

Happy 25+75=100

Generalized Hadamard matrices and applications

H. Kharaghani

University of Lethbridge Canada

The First IPM-Isfahan Workshop on Combinatorics

University of Isfahan

May 20-22, 2014

- Difference matrices
- ► Generalized Hadamard (GH) matrices

- Difference matrices
- Generalized Hadamard (GH) matrices
- ► Existence and examples

- Difference matrices
- Generalized Hadamard (GH) matrices
- Existence and examples
- ► The auxiliary matrices corresponding to GH matrices

- Difference matrices
- Generalized Hadamard (GH) matrices
- Existence and examples
- The auxiliary matrices corresponding to GH matrices
- ▶ Association Schemes

- Difference matrices
- Generalized Hadamard (GH) matrices
- Existence and examples
- The auxiliary matrices corresponding to GH matrices
- Association Schemes
- Some application of GH matrices

Let (G, \odot) be a group of order g.

Let (G, \odot) be a group of order g. A $(g, k; \lambda)$ -difference matrix over (G, \odot) is a $k \times g\lambda$ matrix $D = (d_{ij})$

Let (G, \odot) be a group of order g. A $(g, k; \lambda)$ -difference matrix over (G, \odot) is a $k \times g\lambda$ matrix $D = (d_{ij})$ with entries from G,

Let (G, \odot) be a group of order g. A $(g, k; \lambda)$ -difference matrix over (G, \odot) is a $k \times g\lambda$ matrix $D = (d_{ij})$ with entries from G, so that for each $1 \le i < j \le k$, the multiset

$$\{d_{i\ell}\odot d_{j\ell}^{-1}: 1\leq \ell\leq g\lambda\}$$

Let (G, \odot) be a group of order g. A $(g, k; \lambda)$ -difference matrix over (G, \odot) is a $k \times g\lambda$ matrix $D = (d_{ij})$ with entries from G, so that for each $1 \le i < j \le k$, the multiset

$$\{d_{i\ell}\odot d_{j\ell}^{-1}: 1\leq \ell\leq g\lambda\}$$

(the *difference list*) contains every element of G (lambda) λ times.

Let (G, \odot) be a group of order g. A $(g, k; \lambda)$ -difference matrix over (G, \odot) is a $k \times g\lambda$ matrix $D = (d_{ij})$ with entries from G, so that for each $1 \le i < j \le k$, the multiset

$$\{d_{i\ell}\odot d_{j\ell}^{-1}: 1\leq \ell\leq g\lambda\}$$

(the *difference list*) contains every element of G (lambda) λ times.

Example: A (3,6;2)-difference matrix over $(\mathbb{Z}_3,+)$

Let (G, \odot) be a group of order g. A $(g, k; \lambda)$ -difference matrix over (G, \odot) is a $k \times g\lambda$ matrix $D = (d_{ij})$ with entries from G, so that for each $1 \le i < j \le k$, the multiset

$$\{d_{i\ell}\odot d_{j\ell}^{-1}: 1\leq \ell\leq g\lambda\}$$

(the difference list) contains every element of G (lambda) λ times.

Example: A (3,6;2)-difference matrix over $(\mathbb{Z}_3,+)$

$$A = \left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 2 & 1 & 0 \\ 0 & 2 & 2 & 0 & 1 & 1 \\ 2 & 2 & 0 & 1 & 1 & 0 \\ 2 & 0 & 2 & 1 & 0 & 1 \end{array}\right)$$

A (5,5;1)-difference matrix over $(\mathbb{Z}_5,+)$

A (5,5;1)-difference matrix over $(\mathbb{Z}_5,+)$

$$A = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 3 & 1 & 4 & 2 \\ 0 & 4 & 3 & 2 & 1 \end{array}\right)$$

A (5,5;1)-difference matrix over $(\mathbb{Z}_5,+)$

$$A = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 3 & 1 & 4 & 2 \\ 0 & 4 & 3 & 2 & 1 \end{array}\right)$$

A (5,5;1)-difference matrix over (\mathbb{Z}_5,x)

A (5,5;1)-difference matrix over $(\mathbb{Z}_5,+)$

$$A = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 1 & 3 \\ 0 & 3 & 1 & 4 & 2 \\ 0 & 4 & 3 & 2 & 1 \end{array}\right)$$

A (5,5;1)-difference matrix over (\mathbb{Z}_5,x)

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 \\ 1 & \omega^2 & \omega^4 & \omega & \omega^3 \\ 1 & \omega^3 & \omega & \omega^4 & \omega^2 \\ 1 & \omega^4 & \omega^3 & \omega^2 & \omega \end{pmatrix}$$

Take
$$B = \left(\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 9 & 12 & 4 & 1 \\ 6 & 3 & 14 & 10 & 7 & 13 & 4 \\ 10 & 6 & 1 & 11 & 2 & 7 & 12 \end{array} \right),$$

Take
$$B = \left(\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 9 & 12 & 4 & 1 \\ 6 & 3 & 14 & 10 & 7 & 13 & 4 \\ 10 & 6 & 1 & 11 & 2 & 7 & 12 \end{array} \right),$$

Let
$$C = (0 B -B)$$
.

Take
$$B = \left(\begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 9 & 12 & 4 & 1 \\ 6 & 3 & 14 & 10 & 7 & 13 & 4 \\ 10 & 6 & 1 & 11 & 2 & 7 & 12 \end{array} \right),$$

Let
$$C = (0 B -B)$$
.

A (4,4;1)-difference matrix over (
$$\mathbb{Z}_2 \times \mathbb{Z}_2, +$$
)

Take
$$B = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 7 & 9 & 12 & 4 & 1 \\ 6 & 3 & 14 & 10 & 7 & 13 & 4 \\ 10 & 6 & 1 & 11 & 2 & 7 & 12 \end{pmatrix}$$

Let
$$C = (0 B -B)$$
.

A (4,4;1)-difference matrix over $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$

$$B = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 3 & 1 \\ 0 & 3 & 1 & 2 \end{array}\right),$$

where 2 + 3 = 1.

A $(g, k; \lambda)$ -difference matrix does not exist if $k > \lambda g$.

A $(g, k; \lambda)$ -difference matrix does not exist if $k > \lambda g$.

Existence:

A $(g, k; \lambda)$ -difference matrix does not exist if $k > \lambda g$.

Existence: The multiplication table for the finite field $\mathbf{GF}(q)$ is a (q, q; 1)-difference matrix over $\mathsf{EA}(q)$,

A $(g, k; \lambda)$ -difference matrix does not exist if $k > \lambda g$.

Existence: The multiplication table for the finite field $\mathbf{GF}(q)$ is a (q,q;1)-difference matrix over $\mathrm{EA}(q)$, where $\mathrm{EA}(q)$ denote the order q direct product of prime order cyclic groups.

A $(g, k; \lambda)$ -difference matrix does not exist if $k > \lambda g$.

Existence: The multiplication table for the finite field $\mathbf{GF}(q)$ is a (q,q;1)-difference matrix over $\mathrm{EA}(q)$, where $\mathrm{EA}(q)$ denote the order q direct product of prime order cyclic groups.

Conjecture: There is no (q, q; 1)-difference matrix for any non-prime power q.

Let (G, \odot) be a group of order g

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) .

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) . Let r_i , i = 1, 2, ..., k be the i-th row of D.

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) . Let r_i , $i = 1, 2, \ldots, k$ be the i-th row of D.

Let $C_i = r_i^* r_i$, i = 1, 2, ..., k.

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) . Let r_i , $i = 1, 2, \ldots, k$ be the i-th row of D.

Let $C_i = r_i^* r_i$, i = 1, 2, ..., k.

Example: Let
$$D_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
. Then,

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) . Let r_i , $i = 1, 2, \ldots, k$ be the i-th row of D.

Let $C_i = r_i^* r_i$, i = 1, 2, ..., k.

Example: Let
$$D_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
. Then,

$$C_1 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right),$$

Auxiliary matrices corresponding to difference matrices:

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) . Let r_i , $i = 1, 2, \ldots, k$ be the i-th row of D.

Let $C_i = r_i^* r_i$, i = 1, 2, ..., k.

Example: Let
$$D_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
. Then,

$$C_1 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \ C_2 = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{array}\right),$$

Auxiliary matrices corresponding to difference matrices:

Let (G, \odot) be a group of order g and D a normalized $(g, k; \lambda)$ -difference matrix over (G, \odot) . Let r_i , $i = 1, 2, \ldots, k$ be the i-th row of D.

Let $C_i = r_i^* r_i$, i = 1, 2, ..., k.

Example: Let
$$D_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
. Then,

$$C_1 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \ C_2 = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{array}\right), \ \text{and} \ C_3 = \left(\begin{array}{ccc} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{array}\right).$$

Two Latin squares L_1 and L_2 of size n on symbol set $\{0,1,2,\ldots,n-1\}$

Two Latin squares L_1 and L_2 of size n on symbol set $\{0, 1, 2, ..., n-1\}$ are called *suitable*

Two Latin squares L_1 and L_2 of size n on symbol set $\{0, 1, 2, ..., n-1\}$ are called *suitable* if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

Two Latin squares L_1 and L_2 of size n on symbol set $\{0, 1, 2, ..., n-1\}$ are called *suitable* if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

Example:

Two Latin squares L_1 and L_2 of size n on symbol set $\{0, 1, 2, ..., n-1\}$ are called *suitable* if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

Example: Two mutually suitable Latin squares of size 3:

$$\left(\begin{array}{ccc}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right)$$

Two Latin squares L_1 and L_2 of size n on symbol set $\{0,1,2,\ldots,n-1\}$ are called *suitable* if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3:

$$\left(\begin{array}{ccc}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{array}\right)$$

Two Latin squares L_1 and L_2 of size n on symbol set $\{0, 1, 2, ..., n-1\}$ are called *suitable* if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

Example: Two mutually suitable Latin squares of size 3:

$$\left(\begin{array}{ccc}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & 2 \\
2 & 1 & 0
\end{array}\right)$$

If there is a (g, k; 1)-difference matrix, then there is a set of k-1 Mutually Suitable Latin Squares of size g.

A $(g, g\lambda; \lambda)$ -difference matrix over the group G is said to be a generalized Hadamard matrix, over the group G, denoted $GH(g, \lambda)$.

A $(g, g\lambda; \lambda)$ -difference matrix over the group G is said to be a generalized Hadamard matrix, over the group G, denoted $GH(g, \lambda)$.

Example: A GH(3,2) generalized Hadamard matrix over the cyclic group \mathbb{Z}_3

A $(g, g\lambda; \lambda)$ -difference matrix over the group G is said to be a generalized Hadamard matrix, over the group G, denoted $GH(g, \lambda)$.

Example: A GH(3,2) generalized Hadamard matrix over the cyclic group \mathbb{Z}_3

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ \omega & \omega^2 & 1 & \omega^2 & 1 & \omega \\ \omega & 1 & \omega^2 & \omega^2 & \omega & 1 \\ 1 & \omega^2 & \omega^2 & 1 & \omega & \omega \\ \omega^2 & \omega^2 & 1 & \omega & \omega & 1 \\ \omega^2 & 1 & \omega^2 & \omega & 1 & \omega \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & c & a & b \\
1 & b & c & a \\
1 & a & b & c
\end{pmatrix}$$

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 \\
1 & c & a & b \\
1 & b & c & a \\
1 & a & b & c
\end{array}\right)$$

c = ab.

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 \\
1 & c & a & b \\
1 & b & c & a \\
1 & a & b & c
\end{array}\right)$$

c = ab.

The multiplication table for the finite field $\mathbf{GF}(q)$ is a (q, q; 1)-difference matrix

The multiplication table for the finite field $\mathbf{GF}(q)$ is a (q, q; 1)-difference matrix and so a generalized Hadamard matrix over $\mathsf{EA}(q)$.

The multiplication table for the finite field $\mathbf{GF}(q)$ is a (q, q; 1)-difference matrix and so a generalized Hadamard matrix over $\mathsf{EA}(q)$.

For any Group G of prime power order q and any integer t > 0, there is a $GH(q, q^{2t-1})$.

Consider the normalized GH(4,1) =
$$\begin{pmatrix} I & I & I & I \\ I & c & a & b \\ I & b & c & a \\ I & a & b & c \end{pmatrix}$$
, $c = ab$, over $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Consider the normalized
$$GH(4,1)=\left(\begin{array}{cccc} I & I & I & I\\ I & c & a & b\\ I & b & c & a\\ I & a & b & c\end{array}\right)$$
, $c=ab$, over

 $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Consider the normalized GH(4,1) =
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & c & a & b \\ 1 & b & c & a \\ 1 & a & b & c \end{pmatrix}$$
, $c = ab$, over

 $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Consider the normalized
$$GH(4,1) = \begin{pmatrix} I & I & I & I \\ I & c & a & b \\ I & b & c & a \\ I & a & b & c \end{pmatrix}$$
, $c = ab$, over

 $\mathbb{Z}_2\times\mathbb{Z}_2.$

$$C = \begin{pmatrix} 1 & b & c & a \\ 1 & b & -c & -a \\ 1 & -b & c & -a \\ 1 & -b & -c & a \end{pmatrix}$$

Consider the normalized
$$GH(4,1) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & c & a & b \\ 1 & b & c & a \\ 1 & a & b & c \end{pmatrix}$$
, $c = ab$, over

 $\mathbb{Z}_2 \times \mathbb{Z}_2$.

$$C = \begin{pmatrix} I & b & c & a \\ I & b & -c & -a \\ I & -b & c & -a \\ I & -b & -c & a \end{pmatrix} \quad D = \begin{pmatrix} I & a & b & c \\ I & a & -b & -c \\ I & -a & b & -c \\ 1 & -a & -b & c \end{pmatrix}$$

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let $I = i \otimes i$,

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let
$$I = i \otimes i$$
, $a = i \otimes r$,

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let
$$I = i \otimes i$$
, $a = i \otimes r$, $b = r \otimes i$,

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$.

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$. Then

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$. Then

$$I = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad r = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$. Then

$$I = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \quad a = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right) ,$$

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$. Then

$$I = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \quad a = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right) \; ,$$

$$b = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

$$i = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad r = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$. Then

$$I = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \quad a = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right) \; ,$$

$$b = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right) \quad c = ab = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

$$i = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad r = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Let $I = i \otimes i$, $a = i \otimes r$, $b = r \otimes i$, and $c = ab = r \otimes r$. Then

$$I = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \quad a = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right) \; ,$$

$$b = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad c = ab = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Note I + a + b + c = J, J is the 4×4 matrix of all ones.

► $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$

- ► $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ► $H_{XY} = XY^t$ is a Bush-type Hadamard matrix of order 16, $X \neq Y \in \{A, B, C, D\}$

- $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ► H_{XY} = XY^t is a Bush-type Hadamard matrix of order 16, X ≠ Y ∈ {A, B, C, D} (the 4 × 4 diagonal blocks are all ones matrices and off-diagonal blocks have zero row and column sums).

- ► $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ► H_{XY} = XY^t is a Bush-type Hadamard matrix of order 16, X ≠ Y ∈ {A, B, C, D} (the 4 × 4 diagonal blocks are all ones matrices and off-diagonal blocks have zero row and column sums).
- ► Let

$$O = \left(\begin{array}{cccc} d & e & f & g \\ -e & d & -g & f \\ -f & g & d & -e \\ -g & -f & e & d \end{array} \right).$$

- $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ▶ $H_{XY} = XY^t$ is a Bush-type Hadamard matrix of order 16, $X \neq Y \in \{A, B, C, D\}$ (the 4 × 4 diagonal blocks are all ones matrices and off-diagonal blocks have zero row and column sums).
- Let

$$O = \left(egin{array}{cccc} d & e & f & g \ -e & d & -g & f \ -f & g & d & -e \ -g & -f & e & d \end{array}
ight).$$

Let
$$A' = A \otimes O$$
, $B' = B \otimes O$, $C' = C \otimes O$, $D' = D \otimes O$.

- ► $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ► H_{XY} = XY^t is a Bush-type Hadamard matrix of order 16, X ≠ Y ∈ {A, B, C, D} (the 4 × 4 diagonal blocks are all ones matrices and off-diagonal blocks have zero row and column sums).
- Let

$$O = \left(\begin{array}{cccc} d & e & f & g \\ -e & d & -g & f \\ -f & g & d & -e \\ -g & -f & e & d \end{array} \right).$$

Let $A' = A \otimes O$, $B' = B \otimes O$, $C' = C \otimes O$, $D' = D \otimes O$. Then

$$XY^{t} = (d^{2} + e^{2} + f^{2} + g^{2})H_{XY},$$

 $X \neq Y \in \{A', B', C', D'\}, d, e, f, g$ commuting indeterminates.

- $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ► H_{XY} = XY^t is a Bush-type Hadamard matrix of order 16, X ≠ Y ∈ {A, B, C, D} (the 4 × 4 diagonal blocks are all ones matrices and off-diagonal blocks have zero row and column sums).
- Let

$$O = \left(egin{array}{cccc} d & e & f & g \ -e & d & -g & f \ -f & g & d & -e \ -g & -f & e & d \end{array}
ight).$$

Let $A' = A \otimes O$, $B' = B \otimes O$, $C' = C \otimes O$, $D' = D \otimes O$. Then

$$XY^t = (d^2 + e^2 + f^2 + g^2)H_{XY},$$

 $X \neq Y \in \{A', B', C', D'\}$, d, e, f, g commuting indeterminates. $\{A', B', C', D\}'$ forms a set of mutually unbiased orthogonal designs.

- $XX^t = 4I_{16}, X \in \{A, B, C, D\}.$
- ► H_{XY} = XY^t is a Bush-type Hadamard matrix of order 16, X ≠ Y ∈ {A, B, C, D} (the 4 × 4 diagonal blocks are all ones matrices and off-diagonal blocks have zero row and column sums).
- Let

$$O = \left(egin{array}{cccc} d & e & f & g \ -e & d & -g & f \ -f & g & d & -e \ -g & -f & e & d \end{array}
ight).$$

Let $A' = A \otimes O$, $B' = B \otimes O$, $C' = C \otimes O$, $D' = D \otimes O$. Then

$$XY^t = (d^2 + e^2 + f^2 + g^2)H_{XY},$$

 $X \neq Y \in \{A', B', C', D'\}$, d, e, f, g commuting indeterminates. $\{A', B', C', D\}'$ forms a set of mutually unbiased orthogonal designs.

▶ Let (G, \odot) be a group of order g.

▶ Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g, \lambda)$,

▶ Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G

▶ Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G such that

Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G such that for any distinct $i, h \in \{1, 2, \ldots, g\lambda\}$, the multiset $\{\omega_{ij} \odot \omega_{hj}^{-1} : 1 \le j \le v\}$ contains exactly λ copies of every element of G.

- Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G such that for any distinct $i, h \in \{1, 2, \dots, g\lambda\}$, the multiset $\{\omega_{ij} \odot \omega_{hj}^{-1} : 1 \le j \le v\}$ contains exactly λ copies of every element of G.
- ▶ The multiplication table for any finite field GF(q) of order q forms a GH(q,1) over EA(q).

- Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G such that for any distinct $i, h \in \{1, 2, \dots, g\lambda\}$, the multiset $\{\omega_{ij} \odot \omega_{hj}^{-1} : 1 \le j \le v\}$ contains exactly λ copies of every element of G.
- ► The multiplication table for any finite field GF(q) of order q forms a GH(q,1) over EA(q).
- Let r_i be the i-th row of a GH(g,1), i = 1,2,...,g. The g-1 rank one matrices

- Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G such that for any distinct $i, h \in \{1, 2, \dots, g\lambda\}$, the multiset $\{\omega_{ij} \odot \omega_{hj}^{-1} : 1 \le j \le v\}$ contains exactly λ copies of every element of G.
- ► The multiplication table for any finite field GF(q) of order q forms a GH(q,1) over EA(q).
- Let r_i be the i-th row of a GH(g,1), $i=1,2,\ldots,g$. The g-1 rank one matrices $C_i=r_i^*r_i$ form a class of MSLS (MOLS) of size g.

- Let (G, \odot) be a group of order g. A generalized Hadamard matrix over G, or $GH(g,\lambda)$, is a matrix $H = [\omega_{ij}]$ of order $v = g\lambda$ with entries from the group G such that for any distinct $i, h \in \{1, 2, \dots, g\lambda\}$, the multiset $\{\omega_{ij} \odot \omega_{hj}^{-1} : 1 \le j \le v\}$ contains exactly λ copies of every element of G.
- ► The multiplication table for any finite field GF(q) of order q forms a GH(q,1) over EA(q).
- Let r_i be the i-th row of a GH(g,1), i = 1,2,...,g. The g-1 rank one matrices $C_i = r_i^* r_i$ form a class of MSLS (MOLS) of size g.
- Any GH(q,1) over an EA(q) leads to some very interesting objects.

Let $\{A_0, A_1, \dots, A_\ell\}$ be a set of $n \times n$ symmetric (0, 1)-matrices which satisfy

Let $\{A_0, A_1, \dots, A_\ell\}$ be a set of $n \times n$ symmetric (0, 1)-matrices which satisfy

 $ightharpoonup A_0$ is the identity matrix of order n.

Let $\{A_0, A_1, \dots, A_\ell\}$ be a set of $n \times n$ symmetric (0, 1)-matrices which satisfy

- \triangleright A_0 is the identity matrix of order n.
- $ightharpoonup \sum_{i=0}^{\ell} A_i = J$, where J is the matrix of all ones of order n.

Let $\{A_0, A_1, \dots, A_\ell\}$ be a set of $n \times n$ symmetric (0, 1)-matrices which satisfy

- \triangleright A_0 is the identity matrix of order n.
- $ightharpoonup \sum_{i=0}^{\ell} A_i = J$, where J is the matrix of all ones of order n.
- $ightharpoonup A_k A_i$ is a linear combination of A_i s.

Let $\{A_0,A_1,\ldots,A_\ell\}$ be a set of $n\times n$ symmetric (0,1)-matrices which satisfy

- $ightharpoonup A_0$ is the identity matrix of order n.
- $ightharpoonup \sum_{i=0}^{\ell} A_i = J$, where J is the matrix of all ones of order n.
- $ightharpoonup A_k A_j$ is a linear combination of A_i s.

 $\{A_0,A_1,\ldots,A_\ell\}$ is said to form an ℓ -class symmetric association scheme of order n.

Let $\{A_0,A_1,\ldots,A_\ell\}$ be a set of $n\times n$ symmetric (0,1)-matrices which satisfy

- $ightharpoonup A_0$ is the identity matrix of order n.
- $ightharpoonup \sum_{i=0}^{\ell} A_i = J$, where J is the matrix of all ones of order n.
- $ightharpoonup A_k A_j$ is a linear combination of A_i s.

 $\{A_0,A_1,\ldots,A_\ell\}$ is said to form an ℓ -class symmetric association scheme of order n.

Let ρ be a prime number. Then there is a $\rho+1$ -class symmetric association scheme of order ρ^2 which is often collapsable to smaller classes.

$$H = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 3 & 1 \\ 0 & 3 & 1 & 2 \end{array}\right).$$

$$H = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 3 & 1 \\ 0 & 3 & 1 & 2 \end{pmatrix}.$$
 The auxiliary matrices are:

Case of p = 4:

The multiplication table for GF(4) provides a GH(4,1) over an additive EA(4) as follows:

Case of p = 4:

The multiplication table for GF(4) provides a GH(4,1) over an additive EA(4) as follows:

Case of p = 4:

The multiplication table for GF(4) provides a GH(4,1) over an additive EA(4) as follows:

The Generalized Bush-type of order 16 is:

```
2
           3
   0
                   3
3
                   3
               3
   3
           0
           3
```

Let $H = A_1 + 2A_2 + 3A_3$, where A_1, A_2, A_3 are (0, 1)-matrices.

Let $H=A_1+2A_2+3A_3$, where A_1,A_2,A_3 are (0,1)-matrices. Then There is a 5-class symmetric association scheme collapsable to four Siamese SRG(16,6,2,2), sharing the cliques of size 4,

Let $H = A_1 + 2A_2 + 3A_3$, where A_1, A_2, A_3 are (0,1)-matrices. Then There is a 5-class symmetric association scheme collapsable to four Siamese SRG(16,6,2,2), sharing the cliques of size 4, leading to a decomposition of K_{16} to four Siamese SRG(16,6,2,2).

► There are no GH-matrices GH(q,1) over non-prime power order groups.

► There are no GH-matrices GH(q,1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.

- ► There are no GH-matrices GH(q,1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.
- ► There is a GH-matrix of order 4k over EA(4) for any positive integer k.

- ► There are no GH-matrices GH(q, 1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.
- ► There is a GH-matrix of order 4k over EA(4) for any positive integer k. This is equivalent to finding a pair of order 4k Hadamard matrices whose entrywise product is also Hadamard.

- ► There are no GH-matrices GH(q,1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.
- ► There is a GH-matrix of order 4k over EA(4) for any positive integer k. This is equivalent to finding a pair of order 4k Hadamard matrices whose entrywise product is also Hadamard. Example:

- ► There are no GH-matrices GH(q, 1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.
- ► There is a GH-matrix of order 4k over EA(4) for any positive integer k. This is equivalent to finding a pair of order 4k Hadamard matrices whose entrywise product is also Hadamard.

Example:

- ► There are no GH-matrices GH(q, 1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.
- ► There is a GH-matrix of order 4k over EA(4) for any positive integer k. This is equivalent to finding a pair of order 4k Hadamard matrices whose entrywise product is also Hadamard.

Example:

- ► There are no GH-matrices GH(q, 1) over non-prime power order groups. The first open case is order 12 over EA(12), where EA(q) denotes the order q direct product of prime order cyclic groups.
- ► There is a GH-matrix of order 4k over EA(4) for any positive integer k. This is equivalent to finding a pair of order 4k Hadamard matrices whose entrywise product is also Hadamard.

Example:

The first open case is order 20.

► Difference matrices

- Difference matrices
- Generalized Hadamard matrices

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares
- Bush type Hadamard matrices

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares
- Bush type Hadamard matrices
- Mutually Unbiased Orthogonal Designs

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares
- Bush type Hadamard matrices
- Mutually Unbiased Orthogonal Designs
- Bush type Generalized Hadamard matrices

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares
- Bush type Hadamard matrices
- Mutually Unbiased Orthogonal Designs
- Bush type Generalized Hadamard matrices
- Association Schemes

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares
- Bush type Hadamard matrices
- Mutually Unbiased Orthogonal Designs
- Bush type Generalized Hadamard matrices
- Association Schemes
- Strongly Regular Graphs

- Difference matrices
- Generalized Hadamard matrices
- Auxiliary matrices of rank one
- Mutually Suitable Latin Squares
- Bush type Hadamard matrices
- Mutually Unbiased Orthogonal Designs
- Bush type Generalized Hadamard matrices
- Association Schemes
- Strongly Regular Graphs

Main result: For any prime number p there is a (p+1)-class symmetric association scheme collapsible to smaller class symmetric association scheme of order p^2 .

${\tt A\,BIG}\, Thank\,\, you \quad {\tt to\,the\,organizers}$

