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Calderòn’s inverse problem

Alberto Calderón had 
part of his early 
education in 
Switzerland, then 
attended secondary 
school in Mendoza, 
Argentina. He studied 
civil engineering at the 
University of Buenos 
Aires and graduated in 
1947. 
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Calderón’s paper On an inverse boundary problem

In seminar on numerical analysis and its application to continuum Physics (Rio de Janeiro 1980)
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Let Ω be a bounded domain in Rd , with smooth boundary.

f ∈ H1/2(∂Ω) 7→ u ∈ H1(Ω)

Such a function is called γ-harmonic lifting of f .
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Dirichlet-to-Neumann operator

We define the Dirichlet-to-Neumann operator by

Λγ : f := u |∂Ω 7→
∂u
∂νγ

= ν · γ∇u |∂Ω .

The problem that Calderòn considered was whether one can determine
the electrical conductivity of a medium by making voltage and current
measurements at the boundary of the medium. This inverse method is
known as Electrical Impedance Tomography (EIT).
(H1) γij(x) = γji (x) ∈ C∞(Ω);
(H2) There exists 0 < c1 ≤ c2 <∞, such that

c1‖ξ‖2 ≤
d∑

i,j=1

ξiξjγij(x) ≤ c2‖ξ‖2 ξ ∈ Rd .
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Isotropic case

R. Kohn and M. Vogelius, Commun. Pure Appl. Math. 1985. (case
piecewise analytic).

J. Sylvester and G. Uhlmann, Ann. Math. 1987.(case C∞, n ≥ 3).
A. Nachmann, Ann. Math. 1996.(case C 2, n = 2).
R. Brown and G. Uhlmann, Commun. Pure Appl. Math. 1997.(case
CLips , n = 2).
K. Astala and L. Päivärinta, Ann. Math. 2006.(case L∞, n = 2).
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Anisotropic case

Luc Tartar. Professor of Carnegie Mellon University.
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Anisotropic case

R. Kohn and M. Vogelius, SIAM-AMS Proceeding , 1984
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Riemannian case

Let (M, g) be an n-dimensional Riemanninan manifold with smooth
boundary ∂M.

The metric g is assumed to be symmetric and positive
definite. Here, the Dirichlet problem would be{

∆gu = 0 in M,

u = f on ∂M.

where ∆gu := |g |−1/2∂j(|g |1/2g jk∂ku) is the Laplace-Beltrami operator,
with |g | := det(gjk), [gjk ] = [g jk ]−1.
The Dirichlet-to-Neumann operator is then defined by

Λg : f := u |∂M 7→ |g |1/2νjg jk ∂u
∂xk
|∂M .
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Push-forward

Let
F : M 7→ M

be a diffeomorphism with F |∂M= Id on the Riemanninan manifold M.

Making the change of variables y = F (x) and setting u = v ◦ F−1 in

Qγ(f ) =

∫
M
γjk(x)

∂u
∂x j

∂u
∂xk dx ,

since by the divergence theorem

Qγ(f ) =

∫
∂M

Λγ(f )fdσ,

we obtain
ΛF∗γ = Λγ ,

where

(F∗γ)jk(y) =
1

det[∂F j

∂xk (x)]

n∑
p,q=1

∂F j

∂xp (x)
∂F k

∂xq (x)γpq(x)
∣∣
x=F−1(y)
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Definition
F∗γ is called the push-forward of the conductivity γ by F .
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A simple example

Let B := B(0, 2) be an open ball with center 0 and radius 2 in R3.

We decompose B into two parts B1 = B(0, 2) \ B(0, 1) and
B2 = B(0, 1).

Animation
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Non-conformal mapping

Hassan Emamirad Invisibility and visibility related to Dirichlet-to-Neumann operator



How we can use the Riemannian geometry for cloaking
Dirichlet-to-Neumann operator

Visibility
Uniquness
Push-forward

Eclipse. Invisible sphere.
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Riemannian point of view

M1 = B(0, 2) the Riemannian manifold with the Euclidean metric
gjk = δjk

Hence, γ = 1 which corresponds to the homogeneous conductivity.
Define a singular transformation

F : M1 \ {0} 7→ B1, F (x) =

{(
|x|
2 + 1

)
x
|x| , 0 < |x | < 2,

x |x | ≥ 2
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(F∗1)jk(y) =
1

det[DF (x)]

n∑
p,q=1

∂F j

∂xp (x)
∂F k

∂xq (x)δ
pq(x)

∣∣
x=F−1(y)

Let

DF (x) =

(
1
2

+
1
|x |

)
I − x̂ x̂ t

|x |
, x 6= 0

be the Jacobian matrix at x , where I is the identity matrix and
x̂ = x/|x |.

det[DF (x)] =
1
2

(
1
2

+
1
|x |

)n−1

=
(|x |+ 2)n−1

2n|x |n−1
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(F∗1)jk(y) =
1

det[DF (x)]

n∑
p,q=1

∂F j

∂xp (x)
∂F k

∂xq (x)δ
pq(x)

∣∣
x=F−1(y)

(F∗1)(y) =
2n|x |n−1

(|x |+ 2)n−1

[(
1
4

+
1
|x |

+
1
|x |2

)
(I − x̂ x̂ t) +

x̂ x̂ t

4

]
where the right-hand side is evaluated at

x = F−1(y) = 2(|y | − 1)
y
|y |
.
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Electromagnetic cloaking

Maxwell’s equations
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Maxwell equations

curl H := ∇× H = (σ − iωε)E , curl E := ∇× E = iωµH,

where

E and H are the electric and magnetic complex vector fields;
σ, ε and µ are real-valued, the electrical electrical conductivity
tensor;

(F∗γ)jk(y) =
1

det[∂F j

∂xk (x)]

n∑
p,q=1

∂F j

∂xp (x)
∂F k

∂xq (x)γpq(x)
∣∣
x=F−1(y)
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Metamaterial

Rays travelling outside of a wormhole. Rays travelling inside of a wormhole.
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Visibility
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Dirichlet-to-Neumann semigroup

Dirichlet-to-Neumann semigroup acts as a magnifying

glass
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UMR 7122, Université de Lorraine - Metz, France
email: jean-marc.sac-epee@univ-lorraine.fr

Abstract

The first aim of this paper is to illustrate numerically that the Dirichlet-to-Neumann semigroup
represented by P. Lax acts as a magnifying glass. In this perspective, we used the finite element method
for the discretization of the correspondent boundary dynamical system using the implicit and explicit
Euler schemes. We prove by using the Chernoff’s Theorem that the implicit and explicit Euler methods
converge to the exact solution and we use the (P1)-finite elements to illustrate this convergence through
a FreeFem++ implementation which provides a movie available online in

http://www.math.univ-metz.fr/˜jmse/Emamirad

In the Dirichlet-to-Neumann semigroup represented by P. Lax the conductivity γ is the identity
matrix In, but for an other conductivity γ, the authors of [?] supplied an estimation of the operator
norm of the difference between the Dirichlet-to-Neumann operator Λγ and Λ1, when γ = βIn and β = 1
near the boundary ∂Ω (see Lemma 2.1). We will use this result to estimate the accuracy between the

correspondent Dirichlet-to-Neumann semigroup and the Lax semigroup, for f ∈ H
1
2 (∂Ω).

1
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Dirichlet-to-Neumann semigroup

Λγ is a selfadjoint operator in X := L2(∂Ω).

For
X := C (∂Ω)

J. Escher, The Dirichlet-Neumann operator on continuous functions.

Annali della Scuola Norm. Sup. Pisa 21 (1994), 235–266.
∇ · (γ∇u(t, ·)) = 0, for every t ∈ R+, in Ω,

∂tu + ν · γ∇u = 0, for every t ∈ R+, on ∂Ω,

u(0, ·) = f , on ∂Ω.

e−tΛγ f := u(t, x)
∣∣
∂Ω
, for every f ∈ ∂X
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Lax representation

P. D. Lax, Functional Analysis Wiley Inter-science, New-York, 2002
(Chapter 36).

Let u be the harmonic lifting of f in the n-dimensional unit ball B.{
∆u = 0, in B,
u(ω) = f (ω), ω in Sn−1.

(1)

The Lax semigroup is defined by

e−tΛ1 f (ω) = u(e−tω) for ω ∈ Sn−1. (2)
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Approximating family

P. R. Chernoff, Note on product formulas for operator semigroups.
J. Funct. Analysis. 2 (1968), 238–242.

Théorème (Chernoff’s product formula)

Let X be a Banach space and {V (t)}t≥0 be a family of contractions on
X with V (0) = I . Suppose that the derivative V ′(0)f exists for all f in a
set D and that the closure Λ of V ′(0)

∣∣
D generates a (C0) semigroup S(t)

of contractions. Then, for each f ∈ X,

lim
n→∞

V
( t

n

)n
f = S(t)f ,

uniformly for t in compact subsets of R+.
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Euler Explicit Scheme

H. Emamirad and M. Sharifitabar, On explicit representation and
approximations of Dirichlet-to-Neumann semigroup. Semigroup
Forum 86 (2013), 192–201.

(EES)


div(γ∇um) = 0 in Ω,
1

∆t

(
um+1 − um

)
+ γ ∂um

∂n = 0 on ∂Ω,

u(x , y , 0) = h(x , y) on ∂Ω.

V (t)f (x) =

{
(1− α)u(x) + αu(x − α−1tγ(x)ν(x)), 0 ≤ t ≤ αT ,
V (αT )f (x), t > αT ,

um+1 = V (∆t)um.
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Euler Implicit Scheme

(EIS)


div(γ∇um+1) = 0 in Ω,
1

∆t

(
um+1 − um

)
+ ∂um+1

∂νγ
= 0 on ∂Ω,

u0 = f on ∂Ω.

Since any x with |x | = 1 belongs to ∂Ω, we have

∂um+1

∂νγ
≈ um+1(x)− um+1(x −∆xγ(x)x)

∆x
. (3)

By replacing (3) in (EIS), we get(
1 +

∆t
∆x

)
um+1(x)− ∆t

∆x
um+1(x −∆xγ(x)x) = um(x). (4)
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W (t)f (x) =

{
(1 + α)u(x)− αu(x − α−1tγ(x)ν(x)), 0 ≤ t ≤ αT ,
W (αT )f (x), t > αT ,

(5)

W (t)V (t)f (x) = f (x), (6)

V (t) satisfies the assumptions of the Chernoff’s theorem.
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The variational formulation of this problem can be obtained by
multiplying both sides of the dynamic boundary condition by a test
function v and by using the divergence theorem, we get

∫
Ω

γ∇um+1∇vdx −
∫
∂Ω

γ
∂um+1

∂n
vdσ = 0,

that is
Hassan Emamirad Invisibility and visibility related to Dirichlet-to-Neumann operator



How we can use the Riemannian geometry for cloaking
Dirichlet-to-Neumann operator

Visibility

Dirichlet-to-Neumann semigroup
Lax representation
Approximating family

Variational formulation

The variational formulation of this problem can be obtained by
multiplying both sides of the dynamic boundary condition by a test
function v ∈ H1(Ω) and by using the divergence theorem, we get∫

Ω

γ∇um+1∇vdx −
∫
∂Ω

γ
∂um+1

∂n
vdσ = 0,

that is

∫
Ω

∆tγ∇um+1∇vdx +

∫
∂Ω

um+1v −
∫
∂Ω

umvdσ = 0, (7)

which is of the form
a(um+1, v) = `(v),

where
a(um+1, v) =

∫
Ω

∆tγ∇um+1∇vdx +

∫
∂Ω

um+1vdσ

is the bilinear form with the unknown of the problem um+1 and

`(v) =

∫
∂Ω

umvdσ.
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Numerical illustration.

F. Hecht and O. Pironneau, A finite element software for PDE :
FreeFem++, avaible online, http://www.freefem.org/ff++.

Here we have taken the boundary function

f (x , y) = x4 + y2 sin(2πy).
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