Invisibility and visibility related to Dirichlet-to-Neumann operator

Hassan Emamirad

21 Mai, 2013

Cloaking

Calderòn's inverse problem

In this note we shall diseuss the following problem. Let D be a bounded domain in \mathbb{R}^{n}, $n \geq 2$, with Lipschitzian bound ary $d D$, and Y be a real bounded measurable function in D with a positive bower bound. Consider the differentlal operator

$$
I_{\gamma}(W)=\nabla \cdot(\gamma \nabla W)
$$

acting on functions of $H^{1}(D)$ and the quadratic form $\Omega_{\gamma}(\phi)$ where the functions o are restrictions to $d D$ of functions in $H^{2}\left(\mathbb{R}{ }^{n}\right)$, defined by

$$
Q_{Y}(\phi)=\int_{D} Y(W W)^{2} d x, W \in H^{2}\left(\mathbb{R}^{n}\right),\left.W\right|_{d D}=\&
$$

$$
L_{\gamma} W=\nabla \cdot(\gamma \nabla W)=0 \text { in } D
$$

The problem is then to decide whether y fig uniquely deedrmined by Q_{Y} and to calculate γ dn terms Q_{γ}, if γ is indeed determined

This problems originates in the following problem
of electricel prospection. If D represents an in-homogeneous conducting kody with electrical conductivity γ, determine γ by means of direct current steady state electrical measurements carrlec aut on the surface of D, that is, without penetrating D. In this physicak situation $\Omega_{Y}(\phi)$ represents the power neoessary to maintain an electrical potential yon dD.

Calderón's paper On an inverse boundary problem

In seminar on numerical analysis and its application to continuum Physics (Rio de Janeiro 1980)

Let Ω be a bounded domain in \mathbb{R}^{d}, with smooth boundary.

Let Ω be a bounded domain in \mathbb{R}^{d}, with smooth boundary.

Let Ω be a bounded domain in \mathbb{R}^{d}, with smooth boundary.

$$
\begin{cases}\operatorname{div}(\gamma \nabla u)=0 & \text { in } \Omega, \\ u=f & \text { on } \partial \Omega .\end{cases}
$$

Let Ω be a bounded domain in \mathbb{R}^{d}, with smooth boundary.

$$
\left\{\begin{array}{l}
\operatorname{div}(\gamma \nabla u)=0 \quad \text { in } \Omega \\
u=f \quad \text { on } \partial \Omega
\end{array}\right.
$$

$$
f \in H^{1 / 2}(\partial \Omega) \mapsto u \in H^{1}(\Omega)
$$

Let Ω be a bounded domain in \mathbb{R}^{d}, with smooth boundary.

$$
\left\{\begin{array}{l}
\operatorname{div}(\gamma \nabla u)=0 \quad \text { in } \Omega \\
u=f \quad \text { on } \partial \Omega
\end{array}\right.
$$

$$
f \in H^{1 / 2}(\partial \Omega) \mapsto u \in H^{1}(\Omega)
$$

Such a function is called γ-harmonic lifting of f.

Dirichlet-to-Neumann operator

We define the Dirichlet-to-Neumann operator by

$$
\Lambda_{\gamma}: f:=\left.u\right|_{\partial \Omega} \mapsto \frac{\partial u}{\partial \nu_{\gamma}}=\left.\nu \cdot \gamma \nabla u\right|_{\partial \Omega} .
$$

Dirichlet-to-Neumann operator

We define the Dirichlet-to-Neumann operator by

$$
\Lambda_{\gamma}: f:=\left.u\right|_{\partial \Omega} \mapsto \frac{\partial u}{\partial \nu_{\gamma}}=\left.\nu \cdot \gamma \nabla u\right|_{\partial \Omega} .
$$

The problem that Calderòn considered was whether one can determine the electrical conductivity of a medium by making voltage and current measurements at the boundary of the medium.

Dirichlet-to-Neumann operator

We define the Dirichlet-to-Neumann operator by

$$
\Lambda_{\gamma}: f:=\left.u\right|_{\partial \Omega} \mapsto \frac{\partial u}{\partial \nu_{\gamma}}=\left.\nu \cdot \gamma \nabla u\right|_{\partial \Omega} .
$$

The problem that Calderòn considered was whether one can determine the electrical conductivity of a medium by making voltage and current measurements at the boundary of the medium. This inverse method is known as Electrical Impedance Tomography (EIT).

Dirichlet-to-Neumann operator

We define the Dirichlet-to-Neumann operator by

$$
\Lambda_{\gamma}: f:=\left.u\right|_{\partial \Omega} \mapsto \frac{\partial u}{\partial \nu_{\gamma}}=\left.\nu \cdot \gamma \nabla u\right|_{\partial \Omega} .
$$

The problem that Calderòn considered was whether one can determine the electrical conductivity of a medium by making voltage and current measurements at the boundary of the medium. This inverse method is known as Electrical Impedance Tomography (EIT).
(H1) $\gamma_{i j}(x)=\gamma_{j i}(x) \in C^{\infty}(\Omega)$;
(H2) There exists $0<c_{1} \leq c_{2}<\infty$, such that

$$
c_{1}\|\xi\|^{2} \leq \sum_{i, j=1}^{d} \xi_{i} \xi_{j} \gamma_{i j}(x) \leq c_{2}\|\xi\|^{2} \quad \xi \in \mathbb{R}^{d}
$$

Isotropic case

- R. Kohn and M. Vogelius, Commun. Pure Appl. Math. 1985. (case piecewise analytic).

Isotropic case

- R. Kohn and M. Vogelius, Commun. Pure Appl. Math. 1985. (case piecewise analytic).
- J. Sylvester and G. Uhlmann, Ann. Math. 1987.(case $C^{\infty}, n \geq 3$).

Isotropic case

- R. Kohn and M. Vogelius, Commun. Pure Appl. Math. 1985. (case piecewise analytic).
- J. Sylvester and G. Uhlmann, Ann. Math. 1987.(case $C^{\infty}, n \geq 3$).
- A. Nachmann, Ann. Math. 1996.(case $\left.C^{2}, n=2\right)$.

Isotropic case

- R. Kohn and M. Vogelius, Commun. Pure Appl. Math. 1985. (case piecewise analytic).
- J. Sylvester and G. Uhlmann, Ann. Math. 1987.(case $C^{\infty}, n \geq 3$).
- A. Nachmann, Ann. Math. 1996.(case $C^{2}, n=2$).
- R. Brown and G. Uhlmann, Commun. Pure Appl. Math. 1997.(case $C^{\text {Lips }}, n=2$).

Isotropic case

- R. Kohn and M. Vogelius, Commun. Pure Appl. Math. 1985. (case piecewise analytic).
- J. Sylvester and G. Uhlmann, Ann. Math. 1987.(case $C^{\infty}, n \geq 3$).
- A. Nachmann, Ann. Math. 1996.(case $\left.C^{2}, n=2\right)$.
- R. Brown and G. Uhlmann, Commun. Pure Appl. Math. 1997.(case $C^{\text {Lips }}, n=2$).
- K. Astala and L. Päivärinta, Ann. Math. 2006.(case $\left.L^{\infty}, n=2\right)$.

Anisotropic case

Luc Tartar. Professor of Carnegie Mellon University.

Anisotropic case

```
3A. Let }\Omega\subset\mp@subsup{\mathbb{R}}{}{n},n\geqslant1, and let \gamma satisfy (1.2). For any \mp@subsup{c}{}{1} diffeomor-
phism }\overline{\Phi}:\Omega->\Omega\mathrm{ with
(3.1) }\Phi(x)=x,D\Phi(x)=I for al1 x\in\partial\Omega
Let
\[
\gamma^{\Phi}(\Phi(x))=|\operatorname{det}(D \Phi(x))|^{-1} \cdot D \Phi(x)^{t} \cdot \gamma(x) \cdot D \Phi(x) .
\]
```

Then all elements of

$$
\Gamma_{4}=\left\{\gamma^{\Phi}: \Phi \text { satisfies }(3.1)\right\}
$$

give the same boundary measurements.

$$
\text { Ne owe this remark to L. Tartar. If } \left.\mathrm{L}_{\gamma} \mathrm{u}=0 \text {, then } \mathrm{L}(\gamma)^{\phi}\right)^{\mathrm{u}^{\Phi}}=0 \text {, with }
$$

$$
u^{\Phi}(x)=u \bullet \Phi^{-1}(x)
$$

by $(3.1), u^{\Phi}=u$ on $\gamma^{\Phi} \cdot \nabla u^{\Phi}=\gamma \cdot \nabla u$ on 2Ω.
$3 B[25]$. Let Ω be the unit disc in \mathbb{R}^{2}, with polar coordinates (r, θ).
For any function $\alpha(r)$, let

$$
\gamma^{\alpha}=\left(\begin{array}{cc}
\alpha \cos ^{2} \theta+\alpha^{-1} \sin ^{2} \theta & \left(\alpha-\alpha^{-1}\right) \sin \theta \cdot \cos \theta \\
\left(\alpha-\alpha^{-1}\right) \sin \theta \cdot \cos \theta & \alpha \sin ^{2} \theta+\alpha^{-1} \cos ^{2} \theta
\end{array}\right) .
$$

Then all elements of

$$
\Gamma_{5}=\left\{\gamma^{\alpha}: \alpha \in L^{\infty}(0,1) \text {, ess inf } \alpha>0\right\}
$$

R. Kohn and M. Vogelius, SIAM-AMS Proceeding , 1984

Riemannian case

Let (M, g) be an n-dimensional Riemanninan manifold with smooth boundary ∂M.

Riemannian case

Let (M, g) be an n-dimensional Riemanninan manifold with smooth boundary ∂M. The metric g is assumed to be symmetric and positive definite.

Riemannian case

Let (M, g) be an n-dimensional Riemanninan manifold with smooth boundary ∂M. The metric g is assumed to be symmetric and positive definite. Here, the Dirichlet problem would be

$$
\left\{\begin{array}{l}
\Delta_{g} u=0 \text { in } M, \\
u=f \text { on } \partial M .
\end{array}\right.
$$

where $\Delta_{g} u:=|g|^{-1 / 2} \partial_{j}\left(|g|^{1 / 2} g^{j k} \partial_{k} u\right)$ is the Laplace-Beltrami operator, with $|g|:=\operatorname{det}\left(g_{j k}\right),\left[g_{j k}\right]=\left[g^{j k}\right]^{-1}$.

Riemannian case

Let (M, g) be an n-dimensional Riemanninan manifold with smooth boundary ∂M. The metric g is assumed to be symmetric and positive definite. Here, the Dirichlet problem would be

$$
\left\{\begin{array}{l}
\Delta_{g} u=0 \text { in } M, \\
u=f \text { on } \partial M .
\end{array}\right.
$$

where $\Delta_{g} u:=|g|^{-1 / 2} \partial_{j}\left(|g|^{1 / 2} g^{j k} \partial_{k} u\right)$ is the Laplace-Beltrami operator, with $|g|:=\operatorname{det}\left(g_{j k}\right),\left[g_{j k}\right]=\left[g^{j k}\right]^{-1}$.
The Dirichlet-to-Neumann operator is then defined by

$$
\Lambda_{g}: f:=\left.\left.u\right|_{\partial M \mapsto}|g|^{1 / 2} \nu_{j} g^{j k} \frac{\partial u}{\partial x_{k}}\right|_{\partial M} .
$$

Push-forward

Let

$$
F: M \mapsto M
$$

be a diffeomorphism with $\left.F\right|_{\partial M}=I d$ on the Riemanninan manifold M.

Push-forward

Let

$$
F: M \mapsto M
$$

be a diffeomorphism with $\left.F\right|_{\partial M}=I d$ on the Riemanninan manifold M. Making the change of variables $y=F(x)$ and setting $u=v \circ F^{-1}$ in

$$
Q_{\gamma}(f)=\int_{M} \gamma^{j k}(x) \frac{\partial u}{\partial x^{j}} \frac{\partial u}{\partial x^{k}} d x,
$$

since by the divergence theorem

$$
Q_{\gamma}(f)=\int_{\partial M} \Lambda_{\gamma}(f) f d \sigma
$$

we obtain

$$
\Lambda_{F_{*} \gamma}=\Lambda_{\gamma},
$$

Push-forward

Let

$$
F: M \mapsto M
$$

be a diffeomorphism with $\left.F\right|_{\partial M}=I d$ on the Riemanninan manifold M. Making the change of variables $y=F(x)$ and setting $u=v \circ F^{-1}$ in

$$
Q_{\gamma}(f)=\int_{M} \gamma^{j k}(x) \frac{\partial u}{\partial x^{j}} \frac{\partial u}{\partial x^{k}} d x,
$$

since by the divergence theorem

$$
Q_{\gamma}(f)=\int_{\partial M} \Lambda_{\gamma}(f) f d \sigma,
$$

we obtain

$$
\Lambda_{F_{*} \gamma}=\Lambda_{\gamma},
$$

where

$$
\left(F_{*} \gamma\right)^{j k}(y)=\left.\frac{1}{\operatorname{det}\left[\frac{\partial F^{j}}{\partial x^{k}}(x)\right]} \sum_{p, q=1}^{n} \frac{\partial F^{j}}{\partial x^{p}}(x) \frac{\partial F^{k}}{\partial x^{q}}(x) \gamma^{p q}(x)\right|_{x=F^{-1}(y)}
$$

Definition

$F_{*} \gamma$ is called the push-forward of the conductivity γ by F.

Definition

$F_{*} \gamma$ is called the push-forward of the conductivity γ by F.

A simple example

- Let $B:=B(0,2)$ be an open ball with center 0 and radius 2 in \mathbb{R}^{3}.

A simple example

- Let $B:=B(0,2)$ be an open ball with center 0 and radius 2 in \mathbb{R}^{3}.
- We decompose B into two parts $B_{1}=B(0,2) \backslash \bar{B}(0,1)$ and $B_{2}=B(0,1)$.

A simple example

- Let $B:=B(0,2)$ be an open ball with center 0 and radius 2 in \mathbb{R}^{3}.
- We decompose B into two parts $B_{1}=B(0,2) \backslash \bar{B}(0,1)$ and $B_{2}=B(0,1)$.

A simple example

- Let $B:=B(0,2)$ be an open ball with center 0 and radius 2 in \mathbb{R}^{3}.
- We decompose B into two parts $B_{1}=B(0,2) \backslash \bar{B}(0,1)$ and $B_{2}=B(0,1)$.

Animation

Non-conformal mapping

 A

															+						
														-	+	H					
															H	H	H				
																N	H				
				1	1	1								-	N	H	H				
					1	17									'		H				
																111	171				
						11															
								0								17					
					N											17					
					7	N	N								1	1	7				
					\cdots	1	,									1	17				
						+															
									+								-				

Eclipse.

Invisible sphere.

Riemannian point of view

- $M_{1}=B(0,2)$ the Riemannian manifold with the Euclidean metric $g_{j k}=\delta_{j k}$

Riemannian point of view

- $M_{1}=B(0,2)$ the Riemannian manifold with the Euclidean metric $g_{j k}=\delta_{j k}$
- Hence, $\gamma=1$ which corresponds to the homogeneous conductivity.

Riemannian point of view

- $M_{1}=B(0,2)$ the Riemannian manifold with the Euclidean metric $g_{j k}=\delta_{j k}$
- Hence, $\gamma=1$ which corresponds to the homogeneous conductivity.
- Define a singular transformation

$$
F: M_{1} \backslash\{0\} \mapsto B_{1}, \quad F(x)= \begin{cases}\left(\frac{|x|}{2}+1\right) \frac{x}{|x|}, & 0<|x|<2, \\ x & |x| \geq 2\end{cases}
$$

$$
\left(F_{*} 1\right)^{j k}(y)=\left.\frac{1}{\operatorname{det}[D F(x)]} \sum_{p, q=1}^{n} \frac{\partial F^{j}}{\partial x^{p}}(x) \frac{\partial F^{k}}{\partial x^{q}}(x) \delta^{p q}(x)\right|_{x=F^{-1}(y)}
$$

- Let

$$
D F(x)=\left(\frac{1}{2}+\frac{1}{|x|}\right) I-\frac{\hat{x} \hat{x}^{t}}{|x|}, \quad x \neq 0
$$

be the Jacobian matrix at x, where I is the identity matrix and $\hat{x}=x /|x|$.

$$
\left(F_{*} 1\right)^{j k}(y)=\left.\frac{1}{\operatorname{det}[D F(x)]} \sum_{p, q=1}^{n} \frac{\partial F^{j}}{\partial x^{p}}(x) \frac{\partial F^{k}}{\partial x^{q}}(x) \delta^{p q}(x)\right|_{x=F^{-1}(y)}
$$

- Let

$$
D F(x)=\left(\frac{1}{2}+\frac{1}{|x|}\right) I-\frac{\hat{x} \hat{x}^{t}}{|x|}, \quad x \neq 0
$$

be the Jacobian matrix at x, where I is the identity matrix and $\hat{x}=x /|x|$.

$$
\operatorname{det}[D F(x)]=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{|x|}\right)^{n-1}=\frac{(|x|+2)^{n-1}}{2^{n}|x|^{n-1}}
$$

$$
\left(F_{*} 1\right)^{j k}(y)=\left.\frac{1}{\operatorname{det}[D F(x)]} \sum_{p, q=1}^{n} \frac{\partial F^{j}}{\partial x^{p}}(x) \frac{\partial F^{k}}{\partial x^{q}}(x) \delta^{p q}(x)\right|_{x=F^{-1}(y)}
$$

$$
\left(F_{*} 1\right)(y)=\frac{2^{n}|x|^{n-1}}{(|x|+2)^{n-1}}\left[\left(\frac{1}{4}+\frac{1}{|x|}+\frac{1}{|x|^{2}}\right)\left(I-\hat{x} \hat{x}^{t}\right)+\frac{\hat{x} \hat{x}^{t}}{4}\right]
$$

where the right-hand side is evaluated at

$$
x=F^{-1}(y)=2(|y|-1) \frac{y}{|y|} .
$$

Electromagnetic cloaking

Maxwell's equations

Maxwell equations

$$
\operatorname{curl} H:=\nabla \times H=(\sigma-\mathrm{i} \omega \epsilon) E, \quad \operatorname{curl} E:=\nabla \times E=\mathrm{i} \omega \mu H,
$$

where

Maxwell equations

$$
\operatorname{curl} H:=\nabla \times H=(\sigma-\mathrm{i} \omega \epsilon) E, \quad \text { curl } E:=\nabla \times E=\mathrm{i} \omega \mu H
$$

where

- E and H are the electric and magnetic complex vector fields;

Maxwell equations

$$
\operatorname{curl} H:=\nabla \times H=(\sigma-\mathrm{i} \omega \epsilon) E, \quad \text { curl } E:=\nabla \times E=\mathrm{i} \omega \mu H
$$

where

- E and H are the electric and magnetic complex vector fields;
- σ, ϵ and μ are real-valued, the electrical electrical conductivity tensor;

$$
\left(F_{*} \gamma\right)^{j k}(y)=\left.\frac{1}{\operatorname{det}\left[\frac{\partial F^{j}}{\partial x^{k}}(x)\right]} \sum_{p, q=1}^{n} \frac{\partial F^{j}}{\partial x^{p}}(x) \frac{\partial F^{k}}{\partial x^{q}}(x) \gamma^{p q}(x)\right|_{x=F^{-1}(y)}
$$

Metamaterial

Rays travelling outside of a wormhole.

Rays travelling inside of a wormhole.

Visibility

Dirichlet-to-Neumann semigroup

Dirichlet-to-Neumann semigroup acts as a magnifying glass
Mohamed Amine Cherif
Departement de Mathématiques, Faculté des Sciences de Sfax, Université de Sfax, Route de Soukra Km 3.5, B.P.1171, 3000, Sfax, Tunisia
email: mohamedamin.cherif@yahoo.fr
Toufic El Arwadi
Department of Mathematics, Faculty of Science, Beirut Arab university, P.O. Box: 11-5020, Beirut,Lebanon email: telarwadi@gmail.com
Hassan Emamirad
School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5746, Tehran, Iran
email: emamirad@ipm.ir
Jean-Marc Sac-Epée
Laboratoire de Mathématiques et Applications de Metz,
UMR 7122, Université de Lorraine - Metz, France
email: jean-marc.sac-epee@univ-lorraine.fr

Dirichlet-to-Neumann semigroup

Λ_{γ} is a selfadjoint operator in $X:=L^{2}(\partial \Omega)$.

Dirichlet-to-Neumann semigroup

Λ_{γ} is a selfadjoint operator in $X:=L^{2}(\partial \Omega)$. For

$$
X:=C(\partial \Omega)
$$

Annali della Scuola Norm. Sup. Pisa 21 (1994), 235-266.

Dirichlet-to-Neumann semigroup

Λ_{γ} is a selfadjoint operator in $X:=L^{2}(\partial \Omega)$.
For

$$
X:=C(\partial \Omega)
$$

J. Escher, The Dirichlet-Neumann operator on continuous functions. Annali della Scuola Norm. Sup. Pisa 21 (1994), 235-266.

Dirichlet-to-Neumann semigroup

Λ_{γ} is a selfadjoint operator in $X:=L^{2}(\partial \Omega)$.
For

$$
X:=C(\partial \Omega)
$$

J. Escher, The Dirichlet-Neumann operator on continuous functions. Annali della Scuola Norm. Sup. Pisa 21 (1994), 235-266.

$$
\begin{cases}\nabla \cdot(\gamma \nabla u(t, \cdot))=0, & \text { for every } t \in \mathbb{R}^{+}, \text {in } \Omega, \\ \partial_{t} u+\nu \cdot \gamma \nabla u=0, & \text { for every } t \in \mathbb{R}^{+}, \text {on } \partial \Omega, \\ u(0, \cdot)=f, & \text { on } \partial \Omega .\end{cases}
$$

Lax representation

P. D. Lax, Functional Analysis Wiley Inter-science, New-York, 2002
(Chapter 36).

Lax representation

P. D. Lax, Functional Analysis Wiley Inter-science, New-York, 2002
(Chapter 36).
Let u be the harmonic lifting of f in the n-dimensional unit ball B.

$$
\begin{cases}\Delta u=0, & \text { in } B \tag{1}\\ u(\omega)=f(\omega), & \omega \text { in } S^{n-1}\end{cases}
$$

Lax representation

P. D. Lax, Functional Analysis Wiley Inter-science, New-York, 2002
(Chapter 36).
Let u be the harmonic lifting of f in the n-dimensional unit ball B.

$$
\begin{cases}\Delta u=0, & \text { in } B \tag{1}\\ u(\omega)=f(\omega), & \omega \text { in } S^{n-1}\end{cases}
$$

The Lax semigroup is defined by

$$
\begin{equation*}
\mathrm{e}^{-t \Lambda_{1}} f(\omega)=u\left(e^{-t} \omega\right) \text { for } \omega \in S^{n-1} \tag{2}
\end{equation*}
$$

Approximating family

P. R. Chernoff, Note on product formulas for operator semigroups. J. Funct. Analysis. 2 (1968), 238-242.

Approximating family

P. R. Chernoff, Note on product formulas for operator semigroups.
J. Funct. Analysis. 2 (1968), 238-242.

Théorème (Chernoff's product formula)

Let X be a Banach space and $\{V(t)\}_{t \geq 0}$ be a family of contractions on X with $V(0)=I$. Suppose that the derivative $V^{\prime}(0) f$ exists for all f in a set \mathcal{D} and that the closure Λ of $\left.V^{\prime}(0)\right|_{\mathcal{D}}$ generates a $\left(C_{0}\right)$ semigroup $S(t)$ of contractions. Then, for each $f \in X$,

$$
\lim _{n \rightarrow \infty} V\left(\frac{t}{n}\right)^{n} f=S(t) f
$$

uniformly for t in compact subsets of \mathbb{R}^{+}.

Euler Explicit Scheme

H. Emamirad and M. Sharifitabar, On explicit representation and approximations of Dirichlet-to-Neumann semigroup. Semigroup Forum 86 (2013), 192-201.

Euler Explicit Scheme

H. Emamirad and M. Sharifitabar, On explicit representation and approximations of Dirichlet-to-Neumann semigroup. Semigroup Forum 86 (2013), 192-201.
(EES) $\begin{cases}\operatorname{div}\left(\gamma \nabla u^{m}\right)=0 & \text { in } \Omega, \\ \frac{1}{\Delta t}\left(u^{m+1}-u^{m}\right)+\gamma \frac{\partial u^{m}}{\partial n}=0 & \text { on } \partial \Omega, \\ u(x, y, 0)=h(x, y) & \text { on } \partial \Omega .\end{cases}$

Euler Explicit Scheme

H. Emamirad and M. Sharifitabar, On explicit representation and approximations of Dirichlet-to-Neumann semigroup. Semigroup Forum 86 (2013), 192-201.
(EES) $\begin{cases}\operatorname{div}\left(\gamma \nabla u^{m}\right)=0 & \text { in } \Omega, \\ \frac{1}{\Delta t}\left(u^{m+1}-u^{m}\right)+\gamma \frac{\partial u^{m}}{\partial n}=0 & \text { on } \partial \Omega, \\ u(x, y, 0)=h(x, y) & \text { on } \partial \Omega .\end{cases}$

$$
V(t) f(x)= \begin{cases}(1-\alpha) u(x)+\alpha u\left(x-\alpha^{-1} t \gamma(x) \nu(x)\right), & 0 \leq t \leq \alpha T, \\ V(\alpha T) f(x), & t>\alpha T,\end{cases}
$$

Euler Explicit Scheme

H. Emamirad and M. Sharifitabar, On explicit representation and approximations of Dirichlet-to-Neumann semigroup. Semigroup Forum 86 (2013), 192-201.
(EES) $\begin{cases}\operatorname{div}\left(\gamma \nabla u^{m}\right)=0 & \text { in } \Omega, \\ \frac{1}{\Delta t}\left(u^{m+1}-u^{m}\right)+\gamma \frac{\partial u^{m}}{\partial n}=0 & \text { on } \partial \Omega, \\ u(x, y, 0)=h(x, y) & \text { on } \partial \Omega .\end{cases}$

$$
\begin{gathered}
V(t) f(x)= \begin{cases}(1-\alpha) u(x)+\alpha u\left(x-\alpha^{-1} t \gamma(x) \nu(x)\right), & 0 \leq t \leq \alpha T, \\
V(\alpha T) f(x), & t>\alpha T,\end{cases} \\
u^{m+1}=V(\Delta t) u^{m} .
\end{gathered}
$$

Euler Implicit Scheme

(EIS) $\begin{cases}\operatorname{div}\left(\gamma \nabla u^{m+1}\right)=0 & \text { in } \Omega, \\ \frac{1}{\Delta t}\left(u^{m+1}-u^{m}\right)+\frac{\partial u^{m+1}}{\partial \nu_{\gamma}}=0 & \text { on } \partial \Omega, \\ u^{0}=f & \text { on } \partial \Omega .\end{cases}$

Euler Implicit Scheme

(EIS) $\quad \begin{cases}\operatorname{div}\left(\gamma \nabla u^{m+1}\right)=0 & \text { in } \Omega, \\ \frac{1}{\Delta t}\left(u^{m+1}-u^{m}\right)+\frac{\partial u^{m+1}}{\partial \nu_{\gamma}}=0 & \text { on } \partial \Omega, \\ u^{0}=f & \text { on } \partial \Omega .\end{cases}$
Since any x with $|x|=1$ belongs to $\partial \Omega$, we have

$$
\begin{equation*}
\frac{\partial u^{m+1}}{\partial \nu_{\gamma}} \approx \frac{u^{m+1}(x)-u^{m+1}(x-\Delta x \gamma(x) x)}{\Delta x} \tag{3}
\end{equation*}
$$

Euler Implicit Scheme

(EIS) $\quad \begin{cases}\operatorname{div}\left(\gamma \nabla u^{m+1}\right)=0 & \text { in } \Omega, \\ \frac{1}{\Delta t}\left(u^{m+1}-u^{m}\right)+\frac{\partial u^{m+1}}{\partial \nu_{\gamma}}=0 & \text { on } \partial \Omega, \\ u^{0}=f & \text { on } \partial \Omega .\end{cases}$
Since any x with $|x|=1$ belongs to $\partial \Omega$, we have

$$
\begin{equation*}
\frac{\partial u^{m+1}}{\partial \nu_{\gamma}} \approx \frac{u^{m+1}(x)-u^{m+1}(x-\Delta x \gamma(x) x)}{\Delta x} \tag{3}
\end{equation*}
$$

By replacing (3) in (EIS), we get

$$
\begin{equation*}
\left(1+\frac{\Delta t}{\Delta x}\right) u^{m+1}(x)-\frac{\Delta t}{\Delta x} u^{m+1}(x-\Delta x \gamma(x) x)=u^{m}(x) \tag{4}
\end{equation*}
$$

Euler Implicit Scheme

$$
W(t) f(x)= \begin{cases}(1+\alpha) u(x)-\alpha u\left(x-\alpha^{-1} t \gamma(x) \nu(x)\right), & 0 \leq t \leq \alpha T, \tag{5}\\ W(\alpha T) f(x), & t>\alpha T,\end{cases}
$$

Euler Implicit Scheme

$$
W(t) f(x)= \begin{cases}(1+\alpha) u(x)-\alpha u\left(x-\alpha^{-1} t \gamma(x) \nu(x)\right), & 0 \leq t \leq \alpha T, \tag{5}\\ W(\alpha T) f(x), & t>\alpha T,\end{cases}
$$

$$
\begin{equation*}
W(t) V(t) f(x)=f(x) \tag{6}
\end{equation*}
$$

Euler Implicit Scheme

$$
W(t) f(x)= \begin{cases}(1+\alpha) u(x)-\alpha u\left(x-\alpha^{-1} t \gamma(x) \nu(x)\right), & 0 \leq t \leq \alpha T \tag{5}\\ W(\alpha T) f(x), & t>\alpha T,\end{cases}
$$

$$
\begin{equation*}
W(t) V(t) f(x)=f(x) \tag{6}
\end{equation*}
$$

$V(t)$ satisfies the assumptions of the Chernoff's theorem.

The variational formulation of this problem can be obtained by multiplying both sides of the dynamic boundary condition by a test function v and by using the divergence theorem, we get

$$
\int_{\Omega} \gamma \nabla u^{m+1} \nabla v d x-\int_{\partial \Omega} \gamma \frac{\partial u^{m+1}}{\partial n} v d \sigma=0,
$$

Variational formulation

The variational formulation of this problem can be obtained by multiplying both sides of the dynamic boundary condition by a test function $v \in H^{1}(\Omega)$ and by using the divergence theorem, we get

$$
\int_{\Omega} \gamma \nabla u^{m+1} \nabla v d x-\int_{\partial \Omega} \gamma \frac{\partial u^{m+1}}{\partial n} v d \sigma=0,
$$

that is

Variational formulation

The variational formulation of this problem can be obtained by multiplying both sides of the dynamic boundary condition by a test function $v \in H^{1}(\Omega)$ and by using the divergence theorem, we get

$$
\int_{\Omega} \gamma \nabla u^{m+1} \nabla v d x-\int_{\partial \Omega} \gamma \frac{\partial u^{m+1}}{\partial n} v d \sigma=0
$$

that is

$$
\begin{equation*}
\int_{\Omega} \Delta t \gamma \nabla u^{m+1} \nabla v d x+\int_{\partial \Omega} u^{m+1} v-\int_{\partial \Omega} u^{m} v d \sigma=0 \tag{7}
\end{equation*}
$$

which is of the form

$$
a\left(u^{m+1}, v\right)=\ell(v)
$$

where

$$
a\left(u^{m+1}, v\right)=\int_{\Omega} \Delta t \gamma \nabla u^{m+1} \nabla v d x+\int_{\partial \Omega} u^{m+1} v d \sigma
$$

is the bilinear form with the unknown of the problem u^{m+1} and

$$
\ell(v)=\int u^{m} v d \sigma
$$

Numerical illustration.

F. Hecht and O. Pironneau, A finite element software for PDE : FreeFem++, avaible online, http://www.freefem.org/ff++.

Numerical illustration.

F. Hecht and O. Pironneau, A finite element software for PDE : FreeFem++, avaible online, http://www.freefem.org/ff++.
Here we have taken the boundary function

$$
f(x, y)=x^{4}+y^{2} \sin (2 \pi y) .
$$

