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10 6 1 11 2

letC=(0 B —B).
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A (15,5; 1)-difference matrix over (Z1s,+):

00 0 0 O
12 3 4 5
Take B = 2 5 7 9 12
6 3 14 10 7
10 6 1 11 2

letC=(0 B —B).

A (4,4;1)-difference matrix over (Z x Z,+)
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A necessary condition for the existence:

A (g, k; A)-difference matrix does not exist if k > Ag.

Existence:The multiplication table for the finite field GF(q) is a
(g, g; 1)-difference matrix over EA(q), where EA(q) denote the order g
direct product of prime order cyclic groups.

Conjecture: There is no (g, g; 1)-difference matrix for any non-prime
power q.
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Let (G,®) be a group of order g and D a normalized
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Auxiliary matrices corresponding to difference matrices:

Let (G,®) be a group of order g and D a normalized

(g, k; M)-difference matrix over (G,®). Let r;, i =1,2,...,k be the i-th
row of D.

Let C,' = I’,-*I’,', i= 1,2,...,/(.

0 0O
Example: Let D3 = 0 1 2 |.Then,
0 2 1
0 0O 01 2 0 2 1
C1: 0 0O ,02: 2 0 1 ,and03: 1 0 2
0 0O 120 210
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Mutually Suitable Latin Squares

Two Latin squares Ly and L of size non symbol set {0,1,2,...,n—1}
are called suitable if every superimposition of each row of Ly on each
row of L, results in only one element of the form (a, a).

Example: Two mutually suitable Latin squares of size 3:

01 2
2 0
1 2

O =

N = O
- o N
o N =

If there is a (g, k; 1)-difference matrix, then there is a set of k — 1
Mutually Suitable Latin Squares of size g.
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Generalized Hadamard matrices

A (g, gA; A)-difference matrix over the group G is said to be a
generalized Hadamard matrix, over the group G, denoted GH(g, ) .

Example: A GH(3,2) generalized Hadamard matrix over the cyclic

group Zsz
1 1 1 1 1 1
o o 1 o 1 o
A | @ 0 o o 1
1 0 0 1 o o
@@ 0 1 o o 1
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Example: A normalized GH(4,1) over Zy x Zy



Example: A normalized GH(4,1) over Zy x Zy

—_ a4 o
Hh T o =
T o0 v =
O 0 T =



Example: A normalized GH(4,1) over Zy x Zy

—_ a4 o
Hh T o =
T o0 v =
O 0 T =



Example: A normalized GH(4,1) over Zy x Zy

—_ a4 o
Hh T o =
T o0 v =
O 0 T =



Existence of generalized Hadamard matrices



Existence of generalized Hadamard matrices

The multiplication table for the finite field GF(q) is a (g, g; 1)-difference
matrix



Existence of generalized Hadamard matrices

The multiplication table for the finite field GF(q) is a (g, g; 1)-difference
matrix and so a generalized Hadamard matrix over EA(Q).



Existence of generalized Hadamard matrices

The multiplication table for the finite field GF(q) is a (g, g; 1)-difference
matrix and so a generalized Hadamard matrix over EA(Q).

For any Group G of prime power order q and any integer t > 0, there
isa GH(q,¢? ).
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let I =i®Qi,a=i®r,b=r®i,andc=ab=r®r. Then
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Let

-(3) ~(38)

let I =i®Qi,a=i®r,b=r®i,andc=ab=r®r. Then

1000 0100
_|otoo| __[1oo0o0
=l o010 (o o0 o0 {1

000 1 0010
0010 00 0 1
00 0 1 0010
b=l 1000 | 72|01 0 0
0100 1000

Note I+a+ b+ c =J, Jis the 4 x 4 matrix of all ones.
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Summary:

> Let (G,®) be a group of order g. A generalized Hadamard matrix
over G, or GH(g, ), is a matrix H = [®;] of order v = g with
entries from the group G such that for any distinct
i,he{1,2,...,9\}, the multiset {o; ® " : 1 <j < v} contains
exactly A copies of every element of G.

» The multiplication table for any finite field GF(q) of order g forms
a GH(q,1) over EA(q).

> Let r; be the i-th row of a GH(g,1),i=1,2,...,9. The g— 1 rank
one matrices C; = r;"r; form a class of MSLS (MOLS) of size g.

» Any GH(q,1) over an EA(q) leads to some very interesting
objects.
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Association Schemes:

Let {Ag,A1,..., A} be a set of n x n symmetric (0, 1)-matrices which
satisfy

> Ag is the identity matrix of order n.
> Zf?zo A; = J, where J is the matrix of all ones of order n.
> AkA;is alinear combination of A;s.

{Ao,As,...,Ar} is said to form an ¢-class symmetric association
scheme of order n.

Let p be a prime number. Then there is a p 4 1-class symmetric
association scheme of order p? which is often collapsable to
smaller classes.
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The multiplication table for GF(4) provides a GH(4,1) over an additive
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The Generalized Bush-type of order 16 is:
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Let H = A + 2A; + 3As, where Ay, Az, Az are (0,1)-matrices. Then
There is a 5-class symmetric association scheme collapsable to four
Siamese SRG(16,6,2,2), sharing the cliques of size 4, leading to a
decomposition of Kig to four Siamese SRG(16,6,2,2).
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» There are no GH-matrices GH(q, 1) over non-prime power order
groups. The first open case is order 12 over EA(12), where
EA(q) denotes the order g direct product of prime order cyclic
groups.

» There is a GH-matrix of order 4k over EA(4) for any positive
integer k. This is equivalent to finding a pair of order 4k
Hadamard matrices whose entrywise product is also Hadamard.
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The first open case is order 20.
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Main result: For any prime number p there is a (p+ 1)-class
symmetric association scheme collapsible to smaller class symmetric
association scheme of order p?.
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