
Variational characterization of eigenvalues of a non–symmetric eigenvalue problem
governing elastoacoustic vibrations

Heinrich Voss

In this talk we consider the elastoacoustic vibration problem, which consists of determining the small
amplitude vibration modes of an elastic structure coupled with an internal inviscid, homogeneous,
compressible fluid.

Different formulations have been proposed to model this problem, the most obvious of which de-
scribes the structure by its relative displacement field u and the fluid by its pressure p. Thus one
arrives at the following system of homogeneous time-independent partial differential equations

Div σ(u) + ω2ρsu = 0 in Ωs,

∇2p+
ω2

c2
p = 0 in Ωf ,

u = 0 on ΓD,

∇p · nf = 0 on ΓN , (1)

σ(u) n− p n = 0 on ΓI ,

ω2ρfu · n+∇p · n = 0 on ΓI ,

where Ωs and Ωf denotes the region occupied by the structure and the fluid, respectively. ΓD and
ΓN are Dirichlet– and Neumann-parts of the outer boundary of the structure, and ΓI the interface
between the fluid and the structure. The interface boundary conditions are a consequence of an
equilibrium of acceleration and force densities at the contact interface.

Although this eigenvalue problem is not self–adjoint it shares many important properties with
self–adjoint models: It has a countable set of eigenvalues which are real and non–negative, and
taking advantage of a Rayleigh functional (which generalizes the Rayleigh quotient for self–adjoint
problems) its eigenvalues allow for the variational characterizations known from the symmetric
theory [3]. Namely, they can be characterized by Rayleigh’s principle, and are minmax and maxmin
values of the Rayleigh functional.

Discretizing the elastoacoustic problem with finite elements where the triangulation obeys the
geometric partition into the fluid and the structure domain one obtains a non–symmetric matrix
eigenvalue problem which inherits the variational properties.

Kx :=

[
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xs
xf

]
=: λMx. (2)

The following properties can be proved:

• The eigenvalues of the discrete problem (2) are upper bounds of the corresponding eigenvalues
of problem (1).

• The standard spectral approximation theory applies to prove convergence results for Galerkin
type methods.

• Eigenfunctions (of problem (1) and of its adjoint problem) can be chosen to satisfy an or-
thogonality property.
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• A Krylov–Bogoliubov type eigenvalue bound holds [4].

• For the matrix eigenvalue problem the Rayleigh functional iteration is cubically convergent
as is the Rayleigh quotient iteration for linear symmetric problems [1].

• Based on the variational characterization structure preserving iterative projection methods
of Jacobi–Davidson type and nonlinear Arnoldi type can be defined [1, 4].

• The automated multi-level sub-structuring method (AMLS) introduced by Bennighof for
linear symmetric eigenvalue problems in structural analysis can be generalized to the non–
symmetric elastoacoustic problem, and an a priori error bound can be proved using the
minmax characterization [2].
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