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k-permutations

Notation
For a positive integer `, let [`] := {1, . . . , `}.

k-permutation

A k-permutation of [n] is a vector (i1, . . . , ik) of distinct elements
of [n].

Permutation
A permutation of [n] is an n-permutation of [n].
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Arrangement graphs

Definition
The arrangement graph A(n, k) is a graph with all the
k-permutations of [n] as vertices where two k-permutations are
adjacent if they agree in exactly k − 1 positions.

Basic properties of A(n, k)

I n!
(n−k)! number of vertices;

I k(n − k)-regular;

I vertex transitive.
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Arrangement graphs

The graph A(4, 2)
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Arrangement graphs

Background

The family of arrangement graphs were first introduced by Day
and Tripathi (1992), as an interconnection network model for
parallel computation. In the interconnection network model, each
processor has its own memory unit and communicates with the
other processors through a topological network, i.e. a graph. For
this purpose, the arrangement graphs possess many nice properties
such as having small diameter, a hierarchical structure, vertex and
edge symmetry, simple shortest path routing, high connectivity, etc.



Arrangement graphs

Special cases

I A(n, 1) is the complete graph Kn.

I A(n, 2) is the line graph of Kn,n minus a perfect matching.

I A(n, n − 1) is Cay(Sn,Tn) where Tn = {(1 2), . . . , (1 n)}
(Abdollahi and Vatandoost (2009), Krakovski and Mohar
(2012), Chapuy and Féray (2012)).
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Arrangement graphs

Question

What are the eigenvalues of (adjacency matrix) of
A(n, k)?



Decomposition of permutations into cycles

Fact
Any permutation can be decomposed into disjoint cycles.

(1, 3, 2, 5, 6, 4) = (1)(2 3)(4 5 6)

Cycle structure of a permutation

To the cyclic decomposition of a permutation σ one may assign a
list of integers consisting of the lengths of the cycles in the
decomposition. This list is called the cycle type of σ.

Cycle types: partitions of n

There is a one-to-one correspondence between the cycle type of
permutations of [n] and the partitions of the integer n.
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Decomposition of k-permutations into cycles

For k-permutations, decomposition into cycles isn’t possible in
general!

However, a decomposition into disjoint cycles and paths is
possible.

Examples of decompositions of some 5-permutations

Suppose i , j > 5.

(2, i , j , 5, 4) = (1 2 i ](3 j ](4 5),

(2, 3, 4, i , j) = (1 2 3 4 i ](5 j ],

(1, 2, 3, i , j) = (1)(2)(3)(4 i ](5 j ].
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Cyclic decomposition of k-permutations

Proposition

Any k-permutation is a product of disjoint cycles and paths. This
decomposition is unique up to the order in which the cycles and
paths are written.

Definition
The decomposition of a k-permutation π as a product of disjoint
cycles and paths is called the cyclic decomposition of π.
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Cyclic decomposition of k-permutations

Graphical representation

To a k-permutation π, we assign a (directed) graph with vertices
[k] ∪ {π(1), . . . , π(k)} and with the set of arcs {(j , π(j)) | j ∈ [k]}.
We call the resulting graph, the basic graph of π.



Cyclic decomposition of k-permutations

In order to define a cycle type for k-permutations, we need to
distinguish between cycles and paths.

Partitions of k into parts of two kinds

Assume that there are integers of two kinds r and r ′ and we
consider the ways to write n as a sum of integers of either kind
where the order of terms in the sum does not matter.

Example

k = 2 11, 11′, 1′1′, 2, 2′

k = 3 111, 111′, 11′1′, 1′1′1′, 21, 21′, 2′1, 2′1′, 3, 3′
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Cyclic decomposition of k-permutations

Cycle type of a k-permutation

Cycle structure or cycle type of a k-permutation π is the list
consisting of the lengths of the cycles and the paths appeared in
the cyclic decomposition of π. We write integers of the first kind
for cycles and integers of the second kind for paths.

Observation
There is a one-to-one correspondence between the cycle structure
of k-permutations and the partitions of k into parts of two kinds.
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Cycle structure of 3-permutations
3-permutation Decomposition Partition of 3 Basic graph

(1, 2, 3) (1)(2)(3) 111

 

(1, 3, 2) (1)(2 3) 12

 

(2, 3, 1) (1 2 3) 3

 

(1, 2, i) (1)(2)(3 i ] 111′

 

(1, 3, i) (1)(2 3 i ] 12′
 

(2, 3, i) (1 2 3 i ] 3′

 

(2, 1, i) (1 2)(3 i ] 21′

 

(1, i , j) (1)(2 i ](3 j ] 11′1′

 

(2, i , j) (1 2 i ](3 j ] 1′2′

 

(i , j , `) (1 i ](2 j ](3 `] 1′1′1′

 



Cycle-type partition

V (n, k) = set of vertices of A(n, k)

We partition V (n, k) according to the cycle type of
k-permutations. So the k-permutations of each cell/part share the
same cycle type. Equivalently, two k-permutations belong to the
same cell if they have isomorphic basic graphs. We call this
partition the cycle-type partition of V (n, k).
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Cycle-type partition

The cycle-type partition of 3-permutations
Type Cell

111 V1 = {(1, 2, 3)}
12 V2 = {(1, 3, 2), (2, 1, 3), (3, 2, 1)}
3 V3 = {(2, 3, 1), (3, 1, 2)}

111′ V4 = {(1, 2, i), (1, i , 3), (i , 2, 3) | 4 6 i 6 n}
21′ V5 = {(2, 1, i), (3, i , 1), (i , 3, 2) | 4 6 i 6 n}
11′1′ V6 = {(1, i , j), (i , 2, j), (i , j , 3) | 4 6 i , j 6 n, i 6= j}
12′ V7 = {(1, 3, i), (3, 2, i), (1, i , 2), (2, i , 3), (i , 2, 1), (i , 1, 3) | 4 6 i 6 n}

1′1′1′ V8 = {(i , j , k) | 4 6 i , j , k 6 n, i 6= j 6= k 6= i}
1′2′ V9 = {(2, i , j), (3, i , j), (i , 1, j), (i , 3, j), (i , j , 1), (i , j , 2) | 4 6 i , j 6 n, i 6= j}
3′ V10 = {(2, 3, i), (3, 1, i), (3, i , 2), (2, i , 1), (i , 3, 1), (i , 1, 2) | 4 6 i 6 n}



Equitable partitions

Definition
An equitable partition of a graph G is a partition
Π = (V1, . . . ,Vm) of the vertex set such that each vertex in Vi has
the same number qij of neighbors in Vj for any i , j (and possibly
i = j).

The quotient matrix of Π is the m ×m matrix Q = (qij).

Fact
Every eigenvalue of the quotient matrix Q is an eigenvalue of G .
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Walk-regular graphs

Definition
A graph G is walk-regular if for every positive integer r , the
number of closed walks of length r starting at a vertex v is
independent of the choice of v .

Fact
Vertex-transitive graphs are walk-regular and so are the
arrangement graphs A(n, k).



Walk-regular graphs

Definition
A graph G is walk-regular if for every positive integer r , the
number of closed walks of length r starting at a vertex v is
independent of the choice of v .

Fact
Vertex-transitive graphs are walk-regular and so are the
arrangement graphs A(n, k).



Equitable partitions

Theorem (Godsil and McKay, 1980)

Let G be a walk-regular graph with ν vertices. Let
Π = (V1, . . . ,Vm) be an equitable partition of G with |V1| = 1 and
let Q be the quotient matrix of Π.

(i) Every eigenvalue of G is an eigenvalue of Q.

(ii) Let S = diag(
√
|V1|,

√
|V2|, . . . ,

√
|Vm|) and P = SQS−1. If

{x1, . . . , x`} is a full set of orthonormal eigenvectors of P for
the eigenvalue λ, then the multiplicity of λ as an eigenvalues
of G is

ν
∑̀

i=1

(xi )
2
1,

where (xi )1 denotes the first coordinate of xi .
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A(n, k).

This partition contains a cell of cardinality 1.
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Theorem (explicit description of the quotient matrix)
Suppose that π ∈ V (n, k) has the cycle type [A,B]. Then the neighbors
of π are as follows.

(i) For any i ∈ A with multiplicity a,

(i.1) π has ia(n − k − |B|) neighbors in [Ai ,B
i ];

(i.2) for any j ∈ B with multiplicity b, π has abi neighbors in

[Ai ,B
i+j
j ].

(ii) For any j ∈ B with multiplicity b and for any ` with 1 6 ` 6 j ,

(ii.1) π has b neighbors in [A`,B j−`
j ];

(ii.2) for any m ∈ Bj with multiplicity c and m + ` 6= j , in

[A,Bm+`,j−`
j,m ], π has 2bc neighbors if m 6= j and m − j + ` > 1

and has bc neighbors otherwise.
(ii.3) in [A,B`,j−`

j ], π has 2b(n − k − |B|) neighbors if j 6= 2` and
b(n − k − |B|) neighbors if j = 2`.

(iii) If B = jb11 . . . jbhh , then π has |B|(n − k − |B|) +
∑

16r<t6h brbt
neighbors in [A,B] (in particular, if B = ∅, then π has no neighbor
in [A,B]).



Cycle-type partition

Quotient matrix for A(n, 3)

eigenvalue eigenvector

−3 [−3(n− 3), n− 3, 0, 3, −1, −2
n−4 , −1, 0, 1

n−4 , 0]

−3 [−(n− 3), 0, 0, 1, 0, −1
n−4 , 0,

1
(n−4)(n−5) , 0, 0]

−3 [3− n, n− 3, 3− n, 1, −1, 0, −1, 0, 0, 1]

n− 7 [3(n− 3), 3(n− 3), 3(n− 3), n− 7, n− 7, 2(11−2n)
n−4 , n− 7, 18

n−4 ,
2(11−2n)

n−4 , n− 7]

n− 6 [−6(n− 3), 0, 3(n− 3), −2, 2(n− 3), 6, −(n− 3), 0, −3, n− 6]

n− 4 [−6(n− 3), 0, 3(n− 3), −2(n− 4), −2(n− 1), 2, n− 1, 0, −1, n− 4]

n− 3 [3, −3, 3, 1, −1, 0, −1, 0, 0, 1]

2n− 9 [3(n− 3), 3(n− 3), 3(n− 3), 2n− 9, 2n− 9, n− 9, 2n− 9, −9, n− 9, 2n− 9]

2n− 6 [−3, 0, 3/2, −2, 1, −1, −1/2, 0, 1/2, 1]

3n− 9 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 3: The eigenvalues and the (transposed) eigenvectors of the quotient matrix of A(n, 3)

By Theorem 8, the quotient matrix of the cycle-type partition of A(n, 3) with the indices of cells as in

Table 2 is the following:

Q =




0 0 0 3(n− 3) 0 0 0 0 0 0
0 0 0 0 2(n− 3) 0 n− 3 0 0 0
0 0 0 0 0 3(n− 3) 0 0 0 0
1 0 0 n− 4 2 0 0 2(n− 4) 0 0
0 1 0 1 n− 4 1 0 n− 4 n− 4 0
0 0 1 0 1 n− 4 1 0 2(n− 4) 0
0 1 0 0 0 2 n− 4 0 2(n− 4) 0
0 0 0 2 2 0 0 2(n− 5) 2 n− 5
0 0 0 0 1 2 1 1 2n− 9 n− 5
0 0 0 0 0 0 0 3 6 3(n− 6)




.

By computation, we work out the eigenvalues and eigenvectors of Q which are shown Table 3.

Let

S = diag
(
1,
√
3,
√
2,
√

3(n− 3),
√

6(n− 3),
√

6(n− 3),
√

3(n− 3),

√
3(n− 3)(n− 4),

√
6(n− 3)(n− 4),

√
(n− 3)(n− 4)(n− 5)

)
,

and P = SQS−1. Note that v is an eigenvector of Q for the eigenvalue λ if and only if Sv is an eigenvector

of P for the eigenvalue λ.

Now v = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)> is an eigenvector of Q for the eigenvalue 3n− 9. So,

w = Sv =
(
1,
√
3,
√
2,
√

3(n− 3),
√

6(n− 3),
√

6(n− 3),
√

3(n− 3),

√
3(n− 3)(n− 4),

√
6(n− 3)(n− 4),

√
(n− 3)(n− 4)(n− 5)

)>
,

is the only eigenvector of P for the eigenvalue 3n− 9. By Lemma 6, the multiplicity of 3n− 9 as eigenvalue

of A(n, 3) is

n(n− 1)(n− 2)
1

~w> ~w
= n(n− 1)(n− 2)

1

n(n− 1)(n− 2)
= 1.
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Cycle-type partition

Eigenvalues and eigenvectors for quotient matrix of A(n, 3)
eigenvalue eigenvector

−3 [−3(n− 3), n− 3, 0, 3, −1, −2
n−4 , −1, 0, 1

n−4 , 0]

−3 [−(n− 3), 0, 0, 1, 0, −1
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2n− 9 [3(n− 3), 3(n− 3), 3(n− 3), 2n− 9, 2n− 9, n− 9, 2n− 9, −9, n− 9, 2n− 9]

2n− 6 [−3, 0, 3/2, −2, 1, −1, −1/2, 0, 1/2, 1]

3n− 9 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 3: The eigenvalues and the (transposed) eigenvectors of the quotient matrix of A(n, 3)

Theorem 11. For n ≥ 4, the eigenvalues of A(n, 3) are

(−3)[n(n−2)(n−4)−1], (n− 7)[n(n−3)/2], (n− 6)[(n−2)(n−1)], (n− 4)[n(n−3)],

(n− 3)[(n−1)(n−2)/2], (2n− 9)[n−1], (2n− 6)[2(n−1)], (3n− 9) [1].

Proof. The eigenvalues of A(4, 3) and A(5, 3) are determined by a computer; these are

{−3[1], −2[6], −1[3], 0[4], 1[3], 2[6], 3[1]} and {−3[14], −2[5], −1[12], 1[14], 2[6], 4[8], 6[1]},

respectively, which agree with the assertion. (Note that letting n = 4 in the assertion, the sum of the

multiplicities of −3 and n− 7 equals 1.)

By Theorem 8, the quotient matrix of the cycle-type partition of A(n, 3) with the indices of cells as in

Table 2 is the following:

Q =




0 0 0 3(n− 3) 0 0 0 0 0 0
0 0 0 0 2(n− 3) 0 (n− 3) 0 0 0
0 0 0 0 0 3(n− 3) 0 0 0 0
1 0 0 n− 4 2 0 0 2(n− 4) 0 0
0 1 0 1 n− 4 1 0 n− 4 n− 4 0
0 0 1 0 1 n− 4 1 0 2(n− 4) 0
0 1 0 0 0 2 n− 4 0 2(n− 4) 0
0 0 0 2 2 0 0 2(n− 5) 2 n− 5
0 0 0 0 1 2 1 1 2n− 9 n− 5
0 0 0 0 0 0 0 3 6 3(n− 6)




.

By computation, we work out the eigenvalues and eigenvectors of Q which are shown Table 3.

Let

S = diag
(
1,
√
3,
√
2,
√
3(n− 3),

√
6(n− 3),

√
6(n− 3),

√
3(n− 3),

√
3(n− 3)(n− 4),

√
6(n− 3)(n− 4),

√
(n− 3)(n− 4)(n− 5)

)
,

10



Eigenvalues of A(n, k)

Theorem
For n > 4, the eigenvalues of A(n, 3) are

(−3)[n(n−2)(n−4)−1], (n − 7)[n(n−3)/2], (n − 6)[(n−2)(n−1)], (n − 4)[n(n−3)],

(n − 3)[(n−1)(n−2)/2], (2n − 9)[n−1], (2n − 6)[2(n−1)], (3n − 9) [1].



Eigenvalues of A(n, k)

Theorem
For n > 5, the eigenvalues of A(n, 4) are as follows:

(−4)[n(n−3)(n
2−7n+8)+1] (n − 10)[n(n−1)(n−5)/6] (n − 9)[n(n−2)(n−4)]

(n − 8)[(n−1)(n−2)(n−3)/2] (n − 7)[2n(n−2)(n−4)/3] (n − 6)[n(n−1)(n−5)/2]

(n − 5)[n(n−2)(n−4)] (n − 4)[(n−1)(n−2)(n−3)/6] (2n − 14)[n(n−3)/2]

(2n − 12)[3(n−1)(n−2)/2] (2n − 10)[3n(n−3)/2] (2n − 8)[5n(n−3)/2+3]

(3n − 16)[n−1] (3n − 12)[3(n−1)] (4n − 16)[1].



Eigenvalues of A(n, k)

Eigenvalues of A(n, 5)

(−5)[n
5−15n4+75n3−145n2+89n−1] (n− 13)[n(n−1)(n−2)(n−7)/24] (n− 12)[n(n−1)(n−3)(n−6)/2]

(n− 11)[n(n−5)(7n)2−35n+37)/6] (n− 10)[(n−1)(n−2)(n−3)(n−4)/6] (n− 9)[5n(n−3)(n2−7n+8)/4]

(n− 8)[n(n−1)(n−2)(n−7)/6] (n− 7)[n(n−1)(7n)2−63n+131)/6] (n− 6)[n(n−2)(n−3)(n−5)/2]

(n− 5)[(n−1)(n−2)(n−3)(n−4)/24] (2n− 19)[n(n−1)(n−5)/6] (2n− 17)[4n(n−2)(n−4)/3]

(2n− 15)[(n−1)(n−2)(n−3)] (2n− 14)[n(7n)
2−42n+50)/2] (2n− 12)[2n(n−2)(n−4)]

(2n− 11)[5n(n−1)(n−5)/6] (2n− 10)[(n−2)(7n2−28n+6)/3] (3n− 23)[n(n−3)/2]

(3n− 20)[2(n−1)(n−2)] (3n− 18)[2n(n−3)] (3n− 15)[(11n
2−33n+12)/2]

(4n− 25)[n−1] (4n− 20)[4n−4] (5n− 25)[1]

Table 5: The eigenvalues of A(n, 5)

for 2n− 8. By Lemma 5, the multiplicity of 2n− 8 as an eigenvalue of A(n, 4) is

n(n− 1)(n− 2)(n− 3)

(
(u1)

2
1

u>
1 u1

+
(u2)

2
1

u>
2 u2

)

= n(n− 1)(n− 2)(n− 3)

(
12

6− 15n+ 5n2
+

(n2 − 3n+ 6)2

2n(n− 1)(n− 2)(n− 3)(5n2 − 15n+ 6)

)

=
5n(n− 3)

2
+ 3.

Now, the multiplicity of −4 is n(n − 1)(n − 2)(n − 3) minus the sum of all the multiplicities of the rest of

the eigenvalues.

4.3 Eigenvalues of A(n, k) for k = 5, 6, 7

In a similar fashion as for A(n, 3) and A(n, 4), we are able to determine the complete set of eigenvalues of

more families of the arrangement graphs. The eigenvalues of A(n, k) for k = 5, 6, 7 are given in Tables 5, 6

and 7. We would like to point out that by using our method it is possible to compute the eigenvalues of the

graphs A(n, k) for some larger values of k > 7.

4.4 Connection with the Johnson graph

We first recall the eigenvalues of the Johnson graph (see [2, p. 179]).

Lemma 12. The eigenvalues of J(n, k) are

(k − i)(n− k − i)− i with multiplicity

(
n

i

)
−
(

n

i− 1

)
, for i = 0, . . . , k.

Let α1, . . . , α(nk)
be all the k-subsets of [n]. Let Vi be the set of all permutations of αi. If |αi∩αj | = k−1,

then each π ∈ Vi is adjacent to exactly one q ∈ Vj and if |αi ∩ αj | < k − 1, then no vertex of Vi has a

neighbour in Vj . It turns out that (V1, . . . , Vn) is an equitable partition of A(n, k) where its quotient matrix

is the adjacency matrix of J(n, k). So we come up with the following.

Proposition 13. For every i = 0, . . . , k, (k − i)(n− k − i)− i is an eigenvalue of A(n, k) with multiplicity

at least
(
n
i

)
−
(

n
i−1

)
.
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Eigenvalues of A(n, k)

Eigenvalues of A(n, 6)
(−6)[n

6−21n5+160n4−545n3+814n2−415n+1] (n− 16)[n(n−1)(n−2)(n−3)(n−9)/120] (n− 15)[n(n−1)(n−2)(n−4)(n−8)/6]

(n− 14)[n(n−1)(n−7)(7n2−49n+78)/8] (n− 13)[n(n−3)(n−6)(n2−6n+6)] (n− 12)[(n−1)(n−2)(n−5)(n2−7n+2)/4]

(n− 11)[n(n−4)(7n3−77n2+217n−162)/4] (n− 10)[n(n−1)(n−3)(n−4)(n−7)/4] (n− 9)[n(n−1)(n−2)(n2−12n+34)]

(n− 8)[n(n−1)(n−3)(7n2−77n+202)/8] (n− 7)[n(n−2)(n−3)(n−4)(n−6)/6] (n− 6)[(n−1)(n−2)(n−3)(n−4)(n−5)/120]

(2n− 24)[n(n−1)(n−2)(n−7)/24] (2n− 22)[5n(n−1)(n−3)(n−6)/8] (2n− 20)[n(n−5)(2n−3)(2n−7)/2]

(2n− 18)[(7n
3−63n2+136n−40)(n−1)/4] (2n− 17)[2n(n−2)(n−3)(n−5)] (2n− 16)[15n(n−1)(n−3)(n−6)/8]

(2n− 15)[4n(n−1)(n−4)(n−5)/3] (2n− 14)[n(n−2)(13n2−104n+171)/8] (2n− 13)[2n(n−1)(n−3)(n−6)]

(2n− 12)[(7n
4−70n3+217n2−210n+20)/4] (3n− 30)[n(n−1)(n−5)/6] (3n− 27)[5n(n−4)(n−2)/3]

(3n− 23)[3n(n−2)(n−2)] (3n− 24)[5(n−4)(n−1)2/2] (3n− 21)[10n(n−2)(n−4)/3]

(3n− 20)[3n(n−1)(n−5)/2] (3n− 18)[(n−4)(47n2−94n+15)/6] (4n− 34)[n(n−3)/2]

(4n− 30)[5(n−1)(n−2)/2] (4n− 28)[5n(n−3)/2] (4n− 24)[(19n
2−57n+20)/2]

(5n− 36)[n−1] (5n− 30)[5n−5] (6n− 36)[1]

Table 6: The eigenvalues of A(n, 6)

(−7)[n
7−28n6+301n5−1575n4+4179n3−5243n2+2372n−1] (n− 19)[n(n−1)(n−2)(n−3)(n−4)(n−11)/720]

(n− 18)[n(n−1)(n−2)(n−3)(n−5)(n−10)/24] (n− 17)[n(n−1)(n−2)(n−9)(23n2−207n+439)/60]

(n− 16)[n(n−1)(n−8)(83n3−996n2+3691n−4182)/72] (n− 15)[n(n−7)(11n4−154n3+739n2−1400n+844)/16]

(n− 14)[(n−1)(n−2)(n−6)(13n3−156n2+401n−10)/20] (n− 13)[7n(n−5)(n4−16n3+80n2−151n+89)/6]

(n− 12)[n(n−1)(n−4)(13n3−208n2+1003n−1348)/20] (n− 11)[(11n
2−165n+592)(n−1)(n−2)(n−3)n/16]

(n− 10)[n(n−1)(n−2)(83n3−1494n2+8593n−15822)/72] (n− 9)[n(n−1)(n−3)(n−4)(23n2−299n+941)/60]

(n− 8)[n(n−2)(n−3)(n−4)(n−5)(n−7)/24] (n− 7)[(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)/720]

(2n− 29)[n(n−1)(n−2)(n−3)(n−9)/120] (2n− 27)[n(n−1)(n−2)(n−4)(n−8)/5]

(2n− 25)[n(n−1)(n−7)(8n2−56n+89)/6] (2n− 23)[n(n−3)(n−6)(17n2−102n+101)/8]

(2n− 22)[n(n−1)(n−2)(11n2−132n+367)/10] (2n− 21)[5(n−1)(n−3)(n−4)(3n2−21n+2)/8]

(2n− 20)[5n(n−2)(n−4)(n2−9n+15)/3] (2n− 19)[7(n−7)(11n2−77n+122)n(n−1)/20]

(2n− 18)[n(n−1)(n−3)(n−4)(n−7)] (2n− 17)[7n(n−1)(7n3−98n2+427n−568)/20]

(2n− 16)[5n(n−2)(n−4)(n2−9n+11)/3] (2n− 15)[7n(n−1)(n−7)(3n2−21n+34)/8]

(2n− 14)[(n−3)(11n4−132n3+469n2−438n+20)/10] (3n− 37)[n(n−1)(n−2)(n−7)/24]

(3n− 34)[3n(n−1)(n−3)(n−6)/4] (3n− 31)[n(n−5)(73n2−365n+382)/24]

(3n− 30)[n(n−1)(n−2)(n−7)/4] (3n− 29)[7n(n−1)(n−3)(n−6)/4]

(3n− 28)[5(n−1)(n−2)(n−3)(n−4)/6] (3n− 27)[5n(n−3)(5n2−35n+44)/4]

(3n− 26)[7n(n−1)(n−3)(n−6)n/4] (3n− 25)[7n(n−1)(n2−9n+19)/2]

(3n− 24)[5n(n−2)(n−3)(n−5)/2] (3n− 22)[7n(n−1)(n−2)(n−7)/12]

(3n− 23)[35n(n−1)(n−3)(n−6)/8] (3n− 21)[(75n
4−750n3+2233n2−1958n+120)/8]

(4n− 43)[n(n−1)(n−5)/6] (4n− 39)[2n(n−2)(n−4)]

(4n− 36)[n(n−1)(n−5)] (4n− 35)[5(n−1)(n−2)(n−3)/2]

(4n− 34)[14n(n−2)(n−4)/3] (4n− 32)[5n(n−2)(n−4)]

(4n− 31)[7n(n−1)(n−5)/3] (4n− 28)[(52n
3−312n2+425n2−60)/3]

(5n− 47)[n(n−3)/2] (5n− 42)[3(n−1)(n−2)]

(5n− 40)[3n(n−3)] (5n− 35)[(29n
2−87n+30)/2]

(6n− 49)[n−1] (6n− 42)[6(n−1)]

(7n− 49)[1]

Table 7: The eigenvalues of A(n, 7)
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Eigenvalues of A(n, 7)

(−6)[n
6−21n5+160n4−545n3+814n2−415n+1] (n− 16)[n(n−1)(n−2)(n−3)(n−9)/120] (n− 15)[n(n−1)(n−2)(n−4)(n−8)/6]

(n− 14)[n(n−1)(n−7)(7n2−49n+78)/8] (n− 13)[n(n−3)(n−6)(n2−6n+6)] (n− 12)[(n−1)(n−2)(n−5)(n2−7n+2)/4]

(n− 11)[n(n−4)(7n3−77n2+217n−162)/4] (n− 10)[n(n−1)(n−3)(n−4)(n−7)/4] (n− 9)[n(n−1)(n−2)(n2−12n+34)]

(n− 8)[n(n−1)(n−3)(7n2−77n+202)/8] (n− 7)[n(n−2)(n−3)(n−4)(n−6)/6] (n− 6)[(n−1)(n−2)(n−3)(n−4)(n−5)/120]

(2n− 24)[n(n−1)(n−2)(n−7)/24] (2n− 22)[5n(n−1)(n−3)(n−6)/8] (2n− 20)[n(n−5)(2n−3)(2n−7)/2]

(2n− 18)[(7n
3−63n2+136n−40)(n−1)/4] (2n− 17)[2n(n−2)(n−3)(n−5)] (2n− 16)[15n(n−1)(n−3)(n−6)/8]

(2n− 15)[4n(n−1)(n−4)(n−5)/3] (2n− 14)[n(n−2)(13n2−104n+171)/8] (2n− 13)[2n(n−1)(n−3)(n−6)]

(2n− 12)[(7n
4−70n3+217n2−210n+20)/4] (3n− 30)[n(n−1)(n−5)/6] (3n− 27)[5n(n−4)(n−2)/3]

(3n− 23)[3n(n−2)(n−2)] (3n− 24)[5(n−4)(n−1)2/2] (3n− 21)[10n(n−2)(n−4)/3]

(3n− 20)[3n(n−1)(n−5)/2] (3n− 18)[(n−4)(47n2−94n+15)/6] (4n− 34)[n(n−3)/2]

(4n− 30)[5(n−1)(n−2)/2] (4n− 28)[5n(n−3)/2] (4n− 24)[(19n
2−57n+20)/2]

(5n− 36)[n−1] (5n− 30)[5n−5] (6n− 36)[1]

Table 6: The eigenvalues of A(n, 6)

(−7)[n
7−28n6+301n5−1575n4+4179n3−5243n2+2372n−1] (n− 19)[n(n−1)(n−2)(n−3)(n−4)(n−11)/720]

(n− 18)[n(n−1)(n−2)(n−3)(n−5)(n−10)/24] (n− 17)[n(n−1)(n−2)(n−9)(23n2−207n+439)/60]

(n− 16)[n(n−1)(n−8)(83n3−996n2+3691n−4182)/72] (n− 15)[n(n−7)(11n4−154n3+739n2−1400n+844)/16]

(n− 14)[(n−1)(n−2)(n−6)(13n3−156n2+401n−10)/20] (n− 13)[7n(n−5)(n4−16n3+80n2−151n+89)/6]

(n− 12)[n(n−1)(n−4)(13n3−208n2+1003n−1348)/20] (n− 11)[(11n
2−165n+592)(n−1)(n−2)(n−3)n/16]

(n− 10)[n(n−1)(n−2)(83n3−1494n2+8593n−15822)/72] (n− 9)[n(n−1)(n−3)(n−4)(23n2−299n+941)/60]

(n− 8)[n(n−2)(n−3)(n−4)(n−5)(n−7)/24] (n− 7)[(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)/720]

(2n− 29)[n(n−1)(n−2)(n−3)(n−9)/120] (2n− 27)[n(n−1)(n−2)(n−4)(n−8)/5]

(2n− 25)[n(n−1)(n−7)(8n2−56n+89)/6] (2n− 23)[n(n−3)(n−6)(17n2−102n+101)/8]

(2n− 22)[n(n−1)(n−2)(11n2−132n+367)/10] (2n− 21)[5(n−1)(n−3)(n−4)(3n2−21n+2)/8]

(2n− 20)[5n(n−2)(n−4)(n2−9n+15)/3] (2n− 19)[7(n−7)(11n2−77n+122)n(n−1)/20]

(2n− 18)[n(n−1)(n−3)(n−4)(n−7)] (2n− 17)[7n(n−1)(7n3−98n2+427n−568)/20]

(2n− 16)[5n(n−2)(n−4)(n2−9n+11)/3] (2n− 15)[7n(n−1)(n−7)(3n2−21n+34)/8]

(2n− 14)[(n−3)(11n4−132n3+469n2−438n+20)/10] (3n− 37)[n(n−1)(n−2)(n−7)/24]

(3n− 34)[3n(n−1)(n−3)(n−6)/4] (3n− 31)[n(n−5)(73n2−365n+382)/24]

(3n− 30)[n(n−1)(n−2)(n−7)/4] (3n− 29)[7n(n−1)(n−3)(n−6)/4]

(3n− 28)[5(n−1)(n−2)(n−3)(n−4)/6] (3n− 27)[5n(n−3)(5n2−35n+44)/4]

(3n− 26)[7n(n−1)(n−3)(n−6)n/4] (3n− 25)[7n(n−1)(n2−9n+19)/2]

(3n− 24)[5n(n−2)(n−3)(n−5)/2] (3n− 22)[7n(n−1)(n−2)(n−7)/12]

(3n− 23)[35n(n−1)(n−3)(n−6)/8] (3n− 21)[(75n
4−750n3+2233n2−1958n+120)/8]

(4n− 43)[n(n−1)(n−5)/6] (4n− 39)[2n(n−2)(n−4)]

(4n− 36)[n(n−1)(n−5)] (4n− 35)[5(n−1)(n−2)(n−3)/2]

(4n− 34)[14n(n−2)(n−4)/3] (4n− 32)[5n(n−2)(n−4)]

(4n− 31)[7n(n−1)(n−5)/3] (4n− 28)[(52n
3−312n2+425n2−60)/3]

(5n− 47)[n(n−3)/2] (5n− 42)[3(n−1)(n−2)]

(5n− 40)[3n(n−3)] (5n− 35)[(29n
2−87n+30)/2]

(6n− 49)[n−1] (6n− 42)[6(n−1)]

(7n− 49)[1]

Table 7: The eigenvalues of A(n, 7)
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Cayley Graphs

Definition
Let G be a finite group and S be a subset of G such that 1 /∈ S
and s ∈ S ⇒ s−1 ∈ S . The Cayley graph Cay(G ,S) is the graph
which has the elements of G as its vertices and

u ∼ v ⇔ v = su, ∃s ∈ S .



Group Characters

Definition
If Ψ : G → GLn(C) is an homorphism, then the function

χ : G → C
χ(g) = trace (Ψ(g))

is called a character of G .

χ (or Ψ) is called reducible if

∃n1, n2, n = n1 + n2, ∀g ∈ G ,Ψ(g) ∈ GLn1(C)⊕ GLn2(C).



Group Characters

Definition
If Ψ : G → GLn(C) is an homorphism, then the function

χ : G → C
χ(g) = trace (Ψ(g))

is called a character of G .

χ (or Ψ) is called reducible if

∃n1, n2, n = n1 + n2, ∀g ∈ G ,Ψ(g) ∈ GLn1(C)⊕ GLn2(C).



Normal Cayley Graphs

A Cayley graph Cay(G , S) is said to be normal if S is closed under
conjugation, i.e.

∀s ∈ S ∀g ∈ G , gsg−1 ∈ S .

Theorem (Babai (1979), Diaconis and Shahshahani (1981))

The eigenvalues of a normal Cay(G ,S) are given by

ηχ =
1

χ(1)

∑

s∈S
χ(s),

where χ ranges over all the irreducible characters of G . Moreover,
the multiplicity of ηχ is χ(1)2.



Normal Cayley Graphs

A Cayley graph Cay(G , S) is said to be normal if S is closed under
conjugation, i.e.

∀s ∈ S ∀g ∈ G , gsg−1 ∈ S .

Theorem (Babai (1979), Diaconis and Shahshahani (1981))

The eigenvalues of a normal Cay(G , S) are given by

ηχ =
1

χ(1)

∑

s∈S
χ(s),

where χ ranges over all the irreducible characters of G . Moreover,
the multiplicity of ηχ is χ(1)2.



Normal Cayley Graphs of Sn

Sn denotes the symmetric group on [n].

Facts

I If C is a conjugacy class in Sn, then for any irreducible
characters of χ of Sn,

1

χ(1)

∑

g∈C
χ(g)

is an algebraic integer.

I The characters of Sn are integral valued.

Corollary

The eigenvalues of a normal Cay(Sn,S) are integers.



Normal Cayley Graphs of Sn

Sn denotes the symmetric group on [n].

Facts

I If C is a conjugacy class in Sn, then for any irreducible
characters of χ of Sn,

1

χ(1)

∑

g∈C
χ(g)

is an algebraic integer.

I The characters of Sn are integral valued.

Corollary

The eigenvalues of a normal Cay(Sn,S) are integers.



Normal Cayley Graphs of Sn

Sn denotes the symmetric group on [n].

Facts

I If C is a conjugacy class in Sn, then for any irreducible
characters of χ of Sn,

1

χ(1)

∑

g∈C
χ(g)

is an algebraic integer.

I The characters of Sn are integral valued.

Corollary

The eigenvalues of a normal Cay(Sn,S) are integers.



Normal Cayley Graphs of Sn

Sn denotes the symmetric group on [n].

Facts

I If C is a conjugacy class in Sn, then for any irreducible
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For instance, Cy(2) = {(1 2), (1 3), . . . , (1 n)}.
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I The second part of the conjecture was proved by Krakovski
and Mohar (2012).

I Chapuy and Feray (2012) pointed out that the conjecture
could be proved by using Jucys–Murphy elements.
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Theorem
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S = {(i , j) | i ∈ [k], j ∈ [n] \ [k]}.
The eigenvalues of Cay(Sn, S) are integral.
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be the disjoint union of all the right cosets of Sn(T ). Note that
` = n!/(n − k)!.

Observation
There is a one-to-one correspondence between the cosets of Sn(T )
and the k-permutations of [n].
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and Sn(T )αj , then there is a matching between Sn(T )αi and
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of Cay(Sn, S).

I Let Q = [qij ] be the quotient matrix. If we represent the right
coset Sn(T )αi by the vector (αi (1), αi (2), . . . , αi (k)), then
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I Any eigenvalue of A(n, k) is an eigenvalues of Cay(Sn, S).
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Corollary

The eigenvalues of Arrangement Graph A(n, k) are integers.
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One can generalize the arrangement graphs A(n, k) in a natural
way.

The arrangement graph A(n, k , r) is a graph with all the
k-permutations of [n] as vertices where two k-permutations are
adjacent if they differ in exactly r positions.
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For any integer k , there is an integer n0 such that for all n > n0,
−k is the only negative eigenvalue of A(n, k, 1).
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