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Ising model
• • • • • • •

{0, 1} {0, 1}

hi,i+1

{

I n spin-half particles (bits): each one can take 0 or 1
I “state” of the system is some x ∈ {0, 1}n

I hi,i+1 : {0, 1} × {0, 1} → R,

hi,i+1(a, b) =

{
0 if a = b,
1 if a 6= b.

I Hamiltonian: H = h1,2 + h2,3 + · · ·+ h(n−1),n
H(x) is the energy of the state x ∈ {0, 1}n

I min H(x) is taken at

x = 00 . . . 0 and x = 11 . . . 1
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Quantum Ising model

• • • • • • •

hi,i+1

{C2 C2

I n spin-half particles (qubits): C2 with orthonormal basis
{|0〉, |1〉}

I “state” of the system is some
|x〉 ∈ C2 ⊗ · · · ⊗ C2 = (C2)⊗n ≡ C2n

I (linear, hermitian) hi,i+1 : C2 ⊗ C2 → C2 ⊗ C2,

hi,i+1(|a〉 ⊗ |b〉) =

{
0 if a = b,
|a〉|b〉 if a 6= b.

I Hamiltonian: H = h1,2 + h2,3 + · · ·+ h(n−1),n

〈x|H|x〉 is the energy of the state |x〉 ∈ (C2)⊗n

I min〈x|H|x〉 is taken at

|x〉 = α|0〉|0〉 . . . |0〉+ β|1〉|1〉 . . . |1〉.
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Modular tensor categories

A modular tensor category C:
I semi-simple (Anyons)

I ∀α, β ∈ obj(C), α⊗ β ∈ obj(C) (Fusion)
I ∃1 ∈ obj(C) such that α⊗ 1 ≡ α ≡ 1⊗ α (Vacuum)
I ∀α, ∃α∨ such that (Antiparticle)

1→ α⊗ α∨ and α⊗ α∨ → 1

I ∀α, β, ∃α⊗ β → β ⊗ α (Braiding)
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Toric code [Kitaev ’97]

C2

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)

σxσz = −σzσx, σ2
x = σ2

z = Id

I A spin-half is associated to each edge

I Av = σx ⊗ σx ⊗ σx ⊗ σx = σxσxσxσx

I Bf = σzσzσzσz ⇒ ∀v, f : AvBf = Bf Av

I H = −∑v Av −
∑

f Bf

I |Ψ0〉 has the min energy iff ∀v, f , Av|Ψ0〉 = Bf |Ψ0〉 = |Ψ0〉
I What is dim of ground space?
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Loop operators

σz

I Multiplication of Bf ’s inside a region is a loop operator
I This loop operators does not change the ground state

I Multiplication of Av’s inside a region is a loop operator
I On a torus there are non-trivial loop operators

I dim = 1 on a sphere (or plane), dim = 4 on a torus
I These 4 states are not locally distinguishable! (topological order)
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String operators
σx

σxσx

σx

v
σz

σzσz

σz

σz σz σz

σz

σz

σze

e

f

I Fz = σzσz · · ·σz, Fz|Ψ0〉 is an energy-2 eigenstate
I The string operator Fz creates two quasi-particle excitations at

its endpoints −→ e

I Fx = σxσx · · ·σx, Fx|Ψ0〉 is an energy-2 eigenstate
I The string operator Fx creates two quasi-particle excitations at

its endpoints −→ m
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Anyons

e

e

I can move these quasi-particles
I can fuse them: e⊗ m = ε

I can braid them

=−

e em m

I Anyons {1, e,m, ε}
I These anyons correspond to 4 irreducible representations of the

quantum double of Z2.
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Generalization to an arbitrary group

I G: finite group
I C|G|: Hilbert space with orthonormal basis {|g〉 : g ∈ G}
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The quantum double model
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∑

g∈G Ag
v , Bf = Be

f

I ∀v, f : AvBf = Bf Av

I HG = −∑v Av −
∑

f Bf

I |Ψ0〉 is a ground state iff ∀v, f : Av|Ψ0〉 = Bf |Ψ0〉 = |Ψ0〉
I The ground state on a planar lattice is unique



The quantum double model

v

|x�

|y�

|z�

|u�

=

v

δh,uz−1yx
|x�

|y�

|z�

|u�

=
vAg

v
|x�

|y�
|z�

|u�

v

|gy�
|gz�

|gu�

|xg−1�
f fBh

v,f

I Av = 1
|G|
∑

g∈G Ag
v , Bf = Be

f

I ∀v, f : AvBf = Bf Av

I HG = −∑v Av −
∑

f Bf

I |Ψ0〉 is a ground state iff ∀v, f : Av|Ψ0〉 = Bf |Ψ0〉 = |Ψ0〉
I The ground state on a planar lattice is unique



The quantum double model

v

|x�

|y�

|z�

|u�

=

v

δh,uz−1yx
|x�

|y�

|z�

|u�

=
vAg

v
|x�

|y�
|z�

|u�

v

|gy�
|gz�

|gu�

|xg−1�
f fBh

v,f

I Av = 1
|G|
∑

g∈G Ag
v , Bf = Be

f

I ∀v, f : AvBf = Bf Av

I HG = −∑v Av −
∑

f Bf

I |Ψ0〉 is a ground state iff ∀v, f : Av|Ψ0〉 = Bf |Ψ0〉 = |Ψ0〉

I The ground state on a planar lattice is unique



The quantum double model

v

|x�

|y�

|z�

|u�

=

v

δh,uz−1yx
|x�

|y�

|z�

|u�

=
vAg

v
|x�

|y�
|z�

|u�

v

|gy�
|gz�

|gu�

|xg−1�
f fBh

v,f

I Av = 1
|G|
∑

g∈G Ag
v , Bf = Be

f

I ∀v, f : AvBf = Bf Av

I HG = −∑v Av −
∑

f Bf

I |Ψ0〉 is a ground state iff ∀v, f : Av|Ψ0〉 = Bf |Ψ0〉 = |Ψ0〉
I The ground state on a planar lattice is unique



Strings Operators

f1

v1

v0

f0

s0

s1

I For ξ = (s0, s1), [Fh,g
ξ ,Ak

t ] = [Fh,g
ξ ,B`t ] = 0 for all k, ` ∈ G and

t 6= s0, s1

I Fh,g
ξ |Ψ0〉 is an excited state with energy 2

I Fh,g
ξ |Ψ0〉 depends only on the endpoints of ξ, i.e., s0, s1

I We obtain a system of anyons
I What are the anyon types?
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Drinfeld double of a group
I A and B operators on a site define an algebra

AgAg′ = Agg′ ,

(Ag)† = A(g−1),

BhBh′ = δh,h′Bh,

(Bh)† = Bh,

AgBh = B(ghg−1)Ag.

I This algebra is called the Drinfeld (quantum) double of G:
D(G)

I The space of excitations and s, s′ is 〈Fh,g
ξ |Ψ0〉 : g, h ∈ G〉

I This space gives a representation of D(G)
I So decomposition into irreducible representations gives the

anyon types
I Anyon types are in 1-to-1 correspondence with irreducible

representations of D(G)
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Drinfeld double of a group

D(G) = C[G]∗ oC[G]

I is an algebra
I RepD(G) is semi-simple
I co-algebra structure ∆ : D(G)→ D(G)⊗D(G)

∆(Ag) = Ag ⊗ Ag, ∆(Bh) =
∑

h1h2=h

Bh1 ⊗ Bh2 .

I RepD(G) is a tensor category
I D(G) is quasi-triangular: R =

∑
g∈G Bg ⊗ Ag

I R : X ⊗ Y → X ⊗ Y gives the braiding
I RepD(G) is a braided tensor category



Boundary I

v0

s0

f0

I Fix a subgroup K ⊆ G

AK
s0

=
1
|K|
∑

k∈K

Ak
s0
, BK
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=
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Bk
s0

I

HG,K = −
∑

v: internal

Av −
∑

f : internal

Bf −
∑

s: boundary

(
AK

s + BK
s
)
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Condensations I
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Cξ = {T ∈ Fξ : [T,AK
s0

] = [T,BK
s0

] = 0}

I ∀T ∈ Cξ : T|Ψ0〉 is a single-site excited state
I An anyon at s1 disappears after moving to the boundary
I A full characterization of Cξ and condensed anyons are known
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Boundary & Condensation II
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I K ⊆ G, ϕ a 2-cocycle of K:
ϕ : K × K → C s.t. ϕ(kl,m)ϕ(k, l) = ϕ(k, lm)ϕ(l,m)
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Condensations vs Algebras

Operators Ag & Bh Drinfeld doubld D(G)

Anyon types RepD(G)

Fusion of anyons Tensor product of representations

Braiding of anyons Quasi-triangularity of D(G)

Boundary, Condensation Algebra
Cξ = {T ∈ Fξ : [T, ÃK

s ] = [T,BK
s ] = 0}

I As a representation of D(G), Cξ is an indecomposable separable
commutative algebra.

Theorem [Davydov ’10] All maximal indecomposable separable
commutative algebras of RepD(G) are in 1-to-1 correspondence with
pairs (K, ϕ) where K ⊆ G is a subgroup and ϕ is a 2-cocycle of K.
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s ] = [T,BK
s ] = 0}

I As a representation of D(G), Cξ is an indecomposable separable
commutative algebra.

Theorem [Davydov ’10] All maximal indecomposable separable
commutative algebras of RepD(G) are in 1-to-1 correspondence with
pairs (K, ϕ) where K ⊆ G is a subgroup and ϕ is a 2-cocycle of K.



Condensations vs Algebras

Operators Ag & Bh Drinfeld doubld D(G)

Anyon types RepD(G)

Fusion of anyons Tensor product of representations

Braiding of anyons Quasi-triangularity of D(G)

Boundary, Condensation Algebra
Cξ = {T ∈ Fξ : [T, ÃK
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Domain walls vs boundaries

G

G�

≡

G G�

I A domain wall between the G-phase and the G′-phase is defined
by U ⊆ G× G′ and a 2-cocycle ϕ of U

I Boundaries can be used to study equivalences of phases
corresponding to different groups
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Domain walls vs boundaries

G G� G

≡

G�×

YX (X, Y op)

I A domain wall between the G-phase and the G′-phase is defined
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Example: S3

I S3 = 〈σ, τ : σ2 = τ 3 = e, στ = τ−1σ〉.
I D(S3) has 8 irreducible representations:

A B C D E F G H
conjugacy class e e e σ σ τ τ τ

irrep of the centralizer 1 sign π 1 [−1] 1 [ω] [ω∗]

I Fusion rules

⊗ A B C D E F G H
A A B C D E F G H

B B A C E D F G H

C C C A⊕B⊕C D⊕E D⊕E G⊕H F⊕H F⊕G

D D E D⊕E A⊕C⊕F⊕G⊕H B⊕C⊕F⊕G⊕H D⊕E D⊕E D⊕E

E E D D⊕E B⊕C⊕F⊕G⊕H A⊕C⊕F⊕G⊕H D⊕E D⊕E D⊕E

F F F G⊕H D⊕E D⊕E A⊕B⊕F H⊕C G⊕C

G G G F⊕H D⊕E D⊕E H⊕C A⊕B⊕G F⊕C

H H H F⊕G D⊕E D⊕E G⊕C F⊕C A⊕B⊕H



A non-trivial symmetry of the F+
q o F×q -phase

I For every finite field Fq, there exists a non-trivial symmetry for
F+

q o F×q
I For q = 2, 3 we obtain the groups Z2 and S3 respectively

I U =
{(

(a1, α), (a2, α
−1)
)

: a1, a2 ∈ F+
q , α ∈ F×q

}

I For g =
(
(a1, α), (a2, α

−1)
)

and h =
(
(b1, β), (b2, β

−1)
)

ϕ(g, h) = ωtrp(αa2b1)

where p is a prime number and q is a power of p, trp : Fq → Fp is
the trace function, and ω is a p-th root of unity
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