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0. Introduction

Riemannian symmetric spaces are the most beautiful and most important Rie-
mannian manifolds. On the one hand, this class of spaces contains many prominent
examples which are of great importance for various branches of mathematics, like com-
pact Lie groups, Grassmannians and bounded symmetric domains. Any symmetric
space has its own special geometry; euclidean, elliptic and hyperbolic geometry are
only the very first examples. On the other hand, these spaces have much in common,
and there exists a rich theory. The purpose of these notes is to give a brief introduction
to the theory and to some of the examples.

Symmetric spaces can be considered from many different points of view. They can
be viewed as Riemannian manifolds with point reflections or with parallel curvature
tensor or with special holonomy or as a homogeneous space with a special isotropy or
special Killing vector fields, or as Lie triple systems, or as a Lie group with a certain
involution. We are trying to discuss all these aspects. Therefore, the chapters are only
loosely connected and can be read almost separately.

Prerequisites are the fundamental concepts of Riemannian geometry and some
basic knowledge of Lie groups which can be found e.g. in Chapter 4 of Cheeger-Ebin
[CE]. The main reference is Helgason [H], but also Loos [L] and Besse [B]. Recently, P.
Eberlein [E] gave a beautiful approach to symmetric spaces of noncompact type. We
owe thanks also to Hermann Karcher for his lectures on symmetric spaces.
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1. Definition and Examples

A (Riemannian) symmetric space is a Riemannian manifold S with the property
that the geodesic reflection at any point is an isometry of S. In other words, for any
x ∈ S there is some sx ∈ G = I(S) (the isometry group of S) with the properties

sx(x) = x, (dsx)x = −I. (∗)

This isometry sx is called symmetry at x. As a first consequence of this definition, S
is geodesically complete: If a geodesic γ is defined on [0, s), we may reflect it by sγ(t)
for some t ∈ (s/2, s), hence we may extend it beyond s. Moreover, S is homogeneous,
i.e. for any two points p, q ∈ M there is an isometry which maps p onto q. In fact,
if we connect p and q by a geodesic segment γ (which is possible since S is complete)
and let m ∈ γ be its mid point, then sm(p) = q. Thus G acts transitively. Let us fix a
base point p ∈ S. The closed subgroup Gp = {g ∈ G; g(p) = p} is called the isotropy
group and will be denoted by K. The differential at p of any k ∈ K is an orthogonal
transformation of TpS. Recall that the isometry k is determined by its differential dkp;
thus we may view K also as a closed subgroup of O(TpS) (the orthogonal group on TpS)
using this embedding k 7→ dkp which is called isotropy representation. In particular, K
is compact.

Vice versa, if S is any homogeneous space, i.e. its isometry group G acts tran-
sitively, then S is symmetric if and only if there exists a symmetry sp (an isometry
satisfying (∗)) for some p ∈ S. Namely, the symmetry at any other point q = gp is just
the conjugate sq = gspg

−1. Thus we have seen:

Theorem 1. A symmetric space S is precisely a homogeneous space with a sym-
metry sp at some point p ∈ S.

As usual, we may identify the homogeneous space S with the coset spaceG/K using
the G-equivariant diffeomorphism gK 7→ gp. In particular, dimS = dimG− dimK.

Example 1: Euclidean Space. Let S = Rn with the euclidean metric. The symmetry
at any point x ∈ Rn is the point reflection sx(x + v) = x − v. The isometry group is
the euclidean group E(n) generated by translations and orthogonal linear maps; the
isotropy group of the origin O is the orthogonal group O(n). Note that the symmetries
do not generate the full isometry group E(n) but only a subgroup which is an order-two
extension of the translation group.

Example 2: The Sphere. Let S = Sn be the unit sphere in Rn+1 with the standard
scalar product. The symmetry at any x ∈ Sn is the reflection at the line Rx in Rn+1, i.e.
sx(y) = −y+2〈y, x〉x (the component of y in x-direction, 〈y, x〉x, is preserved while the
orthogonal complement y−〈y, x〉x changes sign). In this case, the symmetries generate
the full isometry group which is the orthogonal group O(n+1). The isotropy group of
the last standard unit vector en+1 = (0, ..., 0, 1)T is O(n) ⊂ O(n+ 1).

Example 3: The Hyperbolic Space. The hyperbolic space is defined quite similar,
but instead of the standard scalar product on Rn+1 we use the Lorentzian indefinite
scalar product

(x, y) :=

n
∑

i=1

xiyi − xn+1yn+1.
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Then we let S = Hn be one sheet of the two-sheeted hyperboloid {(x, x) = −1}, more
precisely,

Hn = {x ∈ Rn+1; (x, x) = −1, xn+1 > 0}.

The induced scalar product on TxH
n = {v ∈ Rn+1; (x, v) = 0} is positive definite and

turns Hn into a Riemannian manifold. As before, for any x ∈ Hn, the restriction to
Hn of the Lorentzian reflection sx(y) = −y+ 2(y, x)x is the symmetry at x (this time,
the component of y in x-direction is −(y, x)x), and all the symmetries generate the
full isometry group which is the group of “future preserving” Lorentz transformations
O(n, 1)+; “future preserving” means that Hn is not mapped to −Hn but preserved.
The isotropy group of en+1 is again the subgroup O(n) ⊂ O(n, 1)+. More precisely,
Hn is called the real hyperbolic space. There exist also complex and quaternionic
hyperbolic spaces and a 16 dimensional hyperbolic “plane” over the octonions.

Example 4: The Orthogonal Group. Let S = O(n) = {g ∈ Rn×n; gT g = I}. This
is a submanifold of the matrix space Rn×n since I is a regular value of the smooth map
x 7→ xTx : Rn×n → S(n) (where S(n) denotes the space of symmetric matrices). The
Riemannian metric on O(n) is induced from the trace scalar product on Rn×n:

〈x, y〉 := tracexT y =
∑

ij

xijyij .

Note that left and right multiplications with orthogonal matrices preserve this inner
product: For any g ∈ O(n) and x, y ∈ Rn×n we have

〈gx, gy〉 = trace(xT gT gy) = tracexT y = 〈x, y〉,

〈xg, yg〉 = trace(gTxT yg) = trace(g−1xT yg) = tracexT y = 〈x, y〉.

Further, right and left multiplications with g ∈ O(n) preserve the subset O(n) ⊂ Rn×n,
so they act as isometries on O(n) turning O(n) into a homogeneous space. Moreover,
consider the linear map sI on Rn×n given by sI(x) = xT which is also an isometry
of O(n) since it preserves O(n) ⊂ Rn×n and the scalar product on Rn×n. This is
the symmetry at the identity matrix I ∈ O(n) since it fixes I and acts as −I on the
tangent space TIO(n) = {v ∈ Rn×n; vT = −v}. Consequently, the symmetry at an
arbitrary element g ∈ O(n) is given by sg(x) = g(sI(g

Tx)) = gxT g. (This may be
checked directly: In fact sg(g) = g and for any gv ∈ TgO(n) = gTIO(n) we have
dsg(gv) = sg(gv) = gvT = −gv.)

Quite similar arguments apply to the unitary group U(n) = O(2n) ∩ Cn×n and
the symplectic unitary group Sp(n) = O(4n) ∩Hn×n; we only have to replace xT by
x∗ = x̄T .

Example 5: Compact Lie groups. More generally, let S = G be a compact Lie
group with biinvariant Riemannian metric, i.e. left and right translations Lg, Rg : G →
G act as isometries for any g ∈ G. Then G is a symmetric space where the symmetry
at the unit element e ∈ G is the inversion se(g) = g−1. Then se(e) = e and dsev = −v
for any v ∈ g = TeG, so (∗) is satisfied. We have to check that se is an isometry, i.e.
(dse)g preserves the metric for any g ∈ G. This is certainly true for g = e, and for
arbitrary g ∈ G we have the relation se ◦ Lg = Rg−1 ◦ se which shows

(dse)g ◦ (dLg)e = (dRg−1)e ◦ (dse)e.

Thus (dse)g preserves the metric since so do the other three maps in the above relation.
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Example 6a: Projection model of the Grassmannians. Let S = Gk(R
n) be the

set of all k-dimensional linear subspaces of Rn (“Grassmann manifold”). The group
O(n) acts transitively on this set, and the isotropy group of the standard Rk ⊂ Rn is
O(k)× O(n− k) ⊂ O(n). The symmetry sE at any E ∈ Gk(R

n) will be the reflection
sE with fixed space E, i.e. with eigenvalue 1 on E and −1 on E⊥.

But what is the manifold structure and the Riemannian metric on Gk(R
n)? One

way to see this is to embed Gk(R
n) into the space S(n) of symmetric real n×n matrices:

We assign to each k-dimensional subspace E ⊂ Rn the orthogonal projection matrix
pE with eigenvalues 1 on E and 0 on E⊥. Let

P (n) = {p ∈ S(n); p2 = p}

denote the set of all orthogonal projections. This set has several mutually disconnected
subsets, corresponding to the trace of the elements which here is the same as the rank:

P (n)k = P (n) ∩ S(n)k, S(n)k = {x ∈ S(n); tracex = k}.

Now we may identify Gk(R
n) with P (n)k ⊂ S(n), using the embedding E 7→ pE which

is equivariant in the sense

gpEg
T = pgE

for any g ∈ O(n). In fact, each pE lies in this set, and vice versa, a symmetric matrix
p satisfying p2 = p has only eigenvalues 1 and 0 with eigenspaces E = im p and
E⊥ = ker p, hence p = pE , and the trace condition says that E has dimension k.
Unfortunately, 0 is not a regular value of the map F : S(n) → S(n), F (p) = p2 − p,
defining the subset P (n)k ⊂ S(n)k, hence P (n)k is not a regular level set. However,
it is still a submanifold of the affine space S(n)k since it is the conjugacy class of the
matrix

p0 =

(

Ik 0
0 0

)

i.e. the orbit of p0 under the action of the group O(n) on S(n) by conjugation. The
isotropy group of p0 is O(k)×O(n−k) ⊂ O(n). A complement of TI(O(k)×O(n−k))
in TIO(n) is the space of matrices of the type

(

0 −LT

L 0

)

with arbitrary L ∈ R(n−k)×k, thus P (n)k = Gk(R
n) has dimension k(n − k). Since

Gk(R
n) ⊂ F−1(0), the kernel ker dFp is contained in Tp(Gk(R

n)). But the subspace
ker dFp = {v ∈ S(n); vp + pv = v} is isomorphic to Hom(E,E⊥) since it contains
precisely the symmetric matrices mapping E = im p into E⊥ and vice versa (write the
equation vp+ pv = v as vp = (I − p)v and recall that I − p = pE⊥). Thus ker dFp has
dimension k(n− k) and thus exhausts the tangent space TpGk(R

n).
Now we equip P (n)k ⊂ S(n) with the metric induced from the trace scalar product

〈x, y〉 = trace(xT y) = trace(xy) on S(n). The group O(n) acts isometrically on S(n) by
conjugation and preserves P (n)k, hence it acts isometrically on P (n)k. In particular,
let sE ∈ O(n) be the reflection at the subspace E and let ŝE be the corresponding
conjugation, ŝE(x) = sExsE . This is an isometry fixing pE , and since sE fixes E and
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reflects E⊥, the conjugation ŝE maps any x ∈ TpGk(R
n) into −x (recall that x is a

linear map from E to E⊥ and vice versa). Thus ŝE is the symmetry at pE .
The Grassmannians Gk(C

n) and Gk(H
n) are defined and embedded analogously

where S(n) has to be replaced by the space of hermitean matrices over C and H. A
case of particular interest is k = 1; these are the projective spaces over R,C,H. When
n = 2, k = 1, there is even an analogous construction for the octonions which yields
the octonionic projective plane (e.g. cf. [Hi]).

Example 6b: Reflection model of the Grassmannians. Instead of identifying a
subspace E ∈ Gk(R

n) with its orthogonal projection p = pE which has eigenvalues 1
on E and 0 on E⊥, we may as well assign to E the reflection s = sE at the space E,
i.e. the matrix with eigenvalues 1 on E and −1 on E⊥. Clearly we have

sE + I = 2pE

and therefore 2pE and sE just differ by the identity matrix which commutes with
conjugations, hence their conjugacy classes are parallel, separated by the constant ma-
trix I. So the two models are very much alike, and in particular, their tangent and
normal spaces are exactly the same. However, the new model (“reflection model ”)
has an extra feature: Reflections belong to the symmetric matrices as well as to the
orthogonal ones. In fact, the set R(n) of all reflections is precisely the intersection of
these two sets,

R(n) = O(n) ∩ S(n) = {s ∈ O(n); sT = s},

since s ∈ O(n) ∩ S(n) ⇐⇒ s−1 = sT = s, hence s−1 = s which is the reflection
property. In fact, R(n) ⊂ O(n) is the fixed point set of the linear map τ : x 7→ xT on
Rn×n which is an isometry with respect to the trace scalar product 〈x, y〉 = tracexT y
and preserves O(n), see Example 4. The fixed set of an isometry on a Riemannian
manifold is always a disjoint union of totally geodesic submanifolds, the connected
components. In the case at hand, these are labeled by the dimension k of the fixed
space of the element or equivalently by the value of the trace which is k−(n−k) = 2k−n:

R(n)k = {s ∈ R(n); trace s = 2k − n}

This is the set of all reflections whose fixed space is k-dimensional. Hence the map
Gk(R

n) → R(n)k : E 7→ sE is bijective and O(n)-equivariant as before. Moreover,
being a component of the fixed point set of an isometry, R(n)k ⊂ O(n) is totally
geodesic and hence again a symmetric space by general theory (see Theorem 8 below);
in fact the symmetry of the subspace is the restriction of the symmetry of the large
space O(n). From Example 4 we know that the symmetry at g ∈ O(n) is the map
x 7→ gxT g; for g = s ∈ R(n)k and x ∈ S(n) this map becomes the conjugation by s.
The tangent space is TsR(n)k = TsO(n)∩S(n) = sA(n)∩S(n). Hence any x ∈ TsR(n)k
has the form x = sa for some a ∈ A(n). Since (sa)T = −as, we have sa ∈ S(n) ⇐⇒
sa = −as ⇐⇒ a interchanges the two eigenspaces E,E⊥ of s, and so does x = sa.
Counting dimensions we see TsR(n) ∼= Hom(E,E⊥) as above.

Example 7: Complex Structures on Rn. Let S be the set of orthogonal complex
structures in Rn for even n = 2m. The elements of S are orthogonal n × n-matrices
j with j2 = −I or j−1 = −j. From orthogonality we also have j−1 = jT , and thus
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we get a third relation jT = −j, i.e. j lies in the set A(n) of antisymmetric matrices
(which is the tangent space of O(n) at I). Any two of the three relations

j−1 = jT , j−1 = −j, jT = −j

imply the third one. Thus

S = O(n) ∩A(n) = {j ∈ A(n); j2 = −I}.

Moreover, since any j ∈ S is an orthogonal matrix with eigenvalues +i,−i of multiplicity
m, all j’s are conjugate and S is a conjugacy class, an orbit under the action of O(n) by
conjugation. The isotropy group of the standard complex structure i of R2m = Cm is
the unitary group U(m) ⊂ O(2m).∗) Moreover, it is again a fixed point set component
of an isometry, the map x 7→ −xT on Rn×n which preserves the submanifold O(n).
Though S is again not a regular preimage (the differential of the defining map F : j 7→
j2 + I is certainly not onto, by reasons of dimension), we have TjS = ker dFj = {v ∈
A(n); vj+jv = 0}; in fact, ker dFj is the space of elements of A(n) which anticommute
with j; this is complementary to the subspace TIU(m) ⊂ A(n) containing the elements
commuting with j, so it has the right dimension. Now the symmetry sj is just the
conjugation with j: it fixes j and maps v ∈ TjS to −v since jvj−1 = −vjj−1 = −v.

The space of quaternionic structures on C2m is treated similarly; it is embedded
into the space of antihermitean complex n × n-matrices and is an orbit of the group
U(2m) acting by conjugation; the isotropy group is Sp(m) ⊂ U(2m).

Example 8: Real structures on Cn. Let S be the set of real structures on Cn.
A real structure on Cn = R2n is a reflection κ at a totally real subspace E of half
dimension where “totally real” means iE ⊥ E. In other words, κ is a reflection which
is complex antilinear, i.e. it anticommutes with the complex structure i. In general, if
a reflection anticommutes with i then i interchanges its +1 and −1 eigenspaces E+ and
E−, so E+ is totally real, and vice versa, a reflection with totally real +1 eigenspace
anticommutes with i. Since any reflection is symmetric, we may consider S as a subset
of S(2n)− which by definition is the intersection of S(2n) with the space of complex
antilinear maps on Cn. This is a totally geodesic subspace of P (2m)m (see Example
6b), in fact a fixed point component of the isometric linear map x 7→ jxj of Rn×n which
preserves P (2m)m:

S = S(2n)− ∩O(2n) = {κ ∈ P (2m)n; jκj = κ}.

An orthonormal basis of E is a unitary basis of Cn and vice versa, the real span of
a unitary basis is an n-dimensional totally real subspace. Thus U(n) acts transitively
on S. More precisely, S is the orbit of the standard complex conjugation κ0(v) = v̄ in
Cn (which is the reflection at the standard Rn ⊂ Cn) under the conjugacy action of
U(n). The isotropy group of κ0 is O(n) ⊂ U(n), hence S ∼= U(n)/O(n). For the map
F (x) = xTx− I which defines S ⊂ S(2n)− we have

ker dFκ = {v ∈ S(2n)−; vκ+ κv = 0}

∗) In particular, S ∼= O(2m)/U(m) has two connected components like O(2m) since
U(m) is connected. Unlike the situation in the previous example, the conjugacy class
of j with respect to SO(n) is strictly smaller than the O(n)-conjugacy class.
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Thus v ∈ ker dFκ iff the C-linear map κv is antisymmetric as a real matrix ((κv)T =
vκ = −κv), hence κv ∈ TIU(n) = TIO(2n) ∩ Cn×n. Moreover, κv anticommutes
with κ, so it is purely imaginary with respect to the real structure κ. On the other
hand, the purely imaginary matrices in TIU(n) form a complement to TIO(n), thus
ker dFκ = TκS by reasons of dimension. Now it is easy to see that the symmetry sκ is
given by the conjugation with κ, i.e. sκ(x) = κxκ: it fixes κ and acts as −I on TκS.

The space of complex structures on Hn is treated similarly; as a quotient space it
is Sp(n)/U(n).

Example 9: Positive Definite Matrices. Let S = P (n) be the set of positive
definite real symmetric n×n-matrices which is an open subset of the vector space S(n)
of all symmetric matrices. We define the following Riemannian metric on P (n): For
any v, w ∈ TpP (n) = S(n) we put

〈v, w〉p = trace vp−1wp−1 = trace p−1vp−1w.

The group G = GL(n,R) acts on P (n) by g(p) := gpgT , and this action is isometric
with respect to the chosen metric: For any x ∈ S(n) = TpP (n) we have dgpx = gxgT

and hence
〈dgpv, dgpw〉g(p) = trace gvgT (gpgT )−1gwgT (gpgT )−1

= trace gvp−1wp−1g−1

= 〈v, w〉p

for all v, w ∈ TpP (n). Since any p ∈ P (n) can be written as p = gT g = g(I) for some
g ∈ G, this action is transitive, and the isotropy group of the identity matrix I ∈ P (n)
is O(n). Further, the inversion sI(p) = p−1 is also an isometry of P (n): In fact, since
(dsI)px = −p−1xp−1, we have

〈(dsI)pv, (dsI)pw〉p−1 = trace p−1vp−1pp−1wp−1p

= trace p−1vp−1w

= 〈v, w〉p

for all v, w ∈ TpP (n). Since sI fixes I and acts as −I on TIP (n), it is the symmetry at
I. The symmetry at an arbitrary p ∈ P (n) is sp(q) = pq−1p.

Remark Examples 2,4,6,7,8 arise as so called extrinsic symmetric spaces: A sub-
manifold S ⊂ RN is called extrinsic symmetric if it is preserved by the reflections at all
of its normal spaces. More precisely, let sp be the isometry of RN fixing p whose linear
part dsp acts as identity I on the normal space νpS and as −I on the tangent space
TpS; then S is extrinsic symmetric if sp(S) = S for all p ∈ S. Extrinsic symmetric
spaces (also called symmetric R-spaces) are classified (cf. [KN], [F], [EH]).

2. Transvections and Holonomy

We saw in Section 1 that the symmetry at the mid point maps any point p ∈ S to
any other point q ∈ S. But we shall find another isometry with even better properties.
Let γ be the geodesic segment connecting p and q such that γ(0) = m is the mid point,
and extend it to a complete geodesic. The symmetry sm reflects each parallel vector
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field X along γ; in fact, being an isometry it maps X along γ onto another parallel
vector field X̃ along γ̃ with γ̃(t) = sp(γ(t)) = γ(−t) and dsm.X(0) = −X(0). Thus

dsm.X(t) = −X(−t)

for all t ∈ R. Now the composition of two symmetries, say τ = sq ◦sm, reflects X twice,
hence it keeps X invariant. More precisely, if q = γ(s),

τ(γ(t)) = γ(t+ s), dτγ(t)X(t) = X(t+ s) (∗)

for any parallel vector field X along γ. Such isometry τ is called a transvection along
γ. Since any isometry is determined by its value and its derivative at a single point,
(∗) shows also that the transvections τ = τs for variable s ∈ R form a one-parameter
subgroup of G, i.e. τs+s′ = τs ◦ τs′ . In fact, by (∗), τs ◦ τs′ is the isometry sending
the point γ(0) to γ(s+ s′) and any vector X ∈ Tγ(0)S to its parallel translate Ps+s′X
(where Pt denotes the parallel transport from Tγ(0)S to Tγ(t)S along γ), and the same
holds for τs+s′ , hence τs ◦ τs′ = τs+s′ . More generally, for any two points p, q ∈ S, the
composition sp ◦ sq is a transvection along any geodesic connecting p and q. Now we
have proved a theorem with many strong consequences:

Theorem 2. Each complete geodesic γ : R → S is the orbit of a one-parameter
group of isometries, the transvections along γ, which act as parallel transports along
γ.

Corollary 1. For any p ∈ S, the holonomy group Holp is contained in the isotropy
group K = Gp

Proof Recall that the holonomy group Holp is the group of parallel translations
along all closed curves starting and ending at p. We may approximate such a curve by
a closed geodesic polygon. The parallel transport along any edge of the polygon is given
by applying a transvection along that edge, and so the parallel transport along the full
polygon is a composition of isometries which sends p back to itself, hence it is an element
of the isotropy group K = Gp (acting on TpS by the isotropy representation). Since K
is compact, the sequence of parallel transports along geodesic polygons approximating
the given loop better and better has a convergent subsequence, hence Holp ⊂ K.∗)

Corollary 2. The fundamental group of S is abelian.

Proof Fix some p ∈ S and consider the fundamental group π = π1(S, p) consisting
of homotopy classes [c] of loops c : [0, 1] → S starting and ending at p while the group
operation is by concatenation of loops. We will show that the inversion map j : α 7→ α−1

on π is a group homomorphism (and an anti-homomorphism anyway); this will show
that π is abelian. Any smooth map f : S → S fixing p creates a homomorphism
f∗ : π → π, f∗([c]) = [f ◦ c]. We will use f = sp (the symmetry at p) and show that

∗) In any Riemannian manifold we have kind of opposite relation: the isotropy group
is always contained in the normalizer of the holonomy group. This is because isometries
preserve parallel transport, hence for any h = Pc ∈ Holp (where c is a loop c starting
and ending at p) and any isometry g fixing p we have gPcg

−1 = Pgc ∈ Holp. Thus for a
symmetric space G/K we have Holp ⊂ K ⊂ N(Holp). We will see later (Theorem 7.2)
that Holp and K have the same Lie algebra.
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(sp)∗ = j. In fact, if [c] is a nontrivial homotopy class, it contains a geodesic loop
γ, i.e. [c] = [γ|(0,1]]. Now γ is the orbit of a one-parameter group of isometries, and
in particular, if γ(1) = γ(0) = p, we have γ′(1) = γ′(0) (the tangent vector field is
a restriction of the Killing field generated by the one-parameter group, see Section 3
below). Thus the geodesic loop is a closed (1-periodic) geodesic. Hence sp ◦ γ given
by sp(γ(t)) = γ(−t) is the same loop, parametrized in reverse direction, which implies
(sp)∗[γ] = [γ]−1 = j([γ]) and hence j = (sp)∗ is a group homomorphism.

Corollary 3. If S is simply connected and indecomposable (i.e. S does not split as
a nontrivial Riemannian product), then S is isotropy irreducible, i.e. K acts irreducibly
on TpS. In particular, S is Einstein.

Proof If the isotropy action ofK on TpS is reducible, i.e. TpS splits as an orthogonal
direct sum of nontrivial K-invariant subspaces TpS = V1 ⊕ V2, then V1 and V2 are also
invariant under Holp ⊂ K. But then, by de Rham’s theorem (cf. [KNo]) S is reducible.
Since the Ricci tensor at the point p is K-invariant, all its eigenspaces are K-invariant,
and if S is isotropy irreducible there can be only one eigenspace, i.e. S is Einstein.

From now on, we will often assume that S is isotropy irreducible. This is more
general than the assumption “indecomposable”; e.g. it includes the case of euclidean
space Rn = E(n)/O(n) where E(n) is the euclidean group.

Remark It is well known for any Riemannian manifold S that the curvature endo-
morphisms R(v, w) for any v, w ∈ TpS belong to the Lie algebra of the holonomy group
which in our case is contained in the Lie algebra k of K. If we consider the trilinear map
(x, y, z) 7→ R(x, y)z as an algebraic structure (a so called triple product) on TpS, then
K is part of its automorphism group since isometries preserve the curvature tensor.
The Lie algebra of the automorphism group of any algebraic structure is its derivation
algebra; hence the elements A ∈ k act on TpS by derivations with respect to R, i.e.

A.R(x, y)z = R(A.x, y)z +R(x,A.y)z +R(x, y)A.z.

This holds in particular for A = R(v, w) = Rvw:

RvwR(x, y)z = R(Rvwx, y)z +R(x,Rvwy)z +R(x, y)Rvwz. (L)

A curvature tensor R with this property is called Lie triple (product). We will come
back to this point in Chapter 4.

3. Killing Fields

Let S be a symmetric space and fix a base point p ∈ S. Let g be the Lie algebra
of the isometry group G of S viewed as the space of Killing vector fields. This has two
distinguished subspaces k and p where

k = {X ∈ g; Xp = 0}, p = {X ∈ g; (∇X)p = 0}.

Obviously, k is the Lie algebra of the isotropy group K = Gp. But p also has a
geometric meaning: it is the space of infinitesimal transvections at p. Recall that for
any geodesic γv starting from p with tangent vector v ∈ TpS there is a one-parameter
group of transvections gv(t) translating γv and all parallel vector fields along γv. The
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infinitesimal transvections at p are the corresponding Lie algebra elements or Killing
fields V := d

dt
gv(t)

∣

∣

t=0
, for any v ∈ TpS. We claim that those form the subspace p. In

fact, if w ∈ TpS, we choose a curve p(s) with p(0) = p and p′(0) = w. Then

∇wV =
D

∂s

∂

∂t
gt(p(s))

∣

∣

∣

∣

s=t=0

=
D

∂t

∂

∂s
gt(p(s))

∣

∣

∣

∣

0,0

= 0

since ∂
∂s
gt(p(s))|s=0 = dgt.w is a parallel vector field along γv. This shows that all

infinitesimal transvections at p are in p. Since a Killing field (like an isometry) is
determined by its value and its derivative at a single point, the dimension of p is not
larger than the dimension of TpS, hence the infinitesimal transvections at p exhaust p.
Since k and p have no common intersection, we have a direct vector space decomposition

g = k⊕ p

by reasons of dimension. Clearly, k ⊂ g is a subalgebra; in fact, the Killing field
[V,W ] = ∇V W −∇WV vanishes at p if so do V and W . In order to determine [V,W ]
we only have to compute its derivative at p. First we have to recall a more general fact:

Lemma. On any Riemannian manifold S, a Killing field X satisfies the following
covariant differential equation

∇2
A,BX +R(X,A)B = 0 (K)

for arbitrary vector fields A,B where

∇2
A,BX := (∇A(∇X))B = ∇A∇BX −∇∇ABX.

Proof Let us denote the left hand side of (K) by L(A,B). Since any Killing field is
a Jacobi field when restricted to a geodesic γ (it is the variation field of the family of
geodesics γs = gs ◦ γ where gs is the one-parameter group of isometries corresponding
to the Killing field), we have ∇2

A,AX + R(X,A)A = 0 for any vector field A, hence
L(A,A) = 0 for any A which shows that the symmetric part L(A,B)+L(B,A) vanishes.
But the antisymmetric part vanishes anyway by Bianchi identity since ∇2

A,B −∇2
B,A =

R(A,B):

L(A,B)− L(B,A) = R(A,B)X +R(X,A)B −R(X,B)A = 0

Now for any X,Y ∈ k and V,W ∈ p we have [X,Y ] ∈ k, [V,W ] ∈ k and [X,V ] ∈ p;
to see this we note that ∇XY and ∇V W vanish at p due to Xp = 0 and (∇W )p = 0,
hence [X,Y ], [V,W ] ∈ k. Moreover, by (K) we have for any A ∈ TpS

∇A[X,V ] = ∇A∇XV −∇A∇V X
∗
= −R(V,A)X +R(X,A)V = 0

at p where
∗
= is due to (K) and (∇V )p = 0, hence [X,V ] ∈ p.

Furthermore we have for any U ∈ p at the point p (where ∇V,∇W = 0):

∇U [V,W ] = ∇U∇V W −∇U∇WV

= −R(W,U)V +R(V, U)W = R(V,W )U

On the other hand, at p we also have

∇U [V,W ] = [U, [V,W ]]

since ∇[V,W ]U vanishes at p. Thus we have expressed the curvature tensor in terms of
the Lie algebra structure:

10



Theorem 3. Let S be a symmetric space and p ∈ S. Let k be the set of Killing
fields vanishing at p and p the set of infinitesimal transvections at p, i.e. the Killing
fields with vanishing covariant derivative at p. Then

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (C)

Further, the map p → TpS, V 7→ Vp is a linear isomorphism, and for all U, V,W ∈ p we
have

(R(V,W )U)p = ([U, [V,W ]])p .

4. Cartan Involution and Cartan Decomposition

Theorem 4.1

a) Let G be a connected Lie group with an involution (order-2 automorphims) σ :
G → G and a left invariant metric which is also right invariant under the closed
subgroup

K̂ = Fix(σ) = {g ∈ G; gσ = g}

Let K be a closed subgroup of G with

K̂o ⊂ K ⊂ K̂

where K̂o denotes the connected component (identity component) of K̂. Then
S = G/K is a symmetric space where the metric is induced from the given metric
on G.

b) Every symmetric space S arises in this way.

Proof We prove Part b) first. Let S be a symmetric space. We have seen in Theorem
1 that the isometry group Ĝ = I(S) acts transitively and contains a point reflection or
geodesic symmetry sp at some p ∈ S. The conjugation by sp defines an automorphism

σ of Ĝ,
σ(g) = spgs

−1
p = spgsp.

Note that s2p = sp ◦ sp is the identity element e ∈ Ĝ since s2p is an isometry which has
the same value and derivative at p as the identity e. Thus σ is also an automorphism
of order 2, an involution of Ĝ.

In Theorem 2 we have seen that the identity component G = Ĝo acts transitively
too, and since the identity component is preserved by any automorphism, σ is an
involution of G as well.

Since sp acts as −I on TpS, it commutes with the action of the isotropy group K
at p. In other words, K lies in the fixed point set of σ in G. Vice versa, if g ∈ Fix(σ),
it commutes with sp and hence it preserves the subset Fsp = {x ∈ S; sp(x) = x}, the
fixed point set of sp in S. But p is an isolated point of Fsp since no nonzero vector
v ∈ TpS is fixed by dsp (it is mapped to −v). Hence g(p) = p if g can be connected to
e in Fix(σ), i.e. if g lies in the connected component Fix(σ)o. So we have seen

Fix(σ)o ⊂ K ⊂ Fix(σ). (F )
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The mapping
π : G → S, g 7→ gp

is a submersion ∗) with fibres π−1(gp) = {gk; k ∈ K} = gK, thus S is equivariantly
diffeomorphic to the coset space G/K. In particular, π∗ := dπe : g = TeG → TpS is a
K-equivariant linear map,

π∗ Ad(k)X = k∗π∗X

for any k ∈ K and X ∈ g, and π∗ is onto with kernel k = TeK. By (F ) we know
that k is the fixed space ((+1)-eigenspace) of σ∗. A canonical complement is the (−1)-
eigenspace which we call p. Using the equivariant isomorphism π∗|p : p → TpS, we
transplant the inner product on TpS to p, and we extend it to an Ad(K)-invariant
metric on g by choosing any Ad(K)-invariant metric on k and declaring k ⊥ p. This
extends to a left invariant metric on G which is also right invariant with respect to K,
and the submersion π : G → S is Riemannian, i.e. dπg is isometric on the horizontal
subspace Hg = (Tg(gK))⊥ = (Lg)∗p ⊂ TgG.

Vice versa, let G,K, σ be as in the assumption of Part a). The metric on G induces
a metric on the coset space S := G/K which thus becomes a Riemannian homogeneous
space. To see that it is symmetric, by Theorem 1 we only have to find the symmetry
s = sp at the point p = eK ∈ S. Since K ⊂ Fix(σ), we have σ(K) = K and hence
σ : G → G descends to a diffeomorphism s : G/K → G/K. Let

g = k+ p

be the decomposition of g = TeG into the (±1)-eigenspaces of σ∗. We have s(p) = p
and dsp = −I since

Tp(G/K) = g/k = {X + k; X ∈ g} = {X + k; X ∈ p}

and dsp(X + k) = σ∗(X) + k = −X + k for all X ∈ p. It remains to show that s is
an isometry, i.e dsgp : TgKS → Tσ(gK)S preserves the inner product. This is clear
for g = e since dsp = −I, and it follows for arbitrary g ∈ G from the observation
s(ghK) = gσhσK = gσs(hK), hence

s ◦ Lg = Lgσ ◦ s

for any g ∈ G, where Lg : S → S, Lg(hK) = ghK. Differentiating this equality at
p = eK we obtain

dsgp ◦ (dLg)p = (dLgσ )p ◦ dsp.

All these linear maps are bijective and (dLg)p, (dLgσ )p, dsp preserve the inner products,
thus the same holds for dsgp which shows that s is an isometry and hence S = G/K is
symmetric.

E.g. for the sphere Sn = SO(n + 1)/SO(n) the isotropy group K = SO(n)
is a proper subgroup of Fix(σ) = O(n), while in the real projective space RPn =
SO(n+ 1)/O(n) the two groups agree. In both cases we have Fix(σ)o = SO(n).

Passing to the Lie algebra level we see that the differential σ∗ of σ is an order-two
automorphism of the Lie algebra g. Hence we get a decomposition g = k ⊕ p where k

and p are the eigenspaces of σ∗ corresponding to the eigenvalues 1 and −1. From (F )
we see that k is the Lie algebra of the isotropy group K. Moreover, the other eigenspace
p is also Ad(K)-invariant since Ad(K) commutes with σ∗. In fact, p is the space of
infinitesimal transvections at p since the conjugation by sp reverses the one-parameter
group of transvections along any geodesic γ starting at p.

∗) i.e. π and dπg are onto for any g ∈ G
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Lemma A vector space decomposition g = k⊕p of a Lie algebra g is the eigenspace
decomposition of an order-two automorphism σ∗ of g if and only if

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (C)

Proof If Eλ ⊂ g denotes the eigenspace corresponding to the eigenvalue λ of an
automorphism σ∗, then [Eλ, Eµ] ⊂ Eλ·µ since

σ∗[Xλ, Xµ] = [σ∗Xλ, σ∗Xµ] = λµ[Xλ, Xµ].

For λ, µ ∈ {1,−1} this shows (C). Vice versa, if a decomposition g = k ⊕ p with (C)
is given, then the linear map σ∗ on g which is I on k and −I on p is a Lie algebra
automorphism.

A decomposition of a Lie algebra g = k ⊕ p with (C) such that ad(k)|p is the Lie
algebra of a compact subgroup of GL(p) will be called Cartan decomposition and the
corresponding involution σ∗ Cartan involution.

Now starting from a Lie algebra g with Cartan involution σ∗ we construct a sym-
metric space as follows. Recall that any automorphism of the Lie algebra g is the
differential of an automorphism of the corresponding simply connnected Lie group G.
Hence we obtain an involution σ on G such that Ad(Fix(σ)) acts as a compact group on
p. Let K ⊂ G be any closed subgroup satisfying (F ). Fix any Ad(K)-invariant scalar
product on p (which exists since Ad(K) acts on p as a compact group). This determines
a G-invariant metric on S := G/K, making it a symmetric space by Theorem 4.1. Thus
we have shown the following

Theorem 4.2 Any symmetric space S determines a Cartan decomposition on the
Lie algebra of Killing fields. Vice versa, to any Lie algebra g with Cartan decomposition
g = k + p there exists a unique simply connected symmetric space S = G/K where G
is the simply connected Lie group with Lie algebra g and K the connected subgroup
with Lie algebra k.

This theorem has one flaw: There may be several Lie algebras with Cartan decom-
position which determine the same symmetric space. In case of euclidean space S = Rn,
the semidirect product of the translation group together with any closed subgroup K of
the orthogonal group is a subgroup G of the euclidean group E(n) such that S = G/K;
note that g = k⊕Rn is a Cartan decomposition. However we will prove uniqueness of
the Cartan decompositon if S is simply connected without flat factor (cf. Section 6).

If we wish uniqueness in general, we have to pass from Cartan decompositions to
Lie triple systems. Recall that a Lie triple system is a euclidean vector space with a
triple product (x, y, z) 7→ R(x, y)z which is antisymmetric in x, y and satisfies Bianchi’s
identity, such that all R(x, y) are skew adjoint derivations of R. If we have a Lie algebra
with Cartan decomposition g = k⊕p, then p with the triple product R(x, y)z := [z, [x, y]]
is a Lie triple system: Bianchi’s identity is the Jacobi identity, and R(x, y) = −ad([x, y])
is a skew adjoint derivation of R since [x, y] ∈ k; recall that Ad(K) acts by automor-
phisms on the Lie algebra g preserving p, so it acts by orthogonal automorphisms on
(p, R), and hence ad(k) acts by skew adjoint derivations (cf. (L) at the end of Section
2).

Vice versa, if (p, R) is a Lie triple system, we will recover a Lie algebra with Cartan
decomposition by a construction due to E.Cartan: Let K be the connected component
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of the group of orthogonal automorphisms of (p, R) and k its Lie algebra which contains
all R(x, y). Let g := k ⊕ p as a vector space and define a Lie bracket on g as follows.
On k, the Lie bracket is already defined. The bracket [k, p] is the action of k on p, and
for x, y ∈ p we put [x, y] := −R(x, y) ∈ k. It is easy to check that (g, [ , ]) is a Lie
algebra and g = k+p a Cartan decomposition. Recall that p is already equipped with a
K-invariant scalar product, hence the corresponding simply connected symmetric space
is uniquely determined.

On the other hand, the Lie triple system p is also uniquely determined by a sym-
metric space S: We may consider p as a subspace of the full Lie algebra of Killing
fields on S on which the conjugation with the symmetry sp acts as −I; compare the
construction before Theorem 4.2. Thus p lies in the (−1)-eigenspace of this conjugation
which is the space of infinitesimal transvections at p, and by reasons of dimension the
two spaces agree. Thus we have seen:

Theorem 4.3 Simply connected symmetric spaces and Lie triple systems are in
one-to-one correspondence.

The practical achievement of this chapter is the following: If g is a matrix Lie
algebra with a Cartan decomposition g = k+p, we can compute the curvature tensor of
the corresponding symmetric space using Theorem 3, since the Lie triple p is uniquely
determined and the Lie brackets in g can be computed in terms of matrices.

Example. Consider the complex projective space (cf. Example 6, Section 1)

S = CPn = G1(C
n+1) = U(n+ 1)/(U(1)× U(n))

The Lie algebra of G = U(n+1) is the space g of antihermitean complex (n+1)×(n+1)-
matrices; the Cartan involution on g is the conjugation with the matrix

(

−1 0
0 In

)

,

hence p is the set of matrices

X =

(

0 −x∗

x 0

)

for any x ∈ Cn. For any X,Y, Z ∈ p with corresponding x, y, z ∈ Cn we obtain
r(x, y)z ∈ Cn corresponding to R(X,Y )Z = [Z, [X,Y ]] ∈ p (cf. Thm.3) by computing
the matrix commutators:

r(x, y)z = z(y∗x− x∗y) + x(y∗z)− y(x∗z) ∈ Cn

(recall that y∗x ∈ C is the hermitean scalar product between x and y in Cn). In
particular, for y = z we get

r(x, y)y = y(y∗x− 2x∗y) + x(y∗y).

Let y be a unit vector, y∗y = 1, and x perpendicular to y with respect to the real scalar
product 〈x, y〉 = Re x∗y. Then y∗x = −x∗y = i〈x, iy〉 and hence

r(x, y)y = x+ 3〈x, iy〉iy.
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Thus the eigenvalues of r(., y)y on y⊥ are 1 on {y, iy}⊥ and 4 on Riy. Hence the
sectional curvature of CPn varies between 1 and 4 where the value 1 is taken on any
real plane spanned by x, y with x ⊥ y, iy and 4 on any complex plane spanned by y, iy.

5. Locally Symmetric Spaces

A (not necessarily complete) Riemannian manifold M is called locally symmetric
if its curvature tensor is parallel, i.e. ∇R = 0.

Theorem 5. M is locally symmetric if and only if there exists a symmetric space
S such that M is locally isometric to S.

Proof Let M be locally isometric to a symmetric space S, i.e. around any p ∈ M
there is a geodesic ball B = Bǫ(p) which is isometric to an ǫ-ball in S. Hence there is
an isometry sp : B → B fixing p with (dsp)p = −I. Let

w = (∇v1R)(v2, v3)v4

for v1, ..., v4 ∈ TpM . Applying (dsp)p on both sides of this equation, w is changed to
−w, and vi to −vi, hence the left hand side changes sign while the right hand side stays
the same (4 minus signs); note that ∇R is preserved by (dsp)p. Thus ∇R = 0.

Vice versa, assume ∇R = 0 on M , i.e.

∇W (R(X,Y )Z) = R(∇WX,Y )Z +R(X,∇WY )Z +R(X,Y )∇WZ

for all tangent vector fields X,Y, Z,W . Differentiating another time we see that this
equation holds also with ∇W replaced by R(V,W ) for arbitrary tangent vector fields
V,W . In other words, R(V,W ) is a derivation of R (considered as a triple product on
TpM) and hence (TpM,R) is a Lie triple system. By Theorem 4.2 there is a correspond-

ing symmetric space S with curvature tensor R̂ such that (TxS, R̂) and (TpM,R) are
orthogonally isomorphic Lie triples, for any x ∈ S and p ∈ M . We identify p := TxS and
TpM by such an isomorphism. Let ǫ > 0 such that ê := exp x and e := exp p are diffeo-
morphisms on Bǫ(0). We claim that the diffeomorphism φ = ê ◦ e−1 : Bǫ(p) → Bǫ(x)
is an isometry. We have to show that |dev(u)| = |dêv(u)| for any v ∈ p and u ∈ Tvp.

We may write w := dev(u) = d
ds
e(v + su)|s=0, hence w is the value J(1) of the

Jacobi field J(t) = d
ds
e(t(v + su))|s=0 along the geodesic γv(t) = e(tv) in M . Then

J satisfies the Jacobi equation J ′′ + R(J, γ′
v)γ

′
v = 0 with J(0) = 0 and J ′(0) = u.

Let e1, ..., en be an orthonormal basis of p = TpM and extend it to a parallel basis
E1(t), ..., En(t) along γv. Then J =

∑

i jiEi with ji = 〈J,Ei〉. From ∇γ′
v
R = 0 we see

that R(Ei, γ
′
v)γ

′
v is parallel along γv, hence it can be written as

∑

j rjiEj with constant

coefficients rji = 〈R(Ei, γ
′
v)γ

′
v, Ej〉. Thus the vector valued function j = (j1, ..., jn)

T

satisfies the linear differential equation j′′ + rj = 0 with j(0) = 0, j′(0) = u where r
is the constant matrix (rji) and u =

∑

uiei is considered as the vector (u1, ..., un)
T .

Likewise, ŵ := dêv(u) is the value Ĵ(1) of some Jacobi field Ĵ on S. But by the first part
of this proof, the curvature tensor R̂ of S is also parallel. Using the same orthonormal
basis of p = TxS, the Jacobi field Ĵ(t) is given by a vector valued function ĵ(t) satisfying
precisely the same initial value problem. By the unicity theorem for ODEs we have
ĵ(t) = j(t) and thus |Ĵ(t)| = |J(t)| for all t. In particular we get |ŵ| = |w| which
finishes the proof.
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6. Compact, Noncompact, Euclidean Type;
Duality

There is a prominent symmetric bilinear form on each Lie algebra g, the Killing
form, defined as follows. Any representation ρ : G → GL(V ) determines a symmetric
bilinear form bρ on g, namely bρ(x, y) = trace ρ∗(x)ρ∗(y). This is Ad(G)-invariant since
ρ∗(Ad(g)x) = ρ(g)ρ∗(x)ρ(g)

−1. The Killing form B is this bilinear form for the adjoint
representation, B = bAd, i.e.

B(x, y) = trace ad(x) ad(y).

Since B is Ad(G)-invariant, all ad(x) are skew symmetric with respect to B, i.e.
B([x, y], z) = −B(y, [x, z]) or B(z, [x, y]) = B([z, x], y).

If K ⊂ G is a compact subgroup, then there exists an Ad(K)-invariant scalar
product on g (start with any scalar product and take its average over K). Thus for any
x ∈ k, the endomorphism ad(x) = d

dt
Ad(exp tx)|t=0 is skew symmetric with respect

to this scalar product, so its square ad(x)2 is symmetric with nonpositive eigenvalues.
Hence B(x, x) = trace ad(x)2 < 0 unless ad(x) = 0 which means that x is in the center
of g. Thus −B|k is a positive definite scalar product unless k intersects the center of
g. But this latter case is impossible if G acts locally effectively on G/K (i.e. no g 6= e
close to e acts as identity): If k ∈ K ∩ Z(G) (where Z(G) denotes the center of G),
then k(gK) = gkK = gK for any g ∈ G, and so k acts trivially on G/K.

Now let S = G/K be an isotropy irreducible symmetric space, and let g = k + p

be the Cartan decomposition. Since p may be identified with the tangent space of S
at the base point p = eK, the Riemannian metric on S corresponds to a K-invariant
scalar product 〈 , 〉 on p. But there is yet another K-invariant symmetric bilinear form
on p, namely the restriction of the Killing form B. Since K acts irreducibly on p, the
two symmetric bilinear forms differ only by a factor λ (since any eigenspace of B is
K-invariant), i.e. B = λ · 〈 , 〉. The sign of λ will determine the type of the symmetric
space.

Theorem 6 The sectional curvature of an isotropy irreducible symmetric space S
is zero for λ = 0, and for λ 6= 0 it is

〈R(x, y)y, x〉 = λ−1B([x, y], [x, y])

where x, y ∈ p are orthonormal.

Proof Recall from Section 3 that R(x, y)z = [z, [x, y]] for all x, y ∈ p = TpS. Thus

λ〈R(x, y)y, x〉 = B(x,R(x, y)y) = B(x, [y, [x, y]) = B([x, y], [x, y]).

If λ 6= 0, this proves the claim. If λ = 0, the above equation implies [x, y] = 0: Recall
that [x, y] ∈ k for x, y ∈ p, thus B([x, y], [x, y]) ≤ 0 and = 0 only if [x, y] = 0. Thus the
full curvature tensor vanishes in this case.

If λ = 0, then S is flat (curvature zero) and is called of euclidean type. It is easy
to see that such a space is the Riemannian product of some euclidean space Rk with a
flat (n− k)-torus (0 ≤ k ≤ n).

If λ < 0, then S has nonnegative sectional curvature and is called of compact type.
In fact, since S is isotropy irreducibe, it has constant Ricci curvature which must be
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positive (if it were zero, the sectional curvature had to vanish). Thus S and all its
covering spaces must be compact by Myers’ theorem; in particular, the fundamental
group of S is finite.

If λ > 0, the curvature is nonpositive; such a symmetric space S is called of
noncompact type. By the theorem of Hadamard and Cartan, it is diffeomorphic to Rn

if it is simply connected. In fact, S is simply connected. Otherwise, there would be
a closed geodesic γ: A curve minimizing the length in a nontrivial homotopy class of
loops starting and ending at the base point p ∈ S is a geodesic loop, but any geodesic
in S is the orbit of a one-parameter subgroup (cf. Section 2), hence a geodesic loop
is already a closed geodesic. Any Killing field X gives a Jacobi field ξ = X ◦ γ along
the geodesic γ, i.e. ξ′′ + R(ξ, γ′)γ′ = 0. Hence from the curvature condition we get
〈ξ′′, ξ〉 ≥ 0 and therefore 〈ξ, ξ〉′′ = 2(〈ξ′′, ξ〉 + 〈ξ′, ξ′〉) ≥ 0. Thus 〈ξ, ξ〉 is a convex
function, but it is also periodic, being the restriction of the function 〈X,X〉 to a closed
geodesic. So 〈ξ, ξ〉 = const and 〈R(ξ, γ′)γ′, ξ〉 = 0. Therefore, any 2-plane containing γ′

has curvature zero. In particular, the Ricci curvature in direction γ′ vanishes. Since the
Ricci curvature is constant, it vanishes everywhere, and since the sectional curvature is
nonpositive, this implies that the curvature is zero.

Symmetric spaces of compact and of noncompact type are related by the so called
duality: From any Lie algebra g with Cartan decomposition g = k + p we get another
Lie algebra g′ which is just g as a vector space, with the following Lie bracket [ , ]′: for
any x, y ∈ p and a, b ∈ k we have

[a, b]′ = [a, b], [a, x]′ = [a, x], [x, y]′ = −[x, y].

It is easy to check that this is again a Lie algebra with the same Cartan decompo-
sition, but the sign of the curvature tensor of the corresponding symmetric space S
is reversed.∗) Starting from a symmetric space of compact type we obtain one of
noncompact type, called the dual symmetric space, and vice versa. E.g. the spheres
and projective spaces are dual to the corresponding hyperbolic spaces, and the posi-
tive definite symmetric matrices GL(n,R)/O(n) are dual to the space U(n)/O(n) of
real structures in Cn (cf. examples in Section 1). The dual of a compact Lie group
S = G = (G×G)/G (cf. Example 5) is Gc/G where Gc corresponds to the complexified
Lie algebra gc = g⊗ C.

7. The Isometry Group

Recall that an ideal a of a Lie algebra g is a linear subspace with [g, a] ⊂ a, and
the center of g is the largest subspace c with [g, c] = 0. A trivial Lie algebra (all of
whose Lie brackets vanish) is called abelian. A nonabelian Lie algebra without proper
nonzero ideal is called simple. A Lie algebra g is called semisimple if its Killing form
in nondegenerate. The reason for the last notion is the following Lemma:

Lemma. If a Lie algebra g is semisimple, it has no center and any ideal a ⊂ g has
a complementary ideal b such that g = a ⊕ b, or equivalently, g splits uniquely as a
direct sum of simple ideals.

∗) In fact, we can change [x, y] to α[x, y] for any α ∈ R. If α 6= 0, we can assume
α = ±1; otherwise we just scale the metric of S by |α|. For α = 0, we always obtain
euclidean space.
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Proof Let a ⊂ g be an ideal. We let b := a⊥ = {x ∈ g; B(x, a) = 0} be the
orthogonal complement of a with respect to B. This is also an ideal, since for all
b ∈ a⊥, x ∈ g and a ∈ a we have B([b, x], a) = B(b, [x, a]) = 0 since [x, a] ∈ a. It
remains to show that c := a∩ a⊥ = 0. In fact, a∩ a⊥ is an ideal, and it is abelian since
B([a, b], x) = B(a, [b, x]) = 0 for all a, b ∈ a ∩ a⊥ and x ∈ g which implies [a, b] = 0.
But there is no abelian ideal c if B is nondegenerate (in particular, there is no center):
The linear map ad(x)ad(c) takes values in c for any x ∈ g and c ∈ c, so B(x, c) is the
trace of ad(x)ad(c) taken over the subspace c, but this is zero since ad(x) ad(c)c′ = 0
for any c′ ∈ c. Thus B(x, c) = 0 for all x ∈ g, hence c = 0.

By further decomposing the ideals a and b = a⊥, we eventually arrive at a decom-
position g = a1 ⊕ ... ⊕ ap where all ai are simple ideals. This decomposition is unique
(up to permutation of the factors) since the factors ai are irreducible and inequivalent
under the action of ad(g) and Ad(G) where G is the corresponding Lie group.∗)

Theorem 7.1 If S = G/K is a symmetric space of compact or noncompact type,
then g is semisimple. If moreover S is strongly isotropy irreducible, i.e. the isotropy
representation of the connected component Ko is irreducible, then either g is simple or
S is a simple compact Lie group with biinvariant metric (cf. Example 5, Section 1).

Proof Let g = k + p be the Cartan decomposition. By Section 6, B is (positive or
negative) definite on p and k. Further, B(p, k) = 0 since p and k are the eigenspaces of
the automorphism σ∗ of g, and clearly any automorphism leaves B invariant. Thus B
is nondegenerate and hence g semisimple.

Thus by the previous Lemma, g splits uniquely as a direct sum of simple ideals
g = a1 ⊕ ... ⊕ ap which are permuted by the Cartan involution σ∗, i.e. σ∗(ai) = as(i).
Putting bi = ai + as(i), we get a σ∗-invariant splitting g = b1 ⊕ ... ⊕ bq. Thus p and k

split accordingly. By strong irreducibility we must have q = 1, hence either g is simple
or g = a ⊕ a where a is simple and σ∗(a, b) = (b, a) for any a, b ∈ a. In the latter case
k the fixed point set k of σ∗ is the diagonal {(a, a); a ∈ a}, and thus S is the compact
Lie group K with a biinvariant metric.

Theorem 7.2 Let S be a symmetric space of compact or noncompact type and g =
k+p the Lie algebra of all Killing fields. Then p generates g as a Lie algebra. Moreover
the Lie algebras of the holonomy and the isotropy group agree, and its representation
on the tangent space determines S uniquely up to coverings and duality.

Proof Let a ∈ k be B-perpendicular to the linear span of {[x, y]; x, y ∈ p} where B
is the Killing form. Then we have 0 = B(a, [x, y]) = B([a, x], y) for all x, y ∈ p which
shows [a, x] = 0 for all x ∈ p. Thus exp ta acts as identity on p which shows a = 0
since the action is effective. Hence g is generated by p as a Lie algebra.

We have already seen that the isotropy group (acting faithfully on the tangent
space p = TpS by the adjoint action) contains the holonomy group (Section 2). But the
Lie algebra of the holonomy group contains the endomorphisms ad([x, y])|p = −R(x, y)
of p for all x, y ∈ p, and these endomorphisms generate k (acting on p).

It remains to show that the action of k on p determines the Lie bracket on p up to
a factor. This is done similarly: The Lie bracket [x, y] ∈ k for x, y ∈ p is determined by
the scalar products B(a, [x, y]) for all a ∈ k, but B(a, [x, y]) = B([a, x], y) = λ〈[a, x], y〉
(cf. Section 6) is determined by the action of k on p and the factor λ.

∗) This is true even if ai ∼= aj for some i 6= j since ad(aj) acts trivially on ai but not
so on aj .

18



8. Lie Subtriples and Totally Geodesic Subspaces

To any symmetric space S = G/K we have assigned a Lie triple (p, R) with
R(x, y)z = [z, [x, y]] (cf Theorem 4). A Lie subtriple is a linear subspace p′ ⊂ p which
is invariant under the triple product R. Considered as a Lie triple in its own right, a
Lie subtriple corresponds again to a symmetric space. On the other hand, a complete
totally geodesic (immersed) submanifold S′ of S is clearly invariant under all symme-
tries sp for p ∈ S′, hence it is also symmetric. We shall see that these two objects are
closely related:

Theorem 8. Let S = G/K be a symmetric space and S′ ⊂ S a complete (possibly
immersed) submanifold passing through p = eK. Then the following statements are
equivalent:
(a) S′ ⊂ S is totally geodesic.
(b) S′ ⊂ S is a symmetric subspace, i.e. sq(S

′) = S′ for all q ∈ S′.
(c) S′ = exp p p

′ where p′ ⊂ p = TpS is a Lie subtriple.

Proof “(a) ⇒ (c)”: Any totally geodesic submanifold through p must be of the form
exp p(p

′) for some linear subspace p′ ⊂ p = TpS which is invariant under the curvature
tensor, hence a Lie subtriple.

“(c) ⇒ (b)”: Let p′ ⊂ p be a Lie subtriple and S′ = exp p p
′. Note that (exp p′)p =

exp p p
′ (where exp denotes the Lie group exponential while exp p is the Riemannian

exponential map), since for any X ∈ p the geodesic γX(t) = exp p tX is the orbit
through p of the one-parameter group g(t) = exp tX (see Section 2). From the Lie
triple property of p′ we get that g′ := p′ + [p′, p′] ⊂ g is a Lie subalgebra. Let G′ ⊂ G
be the corresponding connected Lie subgroup. Since [p′, p′] ⊂ k, we have g′p = p′p
and thus the orbit G′p has tangent space TpS

′ = p′. Moreover we have S′ ⊂ G′p with
TpS

′ = p′ = Tp(G
′p) whence S′ = G′p by completeness. By definition, S′ is invariant

under sp and then by homogeneity under sq for any q ∈ S′, see Theorem 1.
“(b) ⇒ (a)”: If sq(S

′) = S′ for any q ∈ S′, then the second fundamental form
α must vanish since −α(v, w) = dsq(α(v, w)) = α(dsq.v, dsq.w) = α(v, w) for any
v, w ∈ TqS

′.

Corollary 1. Let S′ ⊂ S be complete and totally geodesic. Then all transvections
of S′ (considered as a symmetric space of its own right) extend uniquely to transvections
of S.

Corollary 2. The flat complete totally geodesic subspaces of S are precisely S′ =
exp p′ where p′ ⊂ p ⊂ g is an abelian subalgebra.∗)

Proof Recall that [p′, p′] ⊂ g′ (notation as in the proof of the above theorem). So
S′ = G′/K ′ is a symmetric space of euclidean type if and only if [p′, p′] = 0 (cf. Sect.6).

9. Isotropy Representation and Rank

The easiest symmetric space is of course euclidean space. What can be said about
totally geodesic immersions of euclidean space into an arbitrary symmetric space S =

∗) Remember that p is not a Lie algebra. We mean a subalgebra of g which is
contained in p. Such a subalgebra a is automatically abelian since [a, a] ⊂ a ∩ [a, a] ⊂
p ∩ k = 0.
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G/K? Such (immersed) submanifolds are called flats. We will consider only maximal
flats which are not contained in any larger flat. By the results of the previous chapter,
maximal flats through the base point point p are precisely F = exp p(a) for any maximal
abelian subalgebra a ⊂ p, or equivalently, F is the orbit A.p of the subgroup A =
exp a ⊂ G corresponding to the Lie algebra a.

We show first that F is a closed submanifold of S. It is sufficient to prove that A is
a closed subgroup of G. In fact, A is maximal among the connected abelian subgroups
of G with Lie algebra contained in p, and these properties also hold for its closure Ā:
Clearly Ā is again abelian and connected; we must show only that its Lie algebra is also
in p. But this property can be re-interpreted: a is a subspace of p iff the automorphism
σ = Ad(sp) acts on it as −I. This means that spgs

−1
p = g−1 for any g ∈ A, in other

words, the conjugation with the symmetry sp is the inversion on A. This property of
A clearly passes over to the closure Ā. Hence Ā = A by maximality of A. Since K is
compact, the projection of A ⊂ G to S = G/K is closed, too. If S is compact, F is
also compact (and homogeneous and flat), hence it is a flat torus.

In order to investigate the maximal flats it is sufficient to consider the maximal
abelian subalgebras of p. Any two of them are conjugate by the isotropy group:

Theorem 9. Let a ⊂ p be a maximal abelian subalgebra. Then a intersects any
K-orbit on p, and each time it intersects perpendicularly.

Proof We show first that a intersects K-orbits perpendicularly. Let x ∈ a and
consider the orbit O = Ad(K)x ⊂ p as a submanifold of the euclidean vector space p.
Its tangent space is TxO = Tx(Ad(K)x) = ad(k)x. Hence its normal space νxO contains
all vectors y ∈ p with 0 = 〈[k, x], y〉 = 〈k, [x, y]〉 which means [x, y] = 0. Thus the normal
vectors of O ⊂ p at x are those which commute with x; in particular, a ⊂ νxO.

In the Lemma below we show that in fact a = νxO for almost every (so called
regular) x ∈ a. Pick such a regular vector x ∈ a. Then νAd(k)xO = Ad(k)a for all
k ∈ K. Let a′ ⊂ p be another maximal abelian subalgebra and let y ∈ a′ be regular in
a′. Since O is a compact submanifold of p, there exists a point Ad(k)x ∈ O (for some
k ∈ K) which has smallest distance to y. Thus the line segment from y to Ad(k)x is
perpendicular to the manifold O, i.e. y − Ad(k)x lies in νAd(k)xO = Ad(k)a. Hence
y lies also in the maximal abelian subalgebra Ad(k)a. By the Lemma below we have
a′ = Ad(k)a which finishes the proof.

Lemma There is a finite number of hyperplanes of a such that any x ∈ a which
lies outside these hyperplanes is regular, i.e. for any y ∈ p we have [x, y] = 0 only if
y ∈ a. A regular vector lies in precisely one maximal abelian subalgebra.

Proof We may assume that S is of compact or noncompact type. We have to
consider the endomorphisms ad(x) ∈ End(g) for all x ∈ a. These are diagonalizable
over C: From the Killing form B on g we get a positive definite scalar product 〈 , 〉 on
g which is −B on k and ±B on p (cf. Section 6), and for all x ∈ a, y ∈ p and k ∈ k we
have

〈ad(x)y, k〉 = −B(ad(x)y, k) = B(y, ad(x)k) = ±〈y, ad(x)k〉

(recall that ad(x)y ∈ k and ad(x)k ∈ p). Hence ad(x) is self adjoint in the noncompact
case (with real eigenvalues) and skew adjoint in the compact case (with imaginary
eigenvalues). For sake of simplicity, let us assume that S is of noncompact type (which
is no restriction of generality since the maximal abelian subalgebras of p and the isotropy
representation remain the same under duality).
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Since a is abelian, the endomorphisms ad(x) for x ∈ a commute with each other
(Jacobi identity). Thus we get a common eigenspace decomposition

g = g0 +
∑

α∈∆

gα (1)

where ∆ ⊂ a∗ is a finite set of nonzero real linear forms on a (called roots), and

gα = {z ∈ g; ∀x∈a ad(x)z = α(x)z}.

(A nonzero linear form α ∈ a∗ is called a root if this space gα is nonzero.) Now recall
that ad(x) for x ∈ a ⊂ p interchanges the factors of the Cartan decomposition g = k+p.
Splitting each eigenvector zα ∈ gα as zα = xα + yα with xα ∈ p and yα ∈ k, we get
from [x, zα] = α(x)zα:

[x, xα] = α(x)yα, [x, yα] = α(x)xα. (2)

(For compact type, the eigenvalues of ad(x) are iα(x) and we obtain a minus sign in
one of these equations.) Putting z̄α = σ∗(zα) = −xα+ yα, we get further from (2) that
[x, z̄α] = −α(x)z̄α; hence −α is also a root, and we have a splitting

gα + g−α = kα + pα (3)

where kα ⊂ k contains the yα and pα ⊂ p the xα component of zα. Now from (1) and
(3) we obtain a decomposition

p = a+
∑

α∈∆

pα.

(In fact we may replace ∆ by a subset ∆+ of half cardinality containing just one of any
two roots ±α, see below.)

Now we consider the hyperplanes α⊥ = ker α ⊂ a. If x ∈ a \
⋃

α α⊥, then x does
not commute with any x′ ∈ p \ a since we may split x′ = x0 +

∑

xα with x0 ∈ a and
xα ∈ pα, and [x, x′] =

∑

α(x)yα 6= 0. Thus these vectors are regular. In particular,
any such x lies in no other maximal abelian subalgebra of p.

The hyperplanes α⊥ ⊂ a are called root hyperplanes. The connected components
of a\

⋃

α α⊥ are called Weyl chambers. On a Weyl chamber C, a root α does not change
sign, i.e. it takes either positive or negative values on all of C. In the sequel, we will
call x ∈ a regular if it does not lie in any root hyperplane, i.e. it is in the union of the
(open) Weyl chambers.

Fixing a Weyl chamber C, we can choose ∆+ to be the set of roots which are
positive on C (called “positive roots”); then apparently ∆ = ∆+ ∪ −∆+.

As a consequence of Theorem 9, all maximal abelian subalgebras of p and hence all
maximal flats in S have the same dimension which is called the rank of the symmetric
space S. We have also seen that the rank is the codimension of the principal orbits
(which we called O in the proof above) of the isotropy representation. If the rank is
one, these orbits are the spheres in p and the space is called two point homogeneous
since any two tangent vectors of the same length or any two pairs of points of the same
distance can be mapped upon each other by an isometry. These spaces are the spheres
and the projective and hyperbolic spaces. In the higher rank case, the maximal abelian
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subalgebra a contains a system of representatives for the classes of tangent vectors
which are equivalent under isometries.

The orbits of the isotropy representation of a symmetric space S are interesting
spaces in its own right and they have been extensively studied (e.g. cf. [KN], [BR],
[PT]). Among them are the extrinsic symmetric spaces which were mentioned in Sec-
tion 1; these are precisely the orbits Ad(K)x where ad(x)3 = µ ·ad(x) for some nonzero
µ ∈ R (cf. [F], [EH]). Representations all of whose orbits meet a certain subspace per-
pendicularly are called polar; we have seen that isotropy representations of symmetric
spaces have this property. J.Dadok [D] has proved the converse statement: For any
polar representation there exists an isotropy representation of a symmetric space (“s-
representation”) having the same orbits. Dadok’s classification of polar representations
can be viewed as an alternative approach to symmetric spaces and their classification.

10. The Weyl Group

Let S = G/K be a symmetric space of compact or noncompact type, G connected,
and g = k + p be the corresponding Cartan decomposition. Let a ⊂ p a maximal
abelian subalgebra. We have seen in the last chapter that a intersects every orbit of
the isotropy group K (acting on p by Ad). However, each orbit Ad(K)x has several
intersection points with a. In fact, consider the compact subgroup

M = {k ∈ K; Ad(k)a = a} ⊂ K.

Obviously we have Ad(M)x ⊂ Ad(K)x ∩ a for any x ∈ a. Equality holds if x ∈ a is
regular:

Ad(K)x ∩ a = Ad(M)x.

To prove this, let k ∈ K with Ad(k)x ∈ a. Since x and Ad(k)x are regular, the normal
spaces of O = Ad(K)x at x and Ad(k)x both are equal to a. Thus Ad(k) preserves a

since it maps νxO onto νAd(k)xO, and hence k ∈ M .
Since M leaves a invariant, it acts on a, and the kernel of this action is apparently

the subgroup
M0 = {k ∈ K; Ad(k)x = x ∀x ∈ a}

The groups M and M0 have the same Lie algebra

m = {y ∈ k; [y, a] = 0}.

This is because [y, a] ⊂ a already implies [y, a] = 0 since B([y, a], x) = B(y, [a, x]) = 0
for all x ∈ a. Therefore the quotient group W = M/M0 is discrete and hence finite
(recall that M was compact); it is called the Weyl group of S with respect to a. Since
the root system depends only on the choice of a, the action of M or W on a permutes
the root hyperplanes and maps Weyl chambers to Weyl chambers (recall that a Weyl
chamber was a connected component of a \

⋃

α α⊥). The following theorem determines
the size of W .

Theorem 10. The Weyl group W acting on a is generated by the reflections at
the root hyperplanes α⊥ = ker α for all α ∈ ∆, and it acts simply transitively on the
set of Weyl chambers in a.
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Proof (cf. [H], pp. 283-289) We show first that the reflection at the root hyperplane
α⊥ is contained in W for any α ∈ ∆. Put ∆0 = ∆ ∪ {0} and let p0 = a. The subspace

pα =
∑

β∈∆0∩Rα

pβ

is a Lie subtriple of p. This follows from the Jacobi identity which implies [gα, gβ ] =
gα+β for any α, β ∈ ∆0: In fact, for zα ∈ gα and zβ ∈ gβ and all x ∈ a we have

[x, [zα, zβ ]] = [[x, zα], zβ ] + [zα, [x, zβ ]] = (α(x) + β(x))[zα, zβ ].

This Lie subtriple pα essentially corresponds to a rank-one symmetric space. In fact,
the hyperplane α⊥ = ker α ⊂ a can be split off from a ⊂ pα since gβ commutes with
ker α for any β ∈ ∆0 ∩Rα, and further

〈α⊥, [gβ , g−β ]〉 = λ−1B(α⊥, [gβ , g−β ]) = λ−1B([α⊥, gβ ], g−β) = 0.

Let p′′ be the orthogonal complement of α⊥ in pα. Then the totally geodesic subspace
S′ corresponding to the Lie triple pα splits locally as S′′×Rk−1 where the second factor
has tangent space α⊥, and S′′ is a rank-one symmetric space with Lie triple p′′. Thus
the connected component K ′′ of the isotropy group of S′′ acts transitively on the unit
sphere in p′′; in particular there is some k ∈ K ′′ which maps the dual vector α∗ ∈ a

(with α(α∗) = 1 and α∗ ⊥ α⊥) onto −α∗. By Theorem 7.2, the isometry group of
S′′ is generated by transvections and thus all elements K ′′ extend to isometries of S′

(acting trivially on the Rk−1-factor) and further to isometries of S. In this way, K ′′ is
embedded into Ko. The particular element k ∈ K ′′ lies in M since Ad(k) preserves a,
and since Ad(k) fixes α⊥ and reflects α∗, it is the reflection at the root hyperplane α⊥.

Since the group generated by the reflections at all root hyperplanes acts transitively
on the set of Weyl chambers it remains to show that any w ∈ W which leaves a Weyl
chamber C invariant acts trivially. Pick such a w and let r be its order. For an arbitrary
x′ ∈ C consider the “w-average” x := x′+wx′+ ...+wr−1x′ which is also in C since C
is a convex cone. Apparently we have wx = x, and since x is regular, the claim follows
from the subsequent lemma.

Lemma. For any k ∈ K we have: If Ad(k) fixes some regular element x ∈ a then
Ad(k) fixes every element of a.

Proof By duality it is no restriction of generality to assume that S is of compact
type, i.e. S = G/K with G compact and semisimple. Since α(x) 6= 0 for any α ∈ ∆,
we see from the decomposition

g = k0 +
∑

kα + a+
∑

pα

that the centralizer Lie algebra of x (containing the elements of g which commute with
x) is precisely g0 = k0 + a, and this is contained in the centralizer Lie algebra of any
element of a. Thus we only have to show that k ∈ exp g0. More generally, we will show
that for any x ∈ g the centralizer subgroup C(x) = {g ∈ G; Ad(g)x = x} is connected.

In fact, let Tx be the closure of exp Rx. This is a closed connected abelian subgroup
(“torus”) in G. Let c ∈ C(x) be arbitrary. Then c commutes with Tx, hence c and Tx

generate a closed abelian subgroup A ⊂ G. Its connected component is some torus Ao
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(containing Tx). Thus there is some a ∈ Ao such that Ao is the closure of 〈a〉 = a
//
.

By compactness, A has only finitely many connected components. Hence there is a
power p such that cp ∈ Ao. and so A is the closure of 〈ac〉 since 〈ac〉 contains Tx and
c. Because G is compact and connected, there is some y ∈ g with ac = exp y. Now the
closure of exp Ry is a torus Ty in G containing c and Tx. Thus Ty ⊂ C(x) which shows
that c lies in the connected component of C(x).

Now we have gained a rather complete picture of the isotropy representation of
symmetric spaces of compact or noncompact type: Any maximal abelian subalgebra
a ⊂ p is an orthogonal section of all orbits. Further, a is a union of the closures of
open polyhedral (even simplicial) cones called Weyl chambers. The orbits through
the interior of these cones are precisely the regular ones, those of maximal dimension
(exceptional orbits don’t exist); they intersect each Weyl chamber exactly once. In
a rank-one symmetric space, any two unit tangent vectors can be mapped onto each
other by an isometry. For a symmetric space S of higher rank, the Weyl chambers (in
any maximal abelian subalgebra at any point of S) take the place of the unit tangent
vectors: Any two of them can be mapped onto each other by an isometry.

The roots α corresponding to the root hyperplanes α⊥ which bound a fixed Weyl
chamber C are called fundamental roots; since the Weyl group permutes the Weyl
chambers, all roots are conjugate to the fundamental roots under the Weyl group
action. The possible fundamental root systems and the corresponding symmetric spaces
are classified; cf. tables in [H], pp. 476, 518, 532ff.
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