the metric dimension of an outer planar graph.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- ullet dim $(K_n)=n-1$, because dim $(K_n)+1^{\dim(K_n)}\geq n$.
- $\dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $\dim(C_n) = 2$, each pair of adjacent vertex is a resolving set fo it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $\dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $\dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $\dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

- $\dim(P_n) = 1$, each end vertices of P_n resolves it.
- $\dim(K_n) = n 1$, because $\dim(K_n) + 1^{\dim(K_n)} \ge n$.
- $\dim(C_n) = 2$, each pair of adjacent vertex is a resolving set for it, and each vertex can not resolve its neighbours.
- The metric dimension of Petersen graph, P, is 3. Because $2 + 2^2 < 10 = n(P)$.

Metric dimension of Johnson and Kneser graphs

The Kneser graph K(n,k), $n \ge 2k$, has the collection of all k-subsets of the set $[n] = \{1, \ldots, n\}$ as vertices and edges connecting disjoint subsets. The vertices of Johnson graph J(n,k) is the same as Kneser graph, but two k-subsets are adjacent when their intersection has size k-1.

The Kneser graph K(n,k), $n \ge 2k$, has the collection of all k-subsets of the set $[n] = \{1, \ldots, n\}$ as vertices and edges connecting disjoint subsets. The vertices of Johnson graph J(n,k) is the same as Kneser graph, but two k-subsets are adjacent when their intersection has size k-1.

The Kneser graph K(n,k), $n \ge 2k$, has the collection of all k-subsets of the set $[n] = \{1, \ldots, n\}$ as vertices and edges connecting disjoint subsets. The vertices of Johnson graph J(n,k) is the same as Kneser graph, but two k-subsets are adjacent when their intersection has size k-1.

Theorem (Valencia et al. 2005)

For every two vertices U, V in J(n, k),

$$d(U,V)=k-|U\cap V|$$

For every two vertices U, V in K(2k + b, k), where $|U \cap V| = s$

$$d(U,V) = \min\left\{2\left\lceil\frac{k-s}{b}\right\rceil, 2\left\lceil\frac{s}{b}\right\rceil + 1\right\}$$

Corollary

Any resolving set for the Kneser graph K(n, k) is a resolving set for J(n, k). Thus, $\dim(J(n, k)) \leq \dim(K(n, k))$.

Theorem (Valencia et al. 2005)

For every two vertices U, V in J(n, k),

$$d(U,V)=k-|U\cap V|$$

For every two vertices U, V in K(2k + b, k), where $|U \cap V| = s$,

$$d(U,V) = \min \left\{ 2 \left\lceil \frac{k-s}{b} \right\rceil, 2 \left\lceil \frac{s}{b} \right\rceil + 1 \right\}$$

Corollary

Any resolving set for the Kneser graph K(n, k) is a resolving set for J(n, k). Thus, $\dim(J(n, k)) \leq \dim(K(n, k))$.

Theorem (Valencia et al. 2005)

For every two vertices U, V in J(n, k),

$$d(U,V)=k-|U\cap V|$$

For every two vertices U, V in K(2k + b, k), where $|U \cap V| = s$,

$$d(U,V) = \min \left\{ 2 \left\lceil \frac{k-s}{b} \right\rceil, 2 \left\lceil \frac{s}{b} \right\rceil + 1 \right\}$$

Corollary

Any resolving set for the Kneser graph K(n, k) is a resolving set for J(n, k). Thus, $\dim(J(n, k)) \leq \dim(K(n, k))$.

An algebraic approach

Let $S = \{S_1, \dots, S_t\}$, where each S_i is a k-subset of [n]. Then the incidence matrix of S is the $t \times n$ matrix whose rows are the incidence vectors of S_1, \dots, S_t .

Theorem (Bailey et al. 2013)

If S is a family of k-subsets of [n] whose incidence matrix has rank n, then S is a resolving set for J(n, k).

Corollary

For every integer n, k, the metric dimension of the Johnson graph J(n, k) is at most n.

An algebraic approach

Let $S = \{S_1, \dots, S_t\}$, where each S_i is a k-subset of [n]. Then the incidence matrix of S is the $t \times n$ matrix whose rows are the incidence vectors of S_1, \dots, S_t .

Theorem (Bailey et al. 2013)

If S is a family of k-subsets of [n] whose incidence matrix has rank n, then S is a resolving set for J(n,k).

Corollary

For every integer n, k, the metric dimension of the Johnson graph J(n, k) is at most n.

An algebraic approach

Let $S = \{S_1, \dots, S_t\}$, where each S_i is a k-subset of [n]. Then the incidence matrix of S is the $t \times n$ matrix whose rows are the incidence vectors of S_1, \dots, S_t .

Theorem (Bailey et al. 2013)

If S is a family of k-subsets of [n] whose incidence matrix has rank n, then S is a resolving set for J(n, k).

Corollary

For every integer n, k, the metric dimension of the Johnson graph J(n, k) is at most n.

A t-design with parameters (n, k, λ) is a pair (X, \mathcal{B}) , where X is a set of n points, and \mathcal{B} is a family of k-subsets of X, called blocks, such that any t elements of distinct points are contained in exactly λ blocks.

A symmetric design is a 2-design on n points which the number of blocks is n.

Corollary

The blocks of a symmetric design \mathcal{D} with parameters (n, k, λ) form a resolving set for J(n, k).

A t-design with parameters (n, k, λ) is a pair (X, \mathcal{B}) , where X is a set of n points, and \mathcal{B} is a family of k-subsets of X, called blocks, such that any t elements of distinct points are contained in exactly λ blocks.

A symmetric design is a 2-design on n points which the number of blocks is n.

Corollary

The blocks of a symmetric design \mathcal{D} with parameters (n, k, λ) form a resolving set for J(n, k).

A t-design with parameters (n, k, λ) is a pair (X, \mathcal{B}) , where X is a set of n points, and \mathcal{B} is a family of k-subsets of X, called blocks, such that any t elements of distinct points are contained in exactly λ blocks.

A symmetric design is a 2-design on n points which the number of blocks is n.

Corollary

The blocks of a symmetric design \mathcal{D} with parameters (n, k, λ) form a resolving set for J(n, k).

Theorem (Bailey et al. 2013)

Suppose there exists a Steiner System (k-1)-(n,k,1), where $n \ge 4k-2$. Then its block form a resolving set for K(n,k). Thus,

$$\dim(K(n,k)) \leq \frac{1}{k} \binom{n}{k-1}.$$

- any line is incident with s+1 points, and the intersection of any two lines is at most a single point;
- any point is incident with t + 1 lines, and any two points are in at most one line;
- if a point p and a line L are not incident, then exactly α points of L are collinear with p and exactly α lines incident with p are concurrent with L.

- any line is incident with s + 1 points, and the intersection of any two lines is at most a single point;
- any point is incident with t+1 lines, and any two points are in at most one line;
- if a point p and a line L are not incident, then exactly α points of L are collinear with p and exactly α lines incident with p are concurrent with L.

- any line is incident with s+1 points, and the intersection of any two lines is at most a single point;
- any point is incident with t+1 lines, and any two points are in at most one line;
- if a point p and a line L are not incident, then exactly α points of L are collinear with p and exactly α lines incident with p are concurrent with L.

- any line is incident with s+1 points, and the intersection of any two lines is at most a single point;
- any point is incident with t + 1 lines, and any two points are in at most one line;
- if a point p and a line L are not incident, then exactly α points of L are collinear with p and exactly α lines incident with p are concurrent with L.

Theorem (Bailey et al. 2013)

Let Γ be a partial geometry $pg(s,t,\alpha)$ with point set $\mathcal P$ and line set $\mathcal L$ and t>s. Then $\mathcal L$ is a resolving set for the Kneser graph $\mathcal K(v,s+1)$.

For s = q - 1, t = q and $\alpha = q$ we have $v = q^2$

Corollary

If $q \ge 3$ is a prime power, then $\dim(K(q^2, q)) \le q^2 + q$.

Theorem (Bailey et al. 2013)

Let Γ be a partial geometry $pg(s,t,\alpha)$ with point set $\mathcal P$ and line set $\mathcal L$ and t>s. Then $\mathcal L$ is a resolving set for the Kneser graph $\mathcal K(v,s+1)$.

For
$$s = q - 1$$
, $t = q$ and $\alpha = q$ we have $v = q^2$.

Corollary

If $q \ge 3$ is a prime power, then $\dim(K(q^2, q)) \le q^2 + q$

Theorem (Bailey et al. 2013)

Let Γ be a partial geometry $pg(s,t,\alpha)$ with point set $\mathcal P$ and line set $\mathcal L$ and t>s. Then $\mathcal L$ is a resolving set for the Kneser graph K(v,s+1).

For s = q - 1, t = q and $\alpha = q$ we have $v = q^2$.

Corollary

If $q \ge 3$ is a prime power, then $\dim(K(q^2, q)) \le q^2 + q$.

The metric dimension of	using	is bounded by
J(n,k)		$\lfloor k(n+1)/(k+1) \rfloor$
$K(2k+1,k) = O_{k+1}$	partitioning [n]	2 <i>k</i>
K(n,k)		$\lceil \frac{n}{2k-1} \rceil (\binom{2k-1}{k} - 1)$
K(n,k), diameter 3		$2\binom{n-k}{k}$
	k-set system whose incidence	
J(n,k)	matrix has rank <i>n</i>	n
	(n, k, λ) symmetric design	
$J(q^2+q+1,q+1)$	projective plane of order q	$q^2 + q + 1$
J(4m-1,2m-1),		
$K(4m-1,2m-1)=O_{2m}$	Hadamard design	4m - 1
K(n,3)	Steiner triple $STS(n)$	n(n-1)/6
K(n,k)	Steiner triple $STS(k-1,k,n)$	$\binom{n}{k-1}/k$
K(v, s+1),		
$v = (s+1)(st+\alpha)/\alpha$	partial geometry $pg(s, t, \alpha)$	$(t+1)(st+\alpha)/\alpha$
$K(q^2,q)$	affine plane of order <i>q</i>	q(q+1)
$K(q^3,q)$		$q^2(q+2)$
$K((q+1)(q^3+1), q+1)$	generalized quadrangle	$(q^2+1)(q^3+1)$
$K((q^2+1)(q^5+1),q^2+1)$		$(q^3+1)(q^5+1)$
K(n, 4)		
K(n,5)	toroidal grid $C_b \square C_b$	2ab = 2n
K(n,6)	4 □ ▶ 4	

Theorem (Chartrand et al. 2000)

- $\dim(G) = 1$ if and only if $G = P_n$. Let $\{w\}$ be a basis, for each v, r(v|W) = d(v, w), thus there exists u with d(u, w) = n 1, so $G = P_n$.
- $\dim(G) = n 1$ if and only if $G = K_n$, otherwise there are $u, v, w \in V(G)$ such that $u \sim v$ and $u \nsim w$ that is $V(G) \setminus \{v, w\}$ is a resolving set.
- for $n \ge 4$, $\dim(G) = n 2$ if and only if $G = K_{r,s}$, $r, s \ge 1$, $G = K_r \vee \overline{K_s}$, r > 1, s > 2, or $G = K_r \vee (K_1 \cup K_s)$, r, s > 1

Theorem (Chartrand et al. 2000)

- $\dim(G) = 1$ if and only if $G = P_n$. Let $\{w\}$ be a basis, for each v, r(v|W) = d(v, w), thus there exists u with d(u, w) = n 1, so $G = P_n$.
- $\dim(G) = n 1$ if and only if $G = K_n$, otherwise there are $u, v, w \in V(G)$ such that $u \sim v$ and $u \nsim w$ that is $V(G) \setminus \{v, w\}$ is a resolving set.
- for $n \ge 4$, $\dim(G) = n 2$ if and only if $G = K_{r,s}$, $r, s \ge 1$, $G = K_r \vee \overline{K}_s$, r > 1, s > 2, or $G = K_r \vee (K_1 \cup K_s)$, r, s > 1

Theorem (Chartrand et al. 2000)

- $\dim(G) = 1$ if and only if $G = P_n$. Let $\{w\}$ be a basis, for each v, r(v|W) = d(v, w), thus there exists u with d(u, w) = n 1, so $G = P_n$.
- $\dim(G) = n 1$ if and only if $G = K_n$, otherwise there are $u, v, w \in V(G)$ such that $u \sim v$ and $u \nsim w$ that is $V(G) \setminus \{v, w\}$ is a resolving set.
- for $n \ge 4$, $\dim(G) = n 2$ if and only if $G = K_{r,s}$, $r, s \ge 1$, $G = K_r \vee \overline{K}_s$, $r \ge 1$, $s \ge 2$, or $G = K_r \vee (K_1 \cup K_s)$, $r, s \ge 1$

Theorem (Chartrand et al. 2000)

- $\dim(G) = 1$ if and only if $G = P_n$. Let $\{w\}$ be a basis, for each v, r(v|W) = d(v, w), thus there exists u with d(u, w) = n 1, so $G = P_n$.
- $\dim(G) = n 1$ if and only if $G = K_n$, otherwise there are $u, v, w \in V(G)$ such that $u \sim v$ and $u \nsim w$ that is $V(G) \setminus \{v, w\}$ is a resolving set.
- for $n \ge 4$, $\dim(G) = n 2$ if and only if $G = K_{r,s}$, $r, s \ge 1$, $G = K_r \vee \overline{K}_s$, $r \ge 1$, $s \ge 2$, or $G = K_r \vee (K_1 \cup K_s)$, $r, s \ge 1$

Theorem (Chartrand et al. 2000)

- $\dim(G) = 1$ if and only if $G = P_n$. Let $\{w\}$ be a basis, for each v, r(v|W) = d(v, w), thus there exists u with d(u, w) = n 1, so $G = P_n$.
- $\dim(G) = n 1$ if and only if $G = K_n$, otherwise there are $u, v, w \in V(G)$ such that $u \sim v$ and $u \sim w$ that is $V(G) \setminus \{v, w\}$ is a resolving set.
- for $n \ge 4$, $\dim(G) = n 2$ if and only if $G = K_{r,s}$, $r, s \ge 1$, $G = K_r \vee \overline{K}_s$, $r \ge 1$, $s \ge 2$, or $G = K_r \vee (K_1 \cup K_s)$, $r, s \ge 1$.

- Graphs with metric dimension two are characterized. (Sudhakara and Kumar 2009)
- Graphs with metric dimension n(G) diam(G) are characterized. (Hernando et al. 2010)
- The n-vertex graphs with metric dimension n − 3 are characterized. (Jannesari and O. 2012)
- Graphs with metric dimension n(G) girth(G) + 2 are characterized. (Jannesari. 2012)

- Graphs with metric dimension two are characterized. (Sudhakara and Kumar 2009)
- Graphs with metric dimension n(G) diam(G) are characterized. (Hernando et al. 2010)
- The *n*-vertex graphs with metric dimension n-3 are characterized. (Jannesari and O. 2012)
- Graphs with metric dimension n(G) girth(G) + 2 are characterized. (Jannesari. 2012)

- Graphs with metric dimension two are characterized. (Sudhakara and Kumar 2009)
- Graphs with metric dimension n(G) diam(G) are characterized. (Hernando et al. 2010)
- The *n*-vertex graphs with metric dimension n-3 are characterized. (Jannesari and O. 2012)
- Graphs with metric dimension n(G) girth(G) + 2 are characterized. (Jannesari. 2012)

- Graphs with metric dimension two are characterized. (Sudhakara and Kumar 2009)
- Graphs with metric dimension n(G) diam(G) are characterized. (Hernando et al. 2010)
- The n-vertex graphs with metric dimension n − 3 are characterized. (Jannesari and O. 2012)
- Graphs with metric dimension n(G) girth(G) + 2 are characterized. (Jannesari. 2012)

Theorem (Erdos and Renyi 1963)

$$\lim_{n\to\infty} \dim(Q_n).\frac{\log n}{n} = 2.$$

	2	4		6	7		10	15
$dim(Q_n)$	2	4	4		6	6	< 7	≤ 10

Theorem (Erdos and Renyi 1963)

$$\lim_{n\to\infty} dim(Q_n).\frac{\log n}{n}=2.$$

n	2	3	4	5	6	7	8	10	15
$dim(Q_n)$	2	3	4	4	5	6	6	< 7	≤ 10

Theorem (Erdos and Renyi 1963)

$$dim(H_{n,k}) \geq (2 + o(1)) \frac{n \log k}{\log n}.$$

Theorem (Chvatal 1983)

$$dim(H_{n,k}) \le (2+\epsilon)n \frac{1+2\log k}{\log n - \log k}.$$

$$dim(H_{2,k}) = \lfloor \frac{2}{3}(2k-1) \rfloor$$

Theorem (Erdos and Renyi 1963)

$$dim(H_{n,k}) \geq (2 + o(1)) \frac{n \log k}{\log n}.$$

Theorem (Chvatal 1983)

$$dim(H_{n,k}) \leq (2+\epsilon)n\frac{1+2\log k}{\log n - \log k}.$$

$$dim(H_{2,k}) = \lfloor \frac{2}{3}(2k-1) \rfloor.$$

Theorem (Erdos and Renyi 1963)

$$dim(H_{n,k}) \geq (2 + o(1)) \frac{n \log k}{\log n}.$$

Theorem (Chvatal 1983)

$$dim(H_{n,k}) \leq (2+\epsilon)n\frac{1+2\log k}{\log n - \log k}.$$

$$dim(H_{2,k}) = \lfloor \frac{2}{3}(2k-1) \rfloor.$$

- The metric dimension of corona products of graphs. (Yero et al. 2011).
- The metric dimension of lexicographic products of graphs. (Jannesari. and O. 2012).
- The metric dimension of strong products of graphs.
 (Juan et al. 2013).

- The metric dimension of corona products of graphs. (Yero et al. 2011).
- The metric dimension of lexicographic products of graphs. (Jannesari. and O. 2012).
- The metric dimension of strong products of graphs. (Juan et al. 2013).

Graph operators

- The metric dimension of corona products of graphs. (Yero et al. 2011).
- The metric dimension of lexicographic products of graphs. (Jannesari. and O. 2012).
- The metric dimension of strong products of graphs.
 (Juan et al. 2013).

Certainly, if G is a nontrivial connected k-dimensional graph of order n then $1 \le k \le n-1$.

Theorem (Chartrand et al. 2000)

For positive integers d and n with d < n, define f(n,d) as the least positive integer k such that $k+d^k \ge n$. Then for a connected graph G of order $n \ge 2$ and diameter d,

$$f(n,d) \le \dim(G) \le n-d$$

Certainly, if G is a nontrivial connected k-dimensional graph of order n then $1 \le k \le n-1$.

Theorem (Chartrand et al. 2000)

For positive integers d and n with d < n, define f(n,d) as the least positive integer k such that $k + d^k \ge n$. Then for a connected graph G of order $n \ge 2$ and diameter d,

$$f(n,d) \leq \dim(G) \leq n-d.$$

- Let $u = v_0, v_1, \dots, v_d = v$ be a path of length d in G.
- For each $i, 1 \leq i \leq d$, $d(u, v_i) = i$.
- $V(G) \setminus \{v_1, v_2, \dots, v_d\}$ is a resolving set for G and $\dim(G) \leq n d$.

- Let $u = v_0, v_1, \dots, v_d = v$ be a path of length d in G.
- For each $i, 1 \le i \le d$, $d(u, v_i) = i$.
- $V(G) \setminus \{v_1, v_2, \dots, v_d\}$ is a resolving set for G and $\dim(G) \leq n d$.

- Let $u = v_0, v_1, \dots, v_d = v$ be a path of length d in G.
- For each $i, 1 \le i \le d$, $d(u, v_i) = i$.
- $V(G) \setminus \{v_1, v_2, \dots, v_d\}$ is a resolving set for G and $\dim(G) \leq n d$.

- Let B be a basis of G of size k.
- For each $v \in V(G) \setminus B$, every coordinate of r(v|B) is a positive integer not exceeding d, and all n-k representations are distinct.
- $d^k \ge n k$ and $f(n, d) \le k = dim(G)$.

- Let B be a basis of G of size k.
- For each $v \in V(G) \setminus B$, every coordinate of r(v|B) is a positive integer not exceeding d, and all n-k representations are distinct.
- $d^k \ge n k$ and $f(n, d) \le k = dim(G)$.

- Let B be a basis of G of size k.
- For each $v \in V(G) \setminus B$, every coordinate of r(v|B) is a positive integer not exceeding d, and all n-k representations are distinct.
- $d^k \ge n k$ and $f(n, d) \le k = dim(G)$.

Theorem (Chartrand et al. 2000)

If G is a connected graph, then $\lceil \log_3(\Delta(G) + 1) \rceil \leq \dim(G)$.

Definition

A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G, det(G), is the minimum cardinality of a determining set of G.

Theorem (Bailey et al. 2011)

If det(G) is the determining number of a connected graph G, then $det(G) \leq dim(G)$.

Theorem (Chartrand et al. 2000)

If G is a connected graph, then $\lceil \log_3(\Delta(G) + 1) \rceil \leq \dim(G)$.

Definition

A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G, det(G), is the minimum cardinality of a determining set of G.

Theorem (Bailey et al. 2011)

If det(G) is the determining number of a connected graph G, then $det(G) \leq dim(G)$.

Theorem (Chartrand et al. 2000)

If G is a connected graph, then $\lceil \log_3(\Delta(G) + 1) \rceil \leq \dim(G)$.

Definition

A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G, det(G), is the minimum cardinality of a determining set of G.

Theorem (Bailey et al. 2011)

If det(G) is the determining number of a connected graph G, then $det(G) \leq dim(G)$.

Definition

A set of vertices S is a dominating set of a graph G if every vertex not in S has a neighbour in S. The domination number of G, $\gamma(G)$, is the cardinality of a minimum dominating set of G.

Theorem (Bagheri, Jannesari and O.. 2013)

If G is a graph of order n, then $\dim(G) \leq n - \gamma(G)$. Moreover $\dim(G) = n - \gamma(G)$ if and only if G is a complete graph or a complete bipartite graph $K_{s,t}$, $s,t \geq 2$.

Definition

A set of vertices S is a dominating set of a graph G if every vertex not in S has a neighbour in S. The domination number of G, $\gamma(G)$, is the cardinality of a minimum dominating set of G.

Theorem (Bagheri, Jannesari and O., 2013)

If G is a graph of order n, then $\dim(G) \leq n - \gamma(G)$. Moreover, $\dim(G) = n - \gamma(G)$ if and only if G is a complete graph or a complete bipartite graph $K_{s,t}$, $s,t \geq 2$.

Scheme of proof

Two vertices $u, v \in V(G)$ are called false twin vertices if N(u) = N(v).

- In every connected graph there exists a minimum dominating set with no pair of false twin vertices.
- If S is a minimum dominating with no pair of false twin vertices, then $V(G) \setminus S$ is a resolving set for G.

Scheme of proof

Two vertices $u, v \in V(G)$ are called false twin vertices if N(u) = N(v).

- In every connected graph there exists a minimum dominating set with no pair of false twin vertices.
- If S is a minimum dominating with no pair of false twin vertices, then $V(G) \setminus S$ is a resolving set for G.

Example

The following example shows that this bound can give a better upper bound for dim(G) compared to the upper bound n - diam(G).

Example |

Let G be a connected graph of order 3k+1, $k\geq 6$, obtained from the wheel W_k by replacing each spoke by a path of length three (i.e. every spoke subdivided twice). It is easy to see that $\gamma(G)=k+1$ and $diam(G)\leq 6$. Hence, we have $\dim(G)\leq n-\gamma(G)=2k$ and $\dim(G)\leq 3k+1-diam(G)$.

A list of new bounds for metric dimension

Corollary

For every connected graph G of order n and girth g,

- if $g \geq 5$, then $\dim(G) \leq n \delta(G)$.
- if $g \ge 6$, then $\dim(G) \le n 2\delta(G) + 2$.
- $\dim(G) \leq n \left\lceil \frac{n}{1 + \Delta(G)} \right\rceil$.
- if G has degree sequence (d_1, d_2, \ldots, d_n) with $d_i \geq d_{i+1}$, then $\dim(G) \leq n \min\{k \mid k + (d_1 + d_2 + \cdots + d_k) \geq n\}$.
- if $\delta(G) \ge 2$ and $g \ge 7$, then $\dim(G) \le n \Delta(G)$.
- if $\mu_n \ge \mu_{n-1} \ge \cdots \ge \mu_1$ be the eigenvalues of Laplacian matrix of G, then $\dim(G) \le n \frac{n}{\mu_n(G)}$.

Randomly k-dimensional graphs

Definition

A connected graph G is called randomly k-dimensional graph if each k-set of vertices of G is a basis of G.

Theorem (Chartrand et al. 2000)

A graph G is randomly 2-dimensional if and only if G is an odd cycle.

Chartrand et al. provided the following question.

Question. Are there only randomly k-dimensional graphs other than complete graph and odd cycles?

Randomly k-dimensional graphs

Theorem (Jannesari and O. 2012)

Let G be a graph with dim(G) = k > 1. Then, G is a randomly k-dimensional graph if and only if G is a complete graph K_{k+1} or an odd cycle.

Complexity
Specific graphs
Characterization
Graph operators
Bounds

Thank you