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Difference matrices

Let (G,�) be a group of order g. A (g,k ;λ)-difference matrix over
(G,�) is a k×gλ matrix D = (dij) with entries from G, so that for
each 1≤ i < j ≤ k , the multiset

{di`�d−1
j` : 1≤ `≤ gλ}

(the difference list) contains every element of G (lambda) λ times.
Example: A (3,6;2)-difference matrix over (Z3,+)

A =



0 0 0 0 0 0
1 2 0 2 0 1
1 0 2 2 1 0
0 2 2 0 1 1
2 2 0 1 1 0
2 0 2 1 0 1


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Example:

A (5,5;1)-difference matrix over (Z5,+)

A =


0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1


A (5,5;1)-difference matrix over (Z5,x)

B =


1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω


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A (15,5;1)-difference matrix over (Z15,+):

Take B =


0 0 0 0 0 0 0
1 2 3 4 5 6 7
2 5 7 9 12 4 1
6 3 14 10 7 13 4

10 6 1 11 2 7 12

 ,

Let C =
(

0 B −B
)
.

A (4,4;1)-difference matrix over (Z2×Z2,+)

B =


0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

,

where 2+3 = 1.



A (15,5;1)-difference matrix over (Z15,+):

Take B =


0 0 0 0 0 0 0
1 2 3 4 5 6 7
2 5 7 9 12 4 1
6 3 14 10 7 13 4

10 6 1 11 2 7 12

 ,

Let C =
(

0 B −B
)
.

A (4,4;1)-difference matrix over (Z2×Z2,+)

B =


0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

,

where 2+3 = 1.



A (15,5;1)-difference matrix over (Z15,+):

Take B =


0 0 0 0 0 0 0
1 2 3 4 5 6 7
2 5 7 9 12 4 1
6 3 14 10 7 13 4

10 6 1 11 2 7 12

 ,

Let C =
(

0 B −B
)
.

A (4,4;1)-difference matrix over (Z2×Z2,+)

B =


0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

,

where 2+3 = 1.



A (15,5;1)-difference matrix over (Z15,+):

Take B =


0 0 0 0 0 0 0
1 2 3 4 5 6 7
2 5 7 9 12 4 1
6 3 14 10 7 13 4

10 6 1 11 2 7 12

 ,

Let C =
(

0 B −B
)
.

A (4,4;1)-difference matrix over (Z2×Z2,+)

B =


0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

,

where 2+3 = 1.



A necessary condition for the existence:

A (g,k ;λ)-difference matrix does not exist if k > λg.

Existence:The multiplication table for the finite field GF(q) is a
(q,q;1)-difference matrix over EA(q), where EA(q) denote the order q
direct product of prime order cyclic groups.

Conjecture: There is no (q,q;1)-difference matrix for any non-prime
power q.
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Auxiliary matrices corresponding to difference matrices:

Let (G,�) be a group of order g

and D a normalized
(g,k ;λ)-difference matrix over (G,�). Let ri , i = 1,2, . . . ,k be the i-th
row of D.
Let Ci = r∗i ri , i = 1,2, . . . ,k .

Example: Let D3 =

 0 0 0
0 1 2
0 2 1

 . Then,

C1 =

 0 0 0
0 0 0
0 0 0

, C2 =

 0 1 2
2 0 1
1 2 0

, and C3 =

 0 2 1
1 0 2
2 1 0

 .
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Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}

are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable

if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example:

Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0



 0 2 1
1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0



If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Mutually Suitable Latin Squares

Two Latin squares L1 and L2 of size n on symbol set {0,1,2, . . . ,n−1}
are called suitable if every superimposition of each row of L1 on each
row of L2 results in only one element of the form (a,a).

Example: Two mutually suitable Latin squares of size 3: 0 1 2
2 0 1
1 2 0


 0 2 1

1 0 2
2 1 0


If there is a (g,k ;1)-difference matrix, then there is a set of k−1
Mutually Suitable Latin Squares of size g.



Generalized Hadamard matrices

A (g,gλ;λ)-difference matrix over the group G is said to be a
generalized Hadamard matrix, over the group G, denoted GH(g,λ) .

Example: A GH(3,2) generalized Hadamard matrix over the cyclic
group Z3

A =



1 1 1 1 1 1
ω ω2 1 ω2 1 ω

ω 1 ω2 ω2 ω 1
1 ω2 ω2 1 ω ω

ω2 ω2 1 ω ω 1
ω2 1 ω2 ω 1 ω


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Existence of generalized Hadamard matrices

The multiplication table for the finite field GF(q) is a (q,q;1)-difference
matrix and so a generalized Hadamard matrix over EA(q).

For any Group G of prime power order q and any integer t > 0, there
is a GH(q,q2t−1).
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An application

Consider the normalized GH(4,1) =


I I I I
I c a b
I b c a
I a b c

, c = ab, over

Z2×Z2.
Let

A =


I I I I
I I −I −I
I −I I −I
I −I −I I

 B =
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1 −a −b c
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Let

i =

(
1 0
0 1

)

r =

(
0 1
1 0

)
Let I = i⊗ i , a = i⊗ r , b = r ⊗ i , and c = ab = r ⊗ r . Then

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 a =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
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b =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 c = ab =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


Note I +a+b + c = J, J is the 4×4 matrix of all ones.
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The following holds:

I XX t = 4I16, X ∈ {A,B,C,D}.
I HXY = XY t is a Bush-type Hadamard matrix of order 16,

X 6= Y ∈ {A,B,C,D} (the 4×4 diagonal blocks are all ones
matrices and off-diagonal blocks have zero row and column
sums).

I Let

O =


d e f g
−e d −g f
−f g d −e
−g −f e d

 .

Let A′ = A⊗O, B′ = B⊗O, C′ = C⊗O, D′ = D⊗O. Then

XY t = (d2 +e2 + f 2 +g2)HXY ,

X 6= Y ∈ {A′,B′,C′,D′}, d ,e, f ,g commuting indeterminates.
{A′,B′,C′,D}′ forms a set of mutually unbiased orthogonal
designs.
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Summary:

I Let (G,�) be a group of order g.

A generalized Hadamard matrix
over G, or GH(g,λ), is a matrix H = [ωij ] of order v = gλ with
entries from the group G such that for any distinct
i,h ∈ {1,2, . . . ,gλ}, the multiset {ωij �ω

−1
hj : 1≤ j ≤ v} contains

exactly λ copies of every element of G.

I The multiplication table for any finite field GF(q) of order q forms
a GH(q,1) over EA(q).

I Let ri be the i-th row of a GH(g,1), i = 1,2, . . . ,g. The g−1 rank
one matrices Ci = r∗i ri form a class of MSLS (MOLS) of size g.

I Any GH(q,1) over an EA(q) leads to some very interesting
objects.
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Association Schemes:

Let {A0,A1, . . . ,A`} be a set of n×n symmetric (0,1)-matrices which
satisfy

I A0 is the identity matrix of order n.

I ∑
`
i=0 Ai = J, where J is the matrix of all ones of order n.

I Ak Aj is a linear combination of Ais.

{A0,A1, . . . ,A`} is said to form an `-class symmetric association
scheme of order n.

Let p be a prime number. Then there is a p +1-class symmetric
association scheme of order p2 which is often collapsable to
smaller classes.
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Case of p = 4:

The multiplication table for GF(4) provides a GH(4,1) over an additive
EA(4) as follows:

H =


0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

. The auxiliary matrices are:

C1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, C2 =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

,

C3 =


0 2 3 1
2 0 1 3
3 1 0 2
1 3 2 0

, C4 =


0 3 1 2
3 0 2 1
1 2 0 3
2 1 3 0

.
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The Generalized Bush-type of order 16 is:

H =



0 0 0 0 0 1 2 3 0 2 3 1 0 3 1 2
0 0 0 0 1 0 3 2 2 0 1 3 3 0 2 1
0 0 0 0 2 3 0 1 3 1 0 2 1 2 0 3
0 0 0 0 3 2 1 0 1 3 2 0 2 1 3 0
0 1 2 3 0 0 0 0 0 3 1 2 0 2 3 1
1 0 3 2 0 0 0 0 3 0 2 1 2 0 1 3
2 3 0 1 0 0 0 0 1 2 0 3 3 1 0 2
3 2 1 0 0 0 0 0 2 1 3 0 1 3 2 0
0 2 3 1 0 3 1 2 0 0 0 0 0 1 2 3
2 0 1 3 3 0 2 1 0 0 0 0 1 0 3 2
3 1 0 2 1 2 0 3 0 0 0 0 2 3 0 1
1 3 2 0 2 1 3 0 0 0 0 0 3 2 1 0
0 3 1 2 0 2 3 1 0 1 2 3 0 0 0 0
3 0 2 1 2 0 1 3 1 0 3 2 0 0 0 0
1 2 0 3 3 1 0 2 2 3 0 1 0 0 0 0
2 1 3 0 1 3 2 0 3 2 1 0 0 0 0 0



.



Let H = A1 +2A2 +3A3, where A1,A2,A3 are (0,1)-matrices.

Then
There is a 5-class symmetric association scheme collapsable to four
Siamese SRG(16,6,2,2), sharing the cliques of size 4, leading to a
decomposition of K16 to four Siamese SRG(16,6,2,2).
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Two open problems

I There are no GH-matrices GH(q,1) over non-prime power order
groups. The first open case is order 12 over EA(12), where
EA(q) denotes the order q direct product of prime order cyclic
groups.

I There is a GH-matrix of order 4k over EA(4) for any positive
integer k . This is equivalent to finding a pair of order 4k
Hadamard matrices whose entrywise product is also Hadamard.
Example:

H =


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 K =


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1


The first open case is order 20.
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