Largest families of sets, under conditions defined by a given poset

Gyula O.H. Katona
MTA Rényi Institute, Budapest

Let $[n]=\{1,2, \ldots, n\}$ and let $\mathcal{F} \subset 2^{[n]}$ be a family of its subsets. Sperner proved in 1928 that if \mathcal{F} contains no pair of members in inclusion that is $F_{1}, F_{2} \in \mathcal{F}$ implies $F_{1} \not \subset F_{2}$ then $|\mathcal{F}| \leq\binom{ n}{|n / 2|}$. Inspired by an application, Erdős generalized this theorem in the following way. Suppose that \mathcal{F} contains no $k+1$ distinct members $F_{1} \subset F_{2} \subset \ldots \subset F_{k+1}$ then $|\mathcal{F}|$ is at most the sum of the k largest binomial coefficients of order n. This bound is, of course, tight. We will survey results of this type: determine the largest family of subsets of $[n]$ under a certain condition forbidding a given configuration described solely by inclusion among the members. This maximum is denoted by $\mathrm{La}(n, P)$ where P is the forbidden configuration. The final (hopelessly difficult) conjecture is that $\mathrm{La}(n, P)$ is asymptotically equal to the sum of the k largest binomial coefficients where the k largest levels contain no configuration P, but $k+1$ levels do.

Another related problem is the following one. A copy of the given poset P is a family \mathcal{F} of subsets of $[n]$ where the embedding $f: P \rightarrow \mathcal{F}$ maps comparable elements of P into comparable subsets. Two copies $\mathcal{F}_{1}, \mathcal{F}_{2}$ of P are incomparable if no member of \mathcal{F}_{1} is a subset of a member of \mathcal{F}_{2} and no member of \mathcal{F}_{2} is a subset of a member of \mathcal{F}_{1}. The maximum number of incomparable copies of P is denoted by LA $(n . P)$. This quantity is asymptotically determined for all P, unlike $\mathrm{La}(n, P)$.

