The quantum double model as a topologically ordered phase

Salman Beigi

Institute for Research in Fundamental Sciences (IPM)

February 2013

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in \{0, 1\}^n$

- ▶ *n* spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in \{0, 1\}^n$
- ▶ $h_{i,i+1}: \{0,1\} \times \{0,1\} \to \mathbb{R},$

$$h_{i,i+1}(a,b) = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{if } a \neq b. \end{cases}$$

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in \{0, 1\}^n$
- ▶ $h_{i,i+1}: \{0,1\} \times \{0,1\} \to \mathbb{R},$

$$h_{i,i+1}(a,b) = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{if } a \neq b. \end{cases}$$

► Hamiltonian: $H = h_{1,2} + h_{2,3} + \dots + h_{(n-1),n}$ H(x) is the energy of the state $x \in \{0, 1\}^n$

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in \{0, 1\}^n$
- ▶ $h_{i,i+1}: \{0,1\} \times \{0,1\} \to \mathbb{R},$

$$h_{i,i+1}(a,b) = \begin{cases} 0 & \text{if } a = b, \\ 1 & \text{if } a \neq b. \end{cases}$$

- ► Hamiltonian: $H = h_{1,2} + h_{2,3} + \cdots + h_{(n-1),n}$ H(x) is the energy of the state $x \in \{0, 1\}^n$
- $\min H(x)$ is taken at

$$x = 00...0$$
 and $x = 11...1$

- ▶ n spin-half particles (qubits): C² with orthonormal basis {|0⟩, |1⟩}
- ► "state" of the system is some $|x\rangle \in \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n} \equiv \mathbb{C}^{2^n}$

- ▶ n spin-half particles (qubits): C² with orthonormal basis {|0⟩, |1⟩}
- "state" of the system is some $|x\rangle \in \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n} \equiv \mathbb{C}^{2^n}$
- (linear, hermitian) $h_{i,i+1} : \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes \mathbb{C}^2$,

$$h_{i,i+1}(|a\rangle \otimes |b\rangle) = egin{cases} 0 & ext{if } a=b, \ |a
angle |b
angle & ext{if } a
eq b. \end{cases}$$

- ▶ n spin-half particles (qubits): C² with orthonormal basis {|0⟩, |1⟩}
- "state" of the system is some $|x\rangle \in \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n} \equiv \mathbb{C}^{2^n}$
- (linear, hermitian) $h_{i,i+1} : \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes \mathbb{C}^2$,

$$h_{i,i+1}(\ket{a}\otimes\ket{b})=egin{cases} 0 & ext{if }a=b,\ \ket{a}\ket{b} & ext{if }a
eq b. \end{cases}$$

► Hamiltonian: $H = h_{1,2} + h_{2,3} + \dots + h_{(n-1),n}$ $\langle x | H | x \rangle$ is the energy of the state $|x\rangle \in (\mathbb{C}^2)^{\otimes n}$

- ▶ n spin-half particles (qubits): C² with orthonormal basis {|0⟩, |1⟩}
- "state" of the system is some $|x\rangle \in \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 = (\mathbb{C}^2)^{\otimes n} \equiv \mathbb{C}^{2^n}$
- (linear, hermitian) $h_{i,i+1} : \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes \mathbb{C}^2$,

$$h_{i,i+1}(\ket{a}\otimes\ket{b})=egin{cases} 0 & ext{if }a=b,\ \ket{a}\ket{b} & ext{if }a
eq b. \end{cases}$$

- ► Hamiltonian: $H = h_{1,2} + h_{2,3} + \dots + h_{(n-1),n}$ $\langle x | H | x \rangle$ is the energy of the state $|x\rangle \in (\mathbb{C}^2)^{\otimes n}$
- $\min\langle x|H|x\rangle$ is taken at

 $|x\rangle = \alpha |0\rangle |0\rangle \dots |0\rangle + \beta |1\rangle |1\rangle \dots |1\rangle.$

 α^{\bullet}

 α

 α^{\bullet}

Anyons: fusion

 $\beta \\ \alpha$

Anyons: fusion

 ${}^{\beta}_{\alpha} \bullet \bullet \gamma$

Anyons: braiding

 $\alpha \overset{\bullet}{\smile} \beta$

Anyons: braiding

A modular tensor category \mathcal{C} :

semi-simple

(Anyons)

A modular tensor category C:

- semi-simple
- $\blacktriangleright \ \forall \alpha, \beta \in \operatorname{obj}(\mathcal{C}), \quad \alpha \otimes \beta \in \operatorname{obj}(\mathcal{C})$

(Anyons) (Fusion)

A modular tensor category C:

- semi-simple (Anyons) $\blacktriangleright \forall \alpha, \beta \in \operatorname{obj}(\mathcal{C}), \quad \alpha \otimes \beta \in \operatorname{obj}(\mathcal{C})$ (Fusion)
- ▶ $\exists \mathbf{1} \in \operatorname{obj}(\mathcal{C})$ such that $\alpha \otimes \mathbf{1} \equiv \alpha \equiv \mathbf{1} \otimes \alpha$

(Vacuum)

A modular tensor category C:

semi-simple (Anyons)
∀α, β ∈ obj(C), α ⊗ β ∈ obj(C) (Fusion)
∃1 ∈ obj(C) such that α ⊗ 1 ≡ α ≡ 1 ⊗ α (Vacuum)
∀α, ∃α[∨] such that (Antiparticle)
1 → α ⊗ α[∨] and α ⊗ α[∨] → 1

A modular tensor category C:

semi-simple (Anyons)
∀α, β ∈ obj(C), α ⊗ β ∈ obj(C) (Fusion)
∃1 ∈ obj(C) such that α ⊗ 1 ≡ α ≡ 1 ⊗ α (Vacuum)
∀α, ∃α[∨] such that (Antiparticle)
1 → α ⊗ α[∨] and α ⊗ α[∨] → 1

 $\blacktriangleright \ \forall \alpha, \beta, \ \exists \, \alpha \otimes \beta \to \beta \otimes \alpha$

(Braiding)

A spin-half is associated to each edge

A spin-half is associated to each edge

$$\bullet \ A_v = \sigma_x \otimes \sigma_x \otimes \sigma_x \otimes \sigma_x = \sigma_x \sigma_x \sigma_x \sigma_x$$

A spin-half is associated to each edge

$$\bullet \ A_v = \sigma_x \otimes \sigma_x \otimes \sigma_x \otimes \sigma_x = \sigma_x \sigma_x \sigma_x \sigma_x$$

 $\blacktriangleright B_f = \sigma_z \sigma_z \sigma_z \sigma_z \quad \Rightarrow \forall v, f: \quad A_v B_f = B_f A_v$

- A spin-half is associated to each edge
- $\blacktriangleright A_{\nu} = \sigma_x \otimes \sigma_x \otimes \sigma_x \otimes \sigma_x = \sigma_x \sigma_x \sigma_x \sigma_x$
- $\blacktriangleright B_f = \sigma_z \sigma_z \sigma_z \sigma_z \quad \Rightarrow \forall v, f: \quad A_v B_f = B_f A_v$
- $\bullet \ H = -\sum_{v} A_{v} \sum_{f} B_{f}$
- $|\Psi_0\rangle$ has the min energy iff $\forall v, f$, $A_v |\Psi_0\rangle = B_f |\Psi_0\rangle = |\Psi_0\rangle$
- What is dim of ground space?

- Multiplication of B_f 's inside a region is a loop operator
 - This loop operators does not change the ground state

- Multiplication of B_f 's inside a region is a loop operator
 - This loop operators does not change the ground state
- Multiplication of A_v 's inside a region is a loop operator

- Multiplication of B_f 's inside a region is a loop operator
 - This loop operators does not change the ground state
- Multiplication of A_{ν} 's inside a region is a loop operator
- On a torus there are non-trivial loop operators
 - dim = 1 on a sphere (or plane), dim = 4 on a torus

- Multiplication of B_f 's inside a region is a loop operator
 - This loop operators does not change the ground state
- Multiplication of A_v 's inside a region is a loop operator
- On a torus there are non-trivial loop operators
 - $\dim = 1$ on a sphere (or plane), $\dim = 4$ on a torus
 - These 4 states are not locally distinguishable! (topological order)

String operators

- $F^z = \sigma_z \sigma_z \cdots \sigma_z$, $F^z |\Psi_0\rangle$ is an energy-2 eigenstate
- ► The string operator F^z creates two quasi-particle excitations at its endpoints → e

String operators

• $F^z = \sigma_z \sigma_z \cdots \sigma_z$, $F^z |\Psi_0\rangle$ is an energy-2 eigenstate

- ► The string operator F^z creates two quasi-particle excitations at its endpoints → e
- $F^x = \sigma_x \sigma_x \cdots \sigma_x$, $F^x | \Psi_0 \rangle$ is an energy-2 eigenstate
- ► The string operator F^x creates two quasi-particle excitations at its endpoints → m

can move these quasi-particles

can move these quasi-particles

- can move these quasi-particles
- can fuse them: $e \otimes m = \epsilon$

- can move these quasi-particles
- can fuse them: $e \otimes m = \epsilon$
- can braid them

- can move these quasi-particles
- can fuse them: $e \otimes m = \epsilon$
- can braid them
- Anyons $\{\mathbf{1}, e, m, \epsilon\}$

- can braid them
- Anyons $\{\mathbf{1}, e, m, \epsilon\}$
- ► These anyons correspond to 4 irreducible representations of the quantum double of Z₂.

► *G*: finite group

▶ $\mathbb{C}^{|G|}$: Hilbert space with orthonormal basis $\{|g\rangle : g \in G\}$

► *G*: finite group

▶ $\mathbb{C}^{|G|}$: Hilbert space with orthonormal basis $\{|g\rangle : g \in G\}$

► *G*: finite group

• $\mathbb{C}^{|G|}$: Hilbert space with orthonormal basis $\{|g\rangle : g \in G\}$

► *G*: finite group

▶ $\mathbb{C}^{|G|}$: Hilbert space with orthonormal basis $\{|g\rangle : g \in G\}$

$$\bullet A_{\nu} = \frac{1}{|G|} \sum_{g \in G} A_{\nu}^{g}, \qquad B_{f} = B_{f}^{e}$$

$$A_{\nu} = \frac{1}{|G|} \sum_{g \in G} A_{\nu}^{g}, \qquad B_{f} = B_{f}^{e}$$

$$\forall \nu, f: \quad A_{\nu} B_{f} = B_{f} A_{\nu}$$

$$\bullet A_{\nu} = \frac{1}{|G|} \sum_{g \in G} A_{\nu}^g, \qquad B_f = B_f^e$$

$$\blacktriangleright \forall v, f: \quad A_v B_f = B_f A_v$$

$$\bullet H_G = -\sum_{v} A_v - \sum_{f} B_f$$

• $|\Psi_0\rangle$ is a ground state iff $\forall v, f: A_v |\Psi_0\rangle = B_f |\Psi_0\rangle = |\Psi_0\rangle$

$$\bullet A_v = \frac{1}{|G|} \sum_{g \in G} A_v^g, \qquad B_f = B_f^e$$

$$\blacktriangleright \forall v, f: \quad A_v B_f = B_f A_v$$

$$\bullet H_G = -\sum_{v} A_v - \sum_{f} B_f$$

• $|\Psi_0\rangle$ is a ground state iff $\forall v, f: A_v |\Psi_0\rangle = B_f |\Psi_0\rangle = |\Psi_0\rangle$

The ground state on a planar lattice is unique

► For
$$\xi = (s_0, s_1), [F_{\xi}^{h,g}, A_t^k] = [F_{\xi}^{h,g}, B_t^\ell] = 0$$
 for all $k, \ell \in G$ and $t \neq s_0, s_1$

- ► For $\xi = (s_0, s_1), [F_{\xi}^{h,g}, A_t^k] = [F_{\xi}^{h,g}, B_t^\ell] = 0$ for all $k, \ell \in G$ and $t \neq s_0, s_1$
- $F_{\xi}^{h,g}|\Psi_0\rangle$ is an excited state with energy 2

- ► For $\xi = (s_0, s_1), [F_{\xi}^{h,g}, A_t^k] = [F_{\xi}^{h,g}, B_t^\ell] = 0$ for all $k, \ell \in G$ and $t \neq s_0, s_1$
- $F_{\xi}^{h,g}|\Psi_0\rangle$ is an excited state with energy 2
- ► $F_{\xi}^{h,g}|\Psi_0\rangle$ depends only on the endpoints of ξ , i.e., s_0, s_1

- ► For $\xi = (s_0, s_1)$, $[F_{\xi}^{h,g}, A_t^k] = [F_{\xi}^{h,g}, B_t^\ell] = 0$ for all $k, \ell \in G$ and $t \neq s_0, s_1$
- $F_{\xi}^{h,g}|\Psi_0\rangle$ is an excited state with energy 2
- $F_{\xi}^{h,g}|\Psi_0\rangle$ depends only on the endpoints of ξ , i.e., s_0, s_1
- We obtain a system of anyons

- ► For $\xi = (s_0, s_1)$, $[F_{\xi}^{h,g}, A_t^k] = [F_{\xi}^{h,g}, B_t^\ell] = 0$ for all $k, \ell \in G$ and $t \neq s_0, s_1$
- $F_{\xi}^{h,g}|\Psi_0\rangle$ is an excited state with energy 2
- $F_{\xi}^{h,g}|\Psi_0\rangle$ depends only on the endpoints of ξ , i.e., s_0, s_1
- We obtain a system of anyons
- What are the anyon types?

$$\begin{array}{rcl} A^{g}A^{g'} &=& A^{gg'},\\ (A^{g})^{\dagger} &=& A^{(g^{-1})},\\ B^{h}B^{h'} &=& \delta_{h,h'}B^{h},\\ (B^{h})^{\dagger} &=& B^{h},\\ A^{g}B^{h} &=& B^{(ghg^{-1})}A^{g}. \end{array}$$

► A and B operators on a site define an algebra

$$\begin{array}{rcl} A^{g}A^{g'} &=& A^{gg'},\\ (A^{g})^{\dagger} &=& A^{(g^{-1})},\\ B^{h}B^{h'} &=& \delta_{h,h'}B^{h},\\ (B^{h})^{\dagger} &=& B^{h},\\ A^{g}B^{h} &=& B^{(ghg^{-1})}A^{g}. \end{array}$$

► This algebra is called the Drinfeld (quantum) double of G: D(G)

$$\begin{array}{rcl} A^{g}A^{g'} &=& A^{gg'},\\ (A^{g})^{\dagger} &=& A^{(g^{-1})},\\ B^{h}B^{h'} &=& \delta_{h,h'}B^{h},\\ (B^{h})^{\dagger} &=& B^{h},\\ A^{g}B^{h} &=& B^{(ghg^{-1})}A^{g}. \end{array}$$

- ► This algebra is called the Drinfeld (quantum) double of G: D(G)
- The space of excitations and s, s' is $\langle F_{\xi}^{h,g} | \Psi_0 \rangle : g, h \in G \rangle$

$$\begin{array}{rcl} A^{g}A^{g'} &=& A^{gg'},\\ (A^{g})^{\dagger} &=& A^{(g^{-1})},\\ B^{h}B^{h'} &=& \delta_{h,h'}B^{h},\\ (B^{h})^{\dagger} &=& B^{h},\\ A^{g}B^{h} &=& B^{(ghg^{-1})}A^{g}. \end{array}$$

- ► This algebra is called the Drinfeld (quantum) double of G: D(G)
- The space of excitations and s, s' is $\langle F_{\xi}^{h,g} | \Psi_0 \rangle : g, h \in G \rangle$
- This space gives a representation of $\mathcal{D}(G)$

$$\begin{array}{rcl} A^{g}A^{g'} &=& A^{gg'},\\ (A^{g})^{\dagger} &=& A^{(g^{-1})},\\ B^{h}B^{h'} &=& \delta_{h,h'}B^{h},\\ (B^{h})^{\dagger} &=& B^{h},\\ A^{g}B^{h} &=& B^{(ghg^{-1})}A^{g}. \end{array}$$

- ► This algebra is called the Drinfeld (quantum) double of G: D(G)
- The space of excitations and s, s' is $\langle F_{\xi}^{h,g} | \Psi_0 \rangle : g, h \in G \rangle$
- This space gives a representation of $\mathcal{D}(G)$
- So decomposition into irreducible representations gives the anyon types

$$\begin{array}{rcl} A^{g}A^{g'} &=& A^{gg'},\\ (A^{g})^{\dagger} &=& A^{(g^{-1})},\\ B^{h}B^{h'} &=& \delta_{h,h'}B^{h},\\ (B^{h})^{\dagger} &=& B^{h},\\ A^{g}B^{h} &=& B^{(ghg^{-1})}A^{g}. \end{array}$$

- ► This algebra is called the Drinfeld (quantum) double of G: D(G)
- The space of excitations and s, s' is $\langle F_{\xi}^{h,g} | \Psi_0 \rangle : g, h \in G \rangle$
- This space gives a representation of $\mathcal{D}(G)$
- So decomposition into irreducible representations gives the anyon types
- ► Anyon types are in 1-to-1 correspondence with *irreducible* representations of D(G)

$$\mathcal{D}(G)=\mathbb{C}[G]^*\rtimes\mathbb{C}[G]$$

- is an algebra
- $\operatorname{Rep}\mathcal{D}(G)$ is semi-simple
- co-algebra structure $\Delta : \mathcal{D}(G) \to \mathcal{D}(G) \otimes \mathcal{D}(G)$

$$\Delta(A^g) = A^g \otimes A^g, \qquad \Delta(B^h) = \sum_{h_1 h_2 = h} B^{h_1} \otimes B^{h_2}.$$

- $\operatorname{Rep}\mathcal{D}(G)$ is a tensor category
- ► $\mathcal{D}(G)$ is quasi-triangular: $R = \sum_{g \in G} B^g \otimes A^g$
- $R: X \otimes Y \to X \otimes Y$ gives the braiding
- $\operatorname{Rep}\mathcal{D}(G)$ is a braided tensor category

Boundary I

Fix a subgroup $K \subseteq G$

$$A^K_{s_0} = rac{1}{|K|} \sum_{k \in K} A^k_{s_0}, \qquad B^K_{s_0} = \sum_{k \in K} B^k_{s_0}$$

Boundary I

Fix a subgroup $K \subseteq G$

$$A_{s_0}^K = rac{1}{|K|} \sum_{k \in K} A_{s_0}^k, \qquad B_{s_0}^K = \sum_{k \in K} B_{s_0}^k$$

$$H_{G,K} = -\sum_{v: \text{ internal } f: \text{ internal } s: \text{ boundary}} B_f - \sum_{s: \text{ boundary}} (A_s^K + B_s^K)$$

$$\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, A_{s_0}^K] = [T, B_{s_0}^K] = 0\}$$

$$\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, A_{s_0}^K] = [T, B_{s_0}^K] = 0\}$$

• $\forall T \in \mathcal{C}_{\xi} : T | \Psi_0 \rangle$ is a single-site excited state

$$\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, A_{s_0}^K] = [T, B_{s_0}^K] = 0\}$$

- $\forall T \in \mathcal{C}_{\xi} : T | \Psi_0 \rangle$ is a single-site excited state
- An anyon at s_1 disappears after moving to the boundary

$$\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, A_{s_0}^K] = [T, B_{s_0}^K] = 0\}$$

- $\forall T \in \mathcal{C}_{\xi} : T | \Psi_0 \rangle$ is a single-site excited state
- ► An anyon at *s*¹ disappears after moving to the boundary
- A full characterization of C_{ξ} and condensed anyons are known

Boundary & Condensation II

► $K \subseteq G$, φ a 2-cocycle of K: $\varphi: K \times K \to \mathbb{C}$ s.t. $\varphi(kl,m)\varphi(k,l) = \varphi(k,lm)\varphi(l,m)$
Boundary & Condensation II

► $K \subseteq G$, φ a 2-cocycle of K: $\varphi: K \times K \to \mathbb{C}$ s.t. $\varphi(kl, m)\varphi(k, l) = \varphi(k, lm)\varphi(l, m)$

$$\tilde{A}_{s}^{K} = \frac{1}{|K|} \sum_{k \in K} \tilde{A}_{s}^{k}$$

$$\tilde{H}_{G,K} = -\sum_{v: \text{ internal } f: \text{ internal } s: \text{ boundary }} B_{f} - \sum_{s: \text{ boundary } f: \text{ boundary } s \in S} (\tilde{A}_{s}^{K} + B_{s}^{K})$$

Condensations vs Algebras

Operators $A^g \& B^h$	Drinfeld doubld $\mathcal{D}(G)$				
Anyon types	$\operatorname{Rep}\mathcal{D}(G)$				
Fusion of anyons	Tensor product of representations				
Braiding of anyons	Quasi-triangularity of $\mathcal{D}(G)$				
Boundary, Condensation	$Algebra$ $\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, \tilde{A}_{s}^{K}] = [T, B_{s}^{K}] = 0\}$				

Condensations vs Algebras

Operators $A^g \& B^h$	Drinfeld doubld $\mathcal{D}(G)$				
Anyon types	$\operatorname{Rep}\mathcal{D}(G)$				
Fusion of anyons	Tensor product of representations				
Braiding of anyons	Quasi-triangularity of $\mathcal{D}(G)$				
Boundary, Condensation	Algebra				
	$\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, \tilde{A}_s^K] = [T, B_s^K] = 0\}$				

• As a representation of $\mathcal{D}(G)$, \mathcal{C}_{ξ} is an *indecomposable separable commutative algebra*.

Condensations vs Algebras

Operators $A^g \& B^h$	Drinfeld doubld $\mathcal{D}(G)$				
Anyon types	$\operatorname{Rep}\mathcal{D}(G)$				
Fusion of anyons	Tensor product of representations				
Braiding of anyons	Quasi-triangularity of $\mathcal{D}(G)$				
Boundary, Condensation	Algebra $\mathcal{C}_{\xi} = \{T \in \mathcal{F}_{\xi} : [T, \tilde{A}_{s}^{K}] = [T, B_{s}^{K}] = 0\}$				

• As a representation of $\mathcal{D}(G)$, \mathcal{C}_{ξ} is an *indecomposable separable commutative algebra*.

Theorem [Davydov '10] All maximal indecomposable separable commutative algebras of Rep $\mathcal{D}(G)$ are in 1-to-1 correspondence with pairs (K, φ) where $K \subseteq G$ is a subgroup and φ is a 2-cocycle of K.

A domain wall between the G-phase and the G'-phase is defined by U ⊆ G × G' and a 2-cocycle φ of U

- A domain wall between the G-phase and the G'-phase is defined by U ⊆ G × G' and a 2-cocycle φ of U
- Boundaries can be used to study equivalences of phases corresponding to different groups

Example: S₃

•
$$S_3 = \langle \sigma, \tau : \sigma^2 = \tau^3 = e, \sigma \tau = \tau^{-1} \sigma \rangle.$$

• $\mathcal{D}(S_3)$ has 8 irreducible representations:

	A	В	С	D	Ε	F	G	Н
conjugacy class	e	е	е	$\overline{\sigma}$	$\overline{\sigma}$	$\overline{\tau}$	$\overline{\tau}$	$\overline{ au}$
irrep of the centralizer	1	sign	π	1	[-1]	1	$[\omega]$	$[\omega^*]$

Fusion rules

\otimes	A	В	С	D	Ε	F	G	Η
A	Α	В	С	D	Ε	F	G	Н
B	B	Α	С	Ε	D	F	G	Н
C	C	С	$A \oplus B \oplus C$	$D \oplus E$	$D \oplus E$	$G \oplus H$	$F \oplus H$	$F \oplus G$
D	D	Ε	$D \oplus E$	$A \oplus C \oplus F \oplus G \oplus H$	$B \oplus C \oplus F \oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
E	Ε	D	$D \oplus E$	$B \oplus C \oplus F \oplus G \oplus H$	$A{\oplus}C{\oplus}F{\oplus}G{\oplus}H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
F	F	F	$G \oplus H$	$D \oplus E$	$D \oplus E$	$A \oplus B \oplus F$	$H \oplus C$	$G \oplus C$
G	G	G	$F \oplus H$	$D \oplus E$	$D \oplus E$	$H \oplus C$	$A \oplus B \oplus G$	$F \oplus C$
H	Η	H	$F \oplus G$	$D \oplus E$	$D \oplus E$	$G \oplus C$	$F \oplus C$	$A \oplus B \oplus H$

A non-trivial symmetry of the $\mathbf{F}_q^+ \rtimes \mathbf{F}_q^{\times}$ -phase

- ► For every finite field \mathbf{F}_q , there exists a non-trivial symmetry for $\mathbf{F}_q^+ \rtimes \mathbf{F}_q^{\times}$
- For q = 2, 3 we obtain the groups \mathbb{Z}_2 and S_3 respectively

A non-trivial symmetry of the $\mathbf{F}_q^+ \rtimes \mathbf{F}_q^{\times}$ -phase

- ► For every finite field \mathbf{F}_q , there exists a non-trivial symmetry for $\mathbf{F}_q^+ \rtimes \mathbf{F}_q^{\times}$
- For q = 2, 3 we obtain the groups \mathbb{Z}_2 and S_3 respectively

►
$$U = \left\{ \left((a_1, \alpha), (a_2, \alpha^{-1}) \right) : a_1, a_2 \in \mathbf{F}_q^+, \alpha \in \mathbf{F}_q^\times \right\}$$

► For $g = \left((a_1, \alpha), (a_2, \alpha^{-1}) \right)$ and $h = \left((b_1, \beta), (b_2, \beta^{-1}) \right)$
 $\varphi(g, h) = \omega^{\operatorname{tr}_p(\alpha a_2 b_1)}$

where p is a prime number and q is a power of p,
$$tr_p : \mathbf{F}_q \to \mathbf{F}_p$$
 is
the trace function, and ω is a p-th root of unity

References

- A. Kitaev, Annals of Physics **303**, 2 (2003).
- ▶ M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
- ► S. Beigi, P. Shor, D. Whalen, Commun. Math. Phys. 306 (2011): 663-694.
- A. Kitaev, L. Kong, Commun. Math. Phys. 313 (2012) 351-373.