The quantum double model as a topologically ordered phase

Salman Beigi
Institute for Research in Fundamental Sciences (IPM)

February 2013

Ising model

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in\{0,1\}^{n}$

Ising model

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in\{0,1\}^{n}$
- $h_{i, i+1}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}$,

$$
h_{i, i+1}(a, b)= \begin{cases}0 & \text { if } a=b \\ 1 & \text { if } a \neq b\end{cases}
$$

Ising model

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in\{0,1\}^{n}$
- $h_{i, i+1}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}$,

$$
h_{i, i+1}(a, b)= \begin{cases}0 & \text { if } a=b \\ 1 & \text { if } a \neq b\end{cases}
$$

- Hamiltonian: $H=h_{1,2}+h_{2,3}+\cdots+h_{(n-1), n}$ $H(x)$ is the energy of the state $x \in\{0,1\}^{n}$

Ising model

- n spin-half particles (bits): each one can take 0 or 1
- "state" of the system is some $x \in\{0,1\}^{n}$
- $h_{i, i+1}:\{0,1\} \times\{0,1\} \rightarrow \mathbb{R}$,

$$
h_{i, i+1}(a, b)= \begin{cases}0 & \text { if } a=b \\ 1 & \text { if } a \neq b\end{cases}
$$

- Hamiltonian: $\quad H=h_{1,2}+h_{2,3}+\cdots+h_{(n-1), n}$ $H(x)$ is the energy of the state $x \in\{0,1\}^{n}$
- $\min H(x)$ is taken at

$$
x=00 \ldots 0 \quad \text { and } \quad x=11 \ldots 1
$$

Quantum Ising model

- n spin-half particles (qubits): \mathbb{C}^{2} with orthonormal basis $\{|0\rangle,|1\rangle\}$
- "state" of the system is some

$$
|x\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\left(\mathbb{C}^{2}\right)^{\otimes n} \equiv \mathbb{C}^{2^{n}}
$$

Quantum Ising model

- n spin-half particles (qubits): \mathbb{C}^{2} with orthonormal basis $\{|0\rangle,|1\rangle\}$
- "state" of the system is some

$$
|x\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\left(\mathbb{C}^{2}\right)^{\otimes n} \equiv \mathbb{C}^{2^{n}}
$$

- (linear, hermitian) $h_{i, i+1}: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}$,

$$
h_{i, i+1}(|a\rangle \otimes|b\rangle)= \begin{cases}0 & \text { if } a=b \\ |a\rangle|b\rangle & \text { if } a \neq b\end{cases}
$$

Quantum Ising model

- n spin-half particles (qubits): \mathbb{C}^{2} with orthonormal basis $\{|0\rangle,|1\rangle\}$
- "state" of the system is some

$$
|x\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\left(\mathbb{C}^{2}\right)^{\otimes n} \equiv \mathbb{C}^{2^{n}}
$$

- (linear, hermitian) $h_{i, i+1}: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}$,

$$
h_{i, i+1}(|a\rangle \otimes|b\rangle)= \begin{cases}0 & \text { if } a=b \\ |a\rangle|b\rangle & \text { if } a \neq b\end{cases}
$$

- Hamiltonian: $\quad H=h_{1,2}+h_{2,3}+\cdots+h_{(n-1), n}$ $\langle x| H|x\rangle$ is the energy of the state $|x\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$

Quantum Ising model

- n spin-half particles (qubits): \mathbb{C}^{2} with orthonormal basis $\{|0\rangle,|1\rangle\}$
- "state" of the system is some

$$
|x\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}=\left(\mathbb{C}^{2}\right)^{\otimes n} \equiv \mathbb{C}^{2^{n}}
$$

- (linear, hermitian) $h_{i, i+1}: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}$,

$$
h_{i, i+1}(|a\rangle \otimes|b\rangle)= \begin{cases}0 & \text { if } a=b \\ |a\rangle|b\rangle & \text { if } a \neq b\end{cases}
$$

- Hamiltonian: $\quad H=h_{1,2}+h_{2,3}+\cdots+h_{(n-1), n}$ $\langle x| H|x\rangle$ is the energy of the state $|x\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
- $\min \langle x| H|x\rangle$ is taken at

$$
|x\rangle=\alpha|0\rangle|0\rangle \ldots|0\rangle+\beta|1\rangle|1\rangle \ldots|1\rangle .
$$

Anyons
α

Anyons

Anyons

Anyons

Anyons
α

Anyons: fusion

$$
\begin{aligned}
& \beta \\
& \alpha
\end{aligned}
$$

Anyons: fusion

$$
\frac{\beta}{\alpha}: \Rightarrow \bullet \gamma
$$

Anyons: braiding

Anyons: braiding

Modular tensor categories

A modular tensor category \mathcal{C} :

- semi-simple

Modular tensor categories

A modular tensor category \mathcal{C} :

- semi-simple
- $\forall \alpha, \beta \in \operatorname{obj}(\mathcal{C}), \quad \alpha \otimes \beta \in \operatorname{obj}(\mathcal{C})$
(Fusion)

Modular tensor categories

A modular tensor category \mathcal{C} :

- semi-simple
(Anyons)
- $\forall \alpha, \beta \in \operatorname{obj}(\mathcal{C}), \quad \alpha \otimes \beta \in \operatorname{obj}(\mathcal{C})$
(Fusion)
- $\exists \mathbf{1} \in \operatorname{obj}(\mathcal{C})$ such that $\alpha \otimes \mathbf{1} \equiv \alpha \equiv \mathbf{1} \otimes \alpha$
(Vacuum)

Modular tensor categories

A modular tensor category \mathcal{C} :

- semi-simple
(Anyons)
- $\forall \alpha, \beta \in \operatorname{obj}(\mathcal{C}), \quad \alpha \otimes \beta \in \operatorname{obj}(\mathcal{C})$
(Fusion)
- $\exists \mathbf{1} \in \operatorname{obj}(\mathcal{C})$ such that $\alpha \otimes \mathbf{1} \equiv \alpha \equiv \mathbf{1} \otimes \alpha$
- $\forall \alpha, \exists \alpha^{\vee}$ such that
(Vacuum)
(Antiparticle)

$$
\mathbf{1} \rightarrow \alpha \otimes \alpha^{\vee} \quad \text { and } \quad \alpha \otimes \alpha^{\vee} \rightarrow \mathbf{1}
$$

Modular tensor categories

A modular tensor category \mathcal{C} :

- semi-simple
(Anyons)
- $\forall \alpha, \beta \in \operatorname{obj}(\mathcal{C}), \quad \alpha \otimes \beta \in \operatorname{obj}(\mathcal{C})$
(Fusion)
- $\exists \mathbf{1} \in \operatorname{obj}(\mathcal{C})$ such that $\alpha \otimes \mathbf{1} \equiv \alpha \equiv \mathbf{1} \otimes \alpha$
(Vacuum)
- $\forall \alpha, \exists \alpha^{\vee}$ such that
(Antiparticle)

$$
\mathbf{1} \rightarrow \alpha \otimes \alpha^{\vee} \quad \text { and } \quad \alpha \otimes \alpha^{\vee} \rightarrow \mathbf{1}
$$

- $\forall \alpha, \beta, \exists \alpha \otimes \beta \rightarrow \beta \otimes \alpha$
(Braiding)

Toric code [Kitaev '97]

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \sigma_{x} \sigma_{z}=-\sigma_{z} \sigma_{x}, \quad \sigma_{x}^{2}=\sigma_{z}^{2}=\mathrm{Id}
\end{aligned}
$$

- A spin-half is associated to each edge

Toric code [Kitaev '97]

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \sigma_{x} \sigma_{z}=-\sigma_{z} \sigma_{x}, \quad \sigma_{x}^{2}=\sigma_{z}^{2}=\mathrm{Id}
\end{aligned}
$$

- A spin-half is associated to each edge
- $A_{v}=\sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x}=\sigma_{x} \sigma_{x} \sigma_{x} \sigma_{x}$

Toric code [Kitaev '97]

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \sigma_{x} \sigma_{z}=-\sigma_{z} \sigma_{x}, \quad \sigma_{x}^{2}=\sigma_{z}^{2}=\mathrm{Id}
\end{aligned}
$$

- A spin-half is associated to each edge
- $A_{v}=\sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x}=\sigma_{x} \sigma_{x} \sigma_{x} \sigma_{x}$
- $B_{f}=\sigma_{z} \sigma_{z} \sigma_{z} \sigma_{z} \quad \Rightarrow \forall v, f: \quad A_{v} B_{f}=B_{f} A_{v}$

Toric code [Kitaev '97]

$$
\begin{aligned}
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \sigma_{x} \sigma_{z}=-\sigma_{z} \sigma_{x}, \quad \sigma_{x}^{2}=\sigma_{z}^{2}=\mathrm{Id}
\end{aligned}
$$

- A spin-half is associated to each edge
- $A_{v}=\sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x}=\sigma_{x} \sigma_{x} \sigma_{x} \sigma_{x}$
- $B_{f}=\sigma_{z} \sigma_{z} \sigma_{z} \sigma_{z} \quad \Rightarrow \forall v, f: \quad A_{v} B_{f}=B_{f} A_{v}$
- $H=-\sum_{v} A_{v}-\sum_{f} B_{f}$
- $\left|\Psi_{0}\right\rangle$ has the min energy iff $\forall v, f, \quad A_{v}\left|\Psi_{0}\right\rangle=B_{f}\left|\Psi_{0}\right\rangle=\left|\Psi_{0}\right\rangle$
- What is dim of ground space?

Loop operators

- Multiplication of B_{f} 's inside a region is a loop operator
- This loop operators does not change the ground state

Loop operators

- Multiplication of B_{f} 's inside a region is a loop operator
- This loop operators does not change the ground state
- Multiplication of A_{v} 's inside a region is a loop operator

Loop operators

- Multiplication of B_{f} 's inside a region is a loop operator
- This loop operators does not change the ground state
- Multiplication of A_{v} 's inside a region is a loop operator
- On a torus there are non-trivial loop operators
- $\operatorname{dim}=1$ on a sphere (or plane),
$\operatorname{dim}=4$ on a torus

Loop operators

- Multiplication of B_{f} 's inside a region is a loop operator
- This loop operators does not change the ground state
- Multiplication of A_{v} 's inside a region is a loop operator
- On a torus there are non-trivial loop operators
- $\operatorname{dim}=1$ on a sphere (or plane), $\quad \operatorname{dim}=4$ on a torus
- These 4 states are not locally distinguishable! (topological order)

String operators

- $F^{z}=\sigma_{z} \sigma_{z} \cdots \sigma_{z}, \quad F^{z}\left|\Psi_{0}\right\rangle$ is an energy-2 eigenstate
- The string operator F^{z} creates two quasi-particle excitations at its endpoints $\longrightarrow e$

String operators

- $F^{z}=\sigma_{z} \sigma_{z} \cdots \sigma_{z}, \quad F^{z}\left|\Psi_{0}\right\rangle$ is an energy-2 eigenstate
- The string operator F^{z} creates two quasi-particle excitations at its endpoints $\longrightarrow e$
- $F^{x}=\sigma_{x} \sigma_{x} \cdots \sigma_{x}, \quad F^{x}\left|\Psi_{0}\right\rangle$ is an energy-2 eigenstate
- The string operator F^{x} creates two quasi-particle excitations at its endpoints $\longrightarrow m$

Anyons

Anyons

Anyons

Anyons

Anyons

Anyons

- can move these quasi-particles

Anyons

- can move these quasi-particles

Anyons

- can move these quasi-particles
- can fuse them: $\quad e \otimes m=\epsilon$

Anyons

- can braid them

Anyons

- can braid them
- Anyons $\{\mathbf{1}, e, m, \epsilon\}$

Anyons

- can move these quasi-particles
- can fuse them: $\quad e \otimes m=\epsilon$
- can braid them

- Anyons $\{\mathbf{1}, e, m, \epsilon\}$
- These anyons correspond to 4 irreducible representations of the quantum double of \mathbb{Z}_{2}.

Generalization to an arbitrary group

- G : finite group
- $\mathbb{C}^{|G|}:$ Hilbert space with orthonormal basis $\{|g\rangle: g \in G\}$

Generalization to an arbitrary group

- G : finite group
- $\mathbb{C}^{|G|}:$ Hilbert space with orthonormal basis $\{|g\rangle: g \in G\}$

Generalization to an arbitrary group

- G : finite group
- $\mathbb{C}^{|G|}:$ Hilbert space with orthonormal basis $\{|g\rangle: g \in G\}$

$$
|g\rangle\rangle=\left|g^{-1}\right\rangle \psi
$$

Generalization to an arbitrary group

- G : finite group
- $\mathbb{C}^{|G|}:$ Hilbert space with orthonormal basis $\{|g\rangle: \quad g \in G\}$

The quantum double model

- $A_{v}=\frac{1}{|G|} \sum_{g \in G} A_{v}^{g}, \quad B_{f}=B_{f}^{e}$

The quantum double model

> - $A_{v}=\frac{1}{|G|} \sum_{g \in G} A_{v}^{g}, \quad B_{f}=B_{f}^{e}$
> - $\forall v, f: \quad A_{v} B_{f}=B_{f} A_{v}$

The quantum double model

- $A_{v}=\frac{1}{|G|} \sum_{g \in G} A_{v}^{g}, \quad B_{f}=B_{f}^{e}$
- $\forall v, f: \quad A_{v} B_{f}=B_{f} A_{v}$
- $H_{G}=-\sum_{v} A_{v}-\sum_{f} B_{f}$
- $\left|\Psi_{0}\right\rangle$ is a ground state iff $\forall v, f: \quad A_{v}\left|\Psi_{0}\right\rangle=B_{f}\left|\Psi_{0}\right\rangle=\left|\Psi_{0}\right\rangle$

The quantum double model

- $A_{v}=\frac{1}{|G|} \sum_{g \in G} A_{v}^{g}, \quad B_{f}=B_{f}^{e}$
- $\forall v, f: \quad A_{v} B_{f}=B_{f} A_{v}$
- $H_{G}=-\sum_{v} A_{v}-\sum_{f} B_{f}$
- $\left|\Psi_{0}\right\rangle$ is a ground state iff $\forall v, f: \quad A_{v}\left|\Psi_{0}\right\rangle=B_{f}\left|\Psi_{0}\right\rangle=\left|\Psi_{0}\right\rangle$
- The ground state on a planar lattice is unique

Strings Operators

Strings Operators

- For $\xi=\left(s_{0}, s_{1}\right),\left[F_{\xi}^{h, g}, A_{t}^{k}\right]=\left[F_{\xi}^{h, g}, B_{t}^{\ell}\right]=0$ for all $k, \ell \in G$ and $t \neq s_{0}, s_{1}$

Strings Operators

- For $\xi=\left(s_{0}, s_{1}\right),\left[F_{\xi}^{h, g}, A_{t}^{k}\right]=\left[F_{\xi}^{h, g}, B_{t}^{\ell}\right]=0$ for all $k, \ell \in G$ and $t \neq s_{0}, s_{1}$
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ is an excited state with energy 2

Strings Operators

- For $\xi=\left(s_{0}, s_{1}\right),\left[F_{\xi}^{h, g}, A_{t}^{k}\right]=\left[F_{\xi}^{h, g}, B_{t}^{\ell}\right]=0$ for all $k, \ell \in G$ and $t \neq s_{0}, s_{1}$
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ is an excited state with energy 2
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ depends only on the endpoints of ξ, i.e., s_{0}, s_{1}

Strings Operators

- For $\xi=\left(s_{0}, s_{1}\right),\left[F_{\xi}^{h, g}, A_{t}^{k}\right]=\left[F_{\xi}^{h, g}, B_{t}^{\ell}\right]=0$ for all $k, \ell \in G$ and $t \neq s_{0}, s_{1}$
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ is an excited state with energy 2
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ depends only on the endpoints of ξ, i.e., s_{0}, s_{1}
- We obtain a system of anyons

Strings Operators

- For $\xi=\left(s_{0}, s_{1}\right),\left[F_{\xi}^{h, g}, A_{t}^{k}\right]=\left[F_{\xi}^{h, g}, B_{t}^{\ell}\right]=0$ for all $k, \ell \in G$ and $t \neq s_{0}, s_{1}$
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ is an excited state with energy 2
- $F_{\xi}^{h, g}\left|\Psi_{0}\right\rangle$ depends only on the endpoints of ξ, i.e., s_{0}, s_{1}
- We obtain a system of anyons
- What are the anyon types?

Drinfeld double of a group

- A and B operators on a site define an algebra

$$
\begin{aligned}
A^{g} A^{g^{\prime}} & =A^{g g^{\prime}}, \\
\left(A^{g}\right)^{\dagger} & =A^{\left(g^{-1}\right)}, \\
B^{h} B^{h^{\prime}} & =\delta_{h, h^{\prime}} B^{h}, \\
\left(B^{h}\right)^{\dagger} & =B^{h}, \\
A^{g} B^{h} & =B^{\left(g h g^{-1}\right)} A^{g} .
\end{aligned}
$$

Drinfeld double of a group

- A and B operators on a site define an algebra

$$
\begin{aligned}
A^{g} A^{g^{\prime}} & =A^{g g^{\prime}}, \\
\left(A^{g}\right)^{\dagger} & =A^{\left(g^{-1}\right)}, \\
B^{h} B^{h^{\prime}} & =\delta_{h, h^{\prime}} B^{h}, \\
\left(B^{h}\right)^{\dagger} & =B^{h}, \\
A^{g} B^{h} & =B^{\left(g h g^{-1}\right)} A^{g} .
\end{aligned}
$$

- This algebra is called the Drinfeld (quantum) double of G : $\mathcal{D}(G)$

Drinfeld double of a group

- A and B operators on a site define an algebra

$$
\begin{aligned}
A^{g} A^{g^{\prime}} & =A^{g g^{\prime}}, \\
\left(A^{g}\right)^{\dagger} & =A^{\left(g^{-1}\right)}, \\
B^{h} B^{h^{\prime}} & =\delta_{h, h^{\prime}} B^{h}, \\
\left(B^{h}\right)^{\dagger} & =B^{h} \\
A^{g} B^{h} & =B^{\left(g h g^{-1}\right)} A^{g} .
\end{aligned}
$$

- This algebra is called the Drinfeld (quantum) double of G : $\mathcal{D}(G)$
- The space of excitations and s, s^{\prime} is $\left.\left\langle F_{\xi}^{h, g} \mid \Psi_{0}\right\rangle: g, h \in G\right\rangle$

Drinfeld double of a group

- A and B operators on a site define an algebra

$$
\begin{aligned}
A^{g} A^{g^{\prime}} & =A^{g g^{\prime}}, \\
\left(A^{g}\right)^{\dagger} & =A^{\left(g^{-1}\right)}, \\
B^{h} B^{h^{\prime}} & =\delta_{h, h^{\prime}} B^{h}, \\
\left(B^{h}\right)^{\dagger} & =B^{h}, \\
A^{g} B^{h} & =B^{\left(g h g^{-1}\right)} A^{g} .
\end{aligned}
$$

- This algebra is called the Drinfeld (quantum) double of G : $\mathcal{D}(G)$
- The space of excitations and s, s^{\prime} is $\left.\left\langle F_{\xi}^{h, g} \mid \Psi_{0}\right\rangle: g, h \in G\right\rangle$
- This space gives a representation of $\mathcal{D}(G)$

Drinfeld double of a group

- A and B operators on a site define an algebra

$$
\begin{aligned}
A^{g} A^{g^{\prime}} & =A^{g g^{\prime}}, \\
\left(A^{g}\right)^{\dagger} & =A^{\left(g^{-1}\right)}, \\
B^{h} B^{h^{\prime}} & =\delta_{h, h^{\prime}} B^{h}, \\
\left(B^{h}\right)^{\dagger} & =B^{h}, \\
A^{g} B^{h} & =B^{\left(g h g^{-1}\right)} A^{g} .
\end{aligned}
$$

- This algebra is called the Drinfeld (quantum) double of G : $\mathcal{D}(G)$
- The space of excitations and s, s^{\prime} is $\left.\left\langle F_{\xi}^{h, g} \mid \Psi_{0}\right\rangle: g, h \in G\right\rangle$
- This space gives a representation of $\mathcal{D}(G)$
- So decomposition into irreducible representations gives the anyon types

Drinfeld double of a group

- A and B operators on a site define an algebra

$$
\begin{aligned}
A^{g} A^{g^{\prime}} & =A^{g g^{\prime}}, \\
\left(A^{g}\right)^{\dagger} & =A^{\left(g^{-1}\right)}, \\
B^{h} B^{h^{\prime}} & =\delta_{h, h^{\prime}} B^{h}, \\
\left(B^{h}\right)^{\dagger} & =B^{h}, \\
A^{g} B^{h} & =B^{\left(g h g^{-1}\right)} A^{g} .
\end{aligned}
$$

- This algebra is called the Drinfeld (quantum) double of G : $\mathcal{D}(G)$
- The space of excitations and s, s^{\prime} is $\left.\left\langle F_{\xi}^{h, g} \mid \Psi_{0}\right\rangle: g, h \in G\right\rangle$
- This space gives a representation of $\mathcal{D}(G)$
- So decomposition into irreducible representations gives the anyon types
- Anyon types are in 1-to-1 correspondence with irreducible representations of $\mathcal{D}(G)$

Drinfeld double of a group

$$
\mathcal{D}(G)=\mathbb{C}[G]^{*} \rtimes \mathbb{C}[G]
$$

- is an algebra
- $\operatorname{Rep} \mathcal{D}(G)$ is semi-simple
- co-algebra structure $\Delta: \mathcal{D}(G) \rightarrow \mathcal{D}(G) \otimes \mathcal{D}(G)$

$$
\Delta\left(A^{g}\right)=A^{g} \otimes A^{g}, \quad \Delta\left(B^{h}\right)=\sum_{h_{1} h_{2}=h} B^{h_{1}} \otimes B^{h_{2}}
$$

- $\operatorname{Rep} \mathcal{D}(G)$ is a tensor category
- $\mathcal{D}(G)$ is quasi-triangular: $\quad R=\sum_{g \in G} B^{g} \otimes A^{g}$
- $R: X \otimes Y \rightarrow X \otimes Y$ gives the braiding
- $\operatorname{Rep} \mathcal{D}(G)$ is a braided tensor category

Boundary I

- Fix a subgroup $K \subseteq G$

$$
A_{s_{0}}^{K}=\frac{1}{|K|} \sum_{k \in K} A_{s_{0}}^{k}, \quad B_{s_{0}}^{K}=\sum_{k \in K} B_{s_{0}}^{k}
$$

Boundary I

- Fix a subgroup $K \subseteq G$

$$
A_{s_{0}}^{K}=\frac{1}{|K|} \sum_{k \in K} A_{s_{0}}^{k}, \quad B_{s_{0}}^{K}=\sum_{k \in K} B_{s_{0}}^{k}
$$

$$
H_{G, K}=-\sum_{v: \text { internal } f: \text { internal } s: \text { boundary }} A_{v}-\sum_{f} B_{s}\left(\sum_{s}^{K}+B_{s}^{K}\right)
$$

Condensations I

$$
\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, A_{s_{0}}^{K}\right]=\left[T, B_{s_{0}}^{K}\right]=0\right\}
$$

Condensations I

$$
\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, A_{s_{0}}^{K}\right]=\left[T, B_{s_{0}}^{K}\right]=0\right\}
$$

- $\forall T \in \mathcal{C}_{\xi}: T\left|\Psi_{0}\right\rangle$ is a single-site excited state

Condensations I

$$
\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, A_{s_{0}}^{K}\right]=\left[T, B_{s_{0}}^{K}\right]=0\right\}
$$

- $\forall T \in \mathcal{C}_{\xi}: T\left|\Psi_{0}\right\rangle$ is a single-site excited state
- An anyon at s_{1} disappears after moving to the boundary

Condensations I

$$
\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, A_{s_{0}}^{K}\right]=\left[T, B_{s_{0}}^{K}\right]=0\right\}
$$

- $\forall T \in \mathcal{C}_{\xi}: T\left|\Psi_{0}\right\rangle$ is a single-site excited state
- An anyon at s_{1} disappears after moving to the boundary
- A full characterization of \mathcal{C}_{ξ} and condensed anyons are known

Boundary \& Condensation II

- $K \subseteq G, \quad \varphi$ a 2-cocycle of K :

$$
\varphi: K \times K \rightarrow \mathbb{C} \quad \text { s.t. } \quad \varphi(k l, m) \varphi(k, l)=\varphi(k, l m) \varphi(l, m)
$$

Boundary \& Condensation II

- $K \subseteq G, \quad \varphi$ a 2-cocycle of K :

$$
\varphi: K \times K \rightarrow \mathbb{C} \quad \text { s.t. } \quad \varphi(k l, m) \varphi(k, l)=\varphi(k, l m) \varphi(l, m)
$$

- $\tilde{A}_{s}^{K}=\frac{1}{|K|} \sum_{k \in K} \tilde{A}_{s}^{k}$

$$
\tilde{H}_{G, K}=-\sum_{v: \text { internal }} A_{v}-\sum_{f: \text { internal }} B_{f}-\sum_{s: \text { boundary }}\left(\tilde{A}_{s}^{K}+B_{s}^{K}\right)
$$

Condensations vs Algebras

Operators $A^{g} \& B^{h}$	Drinfeld doubld $\mathcal{D}(G)$
Anyon types	$\operatorname{Rep} \mathcal{D}(G)$
Fusion of anyons	Tensor product of representations
Braiding of anyons	Quasi-triangularity of $\mathcal{D}(G)$
Boundary, Condensation	Algebra
	$\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, \tilde{A}_{s}^{K}\right]=\left[T, B_{s}^{K}\right]=0\right\}$

Condensations vs Algebras

Operators $A^{g} \& B^{h}$	Drinfeld doubld $\mathcal{D}(G)$
Anyon types	$\operatorname{Rep} \mathcal{D}(G)$
Fusion of anyons	Tensor product of representations
Braiding of anyons	Quasi-triangularity of $\mathcal{D}(G)$
Boundary, Condensation	Algebra
	$\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, \tilde{A}_{s}^{K}\right]=\left[T, B_{s}^{K}\right]=0\right\}$

- As a representation of $\mathcal{D}(G), \mathcal{C}_{\xi}$ is an indecomposable separable commutative algebra.

Condensations vs Algebras

Operators $A^{g} \& B^{h}$	Drinfeld doubld $\mathcal{D}(G)$
Anyon types	$\operatorname{Rep} \mathcal{D}(G)$
Fusion of anyons	Tensor product of representations
Braiding of anyons	Quasi-triangularity of $\mathcal{D}(G)$
Boundary, Condensation	Algebra
	$\mathcal{C}_{\xi}=\left\{T \in \mathcal{F}_{\xi}:\left[T, \tilde{A}_{s}^{K}\right]=\left[T, B_{s}^{K}\right]=0\right\}$

- As a representation of $\mathcal{D}(G), \mathcal{C}_{\xi}$ is an indecomposable separable commutative algebra.

Theorem [Davydov '10] All maximal indecomposable separable commutative algebras of $\operatorname{Rep} \mathcal{D}(G)$ are in 1-to-1 correspondence with pairs (K, φ) where $K \subseteq G$ is a subgroup and φ is a 2-cocycle of K.

Domain walls vs boundaries

Domain walls vs boundaries

Domain walls vs boundaries

- A domain wall between the G-phase and the G^{\prime}-phase is defined by $U \subseteq G \times G^{\prime}$ and a 2-cocycle φ of U

Domain walls vs boundaries

- A domain wall between the G-phase and the G^{\prime}-phase is defined by $U \subseteq G \times G^{\prime}$ and a 2-cocycle φ of U
- Boundaries can be used to study equivalences of phases corresponding to different groups

Example: S_{3}

- $S_{3}=\left\langle\sigma, \tau: \sigma^{2}=\tau^{3}=e, \sigma \tau=\tau^{-1} \sigma\right\rangle$.
- $\mathcal{D}\left(S_{3}\right)$ has 8 irreducible representations:

	A	B	C	D	E	F	G	H
conjugacy class	e	e	e	$\bar{\sigma}$	$\bar{\sigma}$	$\bar{\tau}$	$\bar{\tau}$	$\bar{\tau}$
irrep of the centralizer	$\mathbf{1}$	sign	π	$\mathbf{1}$	$[-1]$	$\mathbf{1}$	$[\omega]$	$\left[\omega^{*}\right]$

- Fusion rules

\otimes	A	B	C	D	E	F	G	H
A	A	B	C	D	E	F	G	H
B	B	A	C	E	D	F	G	H
C	C	C	$A \oplus B \oplus C$	$D \oplus E$	$D \oplus E$	$G \oplus H$	$F \oplus H$	$F \oplus G$
D	D	E	$D \oplus E$	$A \oplus C \oplus F \oplus G \oplus H$	$B \oplus C \oplus F \oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
E	E	D	$D \oplus E$	$B \oplus C \oplus F \oplus G \oplus H$	$A \oplus C \oplus F \oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
F	F	F	$G \oplus H$	$D \oplus E$	$D \oplus E$	$A \oplus B \oplus F$	$H \oplus C$	$G \oplus C$
G	G	G	$F \oplus H$	$D \oplus E$	$D \oplus E$	$H \oplus C$	$A \oplus B \oplus G$	$F \oplus C$
H	H	H	$F \oplus G$	$D \oplus E$	$D \oplus E$	$G \oplus C$	$F \oplus C$	$A \oplus B \oplus H$

A non-trivial symmetry of the $\mathbf{F}_{q}^{+} \rtimes \mathbf{F}_{q}^{\times}$-phase

- For every finite field \mathbf{F}_{q}, there exists a non-trivial symmetry for $\mathbf{F}_{q}^{+} \rtimes \mathbf{F}_{q}^{\times}$
- For $q=2,3$ we obtain the groups \mathbb{Z}_{2} and S_{3} respectively

A non-trivial symmetry of the $\mathbf{F}_{q}^{+} \rtimes \mathbf{F}_{q}^{\times}$-phase

- For every finite field \mathbf{F}_{q}, there exists a non-trivial symmetry for $\mathbf{F}_{q}^{+} \rtimes \mathbf{F}_{q}^{\times}$
- For $q=2,3$ we obtain the groups \mathbb{Z}_{2} and S_{3} respectively
- $U=\left\{\left(\left(a_{1}, \alpha\right),\left(a_{2}, \alpha^{-1}\right)\right): \quad a_{1}, a_{2} \in \mathbf{F}_{q}^{+}, \alpha \in \mathbf{F}_{q}^{\times}\right\}$
- For $g=\left(\left(a_{1}, \alpha\right),\left(a_{2}, \alpha^{-1}\right)\right)$ and $h=\left(\left(b_{1}, \beta\right),\left(b_{2}, \beta^{-1}\right)\right)$

$$
\varphi(g, h)=\omega^{\mathrm{tr}_{p}\left(\alpha a_{2} b_{1}\right)}
$$

where p is a prime number and q is a power of $p, \operatorname{tr}_{p}: \mathbf{F}_{q} \rightarrow \mathbf{F}_{p}$ is the trace function, and ω is a p-th root of unity

References

- A. Kitaev, Annals of Physics 303, 2 (2003).
- M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
- S. Beigi, P. Shor, D. Whalen, Commun. Math. Phys. 306 (2011): 663-694.
- A. Kitaev, L. Kong, Commun. Math. Phys. 313 (2012) 351-373.

