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The Eigenvalue Theorem
Let F be algebraically closed and I ⊂ F [x1, . . . , xn] be an ideal with
V(I) ⊆ F n is finite (so I is zero dimensional). For h ∈ F [x1, . . . , xn],
multiplication by h induces a linear map

mh : F [x1, . . . , xn]/I −→ F [x1, . . . , xn]/I.

The Eigenvalue Theorem

The eigenvalues of mh are h(a) for a ∈ V(I).

I love this theorem because it reveals a wonderful link between
polynomial algebra and linear algebra. To actually find solutions, note:

The eigenvalues of mxi
are the i th coordinates of the solutions.

Since mxi
mxj

= mxixj
= mxj xi

= mxj
mxi

, simultaneous eigenvectors
exist. They give the solutions!

Recent work of Simon Telen explores how the Eigenvalue Theorem
interacts with numerical algebraic geometry.

In this lecture, I will instead focus on a name attached to the theorem.
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Gonzalez-Vega and Trujillo, 1995 in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes

Theorem 1. (Stickelberger Theorem)

Let K ⊂ F be a field extension with F algebraically closed, h ∈ K[x ] and

J be a zero dimensional ideal in K[x ]. If VF(J) = {∆1, . . . ,∆s} are the

zeros in Fn of J then there exists a basis of F[x ]/J such that the matrix

of Mh, with respect to this basis, has the following block structure:











H1 0 . . . 0
0 H2 . . . 0
...

...
...

0 0 . . . Hs











where Hi =











h(∆i) ⋆ . . . ⋆
0 h(∆i) . . . ⋆
...

...
...

0 0 . . . h(∆i)











The dimension of the i-th submatrix is equal to the multiplicity of ∆i as

a zero of the ideal J.

Notation: Mh : F[x ]/J → F[x ]/J is multiplication by h.
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Sottile, 2002 in Computations in Algebraic Geometry with Macaulay2

Stickelberger’s Theorem

Let h ∈ A and mh be as above. Then there is a one-to-one
correspondence between eigenvectors vξ of mh and roots ξ of I, the
eigenvalue of mh on vξ is the value h(ξ) of h at ξ, and the multiplicity of
this eigenvalue (on the eigenvector vξ) is the multiplicity of the root ξ.

Notation:

A = k [X ]/I, where I is a zero-dimensional ideal in k [X ].

mh : A→ A is multiplication by h ∈ A.
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Basu, Pollack and Roy, 2006 Algorithms in Real Algebraic Geometry

Theorem 4.99 (Stickelberger)

For f ∈ A, the linear map Lf has the following properties:

The trace of Lf is

Tr(Lf ) =
∑

x∈Zer(P;Ck )

µ(x)f (x) Return

The determinant of Lf is

det(Lf ) =
∏

x∈Zer(P;Ck )

f (x)µ(x) Return

The characteristic polynomial χ(P, f ,T ) of Lf is

χ(P, f ,T ) =
∏

x∈Zer(P;Ck )

(T − f (x))µ(x)

Notation: A = C[X1, . . . ,Xk ]/Ideal(P,C), C algebraically closed.
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Goal of This Lecture

The last three slides gave versions of a result called
“Stickelberger’s Theorem”.

The statement of the result was slightly different in each case.

One feature they have in common: the authors never cite a

specific paper of Stickelberger!

Three Questions to Answer
What did Stickelberger really do?

How does it relate to “Stickelberger’s Theorem”?

Why are his papers never cited?
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Ludwig Stickelberger

Born in Switzerland in 1850.

PhD in Berlin in 1874 under Weierstrass and Kummer.

University of Freiburg 1879–1919.

Published 12 papers (4 with Frobenius) + one posthumous.

Studied quadratic forms, real orthogonal transformations,
differential equations, algebraic geometry, group theory, elliptic
functions, and algebraic number theory.

Died in Basel in 1936.
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Stickelberger’s Obituary, 1937
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My Connection to Heffter
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Stickelberger’s Theorem, 1890

Consider the cyclotomic extension Q ⊆ Q(ζm).

Let G = Gal(Q(ζm)/Q) ≃ (Z/mZ)×.

[a] ∈ (Z/mZ)× gives σa ∈ G satisfying σa(ζm) = ζa
m.

Definitions
The Stickelberger element:

θ =
1
m

∑

gcd(a,m)=1

a · σ−1
a in the group ring Q[G]

The Stickelberger ideal:
I = (θZ[G]) ∩ Z[G] ⊆ Z[G]

Stickelberger’s Theorem

The Stickelberger ideal I annihilates the class group of Q(ζm).
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Stickelberger’s 1897 Work on Traces
Verhandlungen des ersten internationalen Mathematiker-Kongresses

In a number field Ω, let a, b, . . . be ideals of o containing a prime p.
Then o/a, o/b, . . . are vector spaces over Fp.

Stickelberger
trace formula
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Stickelberger’s 1897 Paper was on Discriminants

The title of the paper is

Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper

The Discriminant of a Number Field Q ⊆ Ω of Degree n

Let b1, . . . ,bn be an integral basis of the ring O of algebraic integers of
Ω. Then

D = det(Tr(bibj)).

Here is a result Stickelberger proves using his trace formula:

Theorem

If an odd prime p does not divide D, then the Legendre symbol
(

D
p

)

satisfies
(D

p

)

= (−1)n−m,

where pO = p1 · · · pm is the prime factorization in O.
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A Modern Version of the Trace Formula

In the Stickelberger Trace formula, O/pO is a finite-dimensional
Fp-algebra. In 1988, Scheja and Storch generalized his trace formula
to a finite-dimensional commutative algebra A over a field F .

Let m1, . . . ,mr be the maximal ideals of A. The localizations Ami
have

residue fields Li ≃ A/mi and satisfy

A ≃∏r
i=1Ami

.

For each i , define λi by dimF Ami
= λi [Li : F ].

α ∈ A gives F -linear multiplication maps mα : A→ A and
mα : Li → Li .

Stickelberger Trace Formula (Scheja and Storch, 1988)

Assume that Li is a separable extension of F for 1 ≤ i ≤ r . Then for
α ∈ A, the multiplication maps mα satisfy

TrA(mα) =
∑r

i=1λiTrLi
(mα).
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From the Trace Formula to the Eigenvalue Theorem

Assume F is algebraically closed of characteristic 0 and
A = F [x1, . . . , xn]/I, I ⊆ F [x1, . . . , xn] zero-dimensional ideal. Then:

Solutions a ∈ V(I)←→ maximal ideals ma ⊆ A.

A/ma ≃ F via g 7→ g(a).

Then mf (1) = f 7→ f (a) ∈ F , so that TrF (mf ) = f (a). Hence:

Corollary of the Stickelberger Trace Formula

When F is algebraically closed, TrA(mf ) =
∑

a∈V(I) µ(a)f (a).

We have seen this before . Furthermore:

TFAE
1. For every f ∈ F [x1, . . . , xn], Tr(mf ) =

∑

a∈V(I) µ(a)f (a).

2. For every f ∈ F [x1, . . . , xn], det(mf − x I) =
∏

a∈V(I)(f (a)− x)µ(a).

Note: (1) implies (2) by applying (1) to f ℓ, ℓ ≥ 0 & the Newton identities.
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An Application over R

When A = R[x1, . . . , xn]/I, maximal ideals mi come in two flavors:

r1 ideals with Li ≃ R←→ real solution

r2 ideals with Li ≃ C←→ complex conjugate pair of solutions

The trace form of A is the quadratic form QA(f ) = TrA(mf 2). The
Stickelberger Trace Formula implies

QA =
∑r

i=1λiQLi
.

Using bases {1} of R ⊆ R and {1,
√
−1} of R ⊆ C, one computes

matrix of QLi
=











(1) Li = R (happens r1 times)
(

2 0

0 −2

)

Li = C (happens r2 times).

Since λi > 0 for all i , the signature of QA is

σ(QA) = (r1 + r2)− r2 = r1 = #real solutions
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What Happened Historically

1981 Lazard publishes Résolutions des systèmes d’équations
algébriques. In the zero-dimensional case, he gives an algorithm
to compute

∏

a∈V(I)

L(a)µ(a), Familiar

where L = U0 + U1x1 + · · · + Unxn for new variables U0, . . . ,Un.

Multiplication by L is used in his construction.

1988 Auzinger and Stetter publish An elimination algorithm for
the computation of all zeros of a system of multivariate polynomial
equations. They consider n equations in n variables. When the
system is generic, they use resultant methods to create matrices
B(k) whose eigenvalues are the k th coordinates of the solutions.

When the system is nongeneric with finitely many solutions over
C, they reinterpret B(k) as the matrix of multiplication by xk on the
quotient algebra. This is equivalent to the Eigenvalue Theorem!
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More History

1988 Scheja and Storch publish their algebra text. In Volume 2,
Example 7 of §94 of is entitled Die Sätze von Stickelberger.

Lemma 94.6 is the modern Stickelberger Trace Formula.
Theorem 94.7 is equivalent to σ(QA) = # real solutions.
Theorem 94.8 proves Stickelberger’s formula

(

D
p

)

= (−1)n−m.
They don’t cite Stickelberger’s 1897 paper!

1991 Pedersen and Becker independently prove σ(QA) = # real
solutions, unaware of Scheja and Storch (and Stickelberger).

1993 Pedersen, Roy and Szpirglas write
The structure theory for finite dimensional algebras which we

shall present was first developed by Stickelberger (see [SS 88]).

Actually, Scheja and Storch developed the theory in order to
understand Stickelberger’s 1897 trace formula.

1995 Gonzalez-Vega and Trujillo publish the version of
“Stickelberger Theorem” given at the beginning of the talk.
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Two Final Comments

The 1988 algebra text by Scheja and Storch is abstract and
non-constructive, while the papers from the 1990s are interested
in algorithms. In these papers, the goal is not to describe the
structure but rather to compute the structure. This is a significant
advance beyond what Stickelberger, Scheja, and Storch did.

A striking feature of this story is range of mathematics involved:

Commutative algebra: Günter Scheja and Uwe Storch

Algebraic number theory: Ludwig Stickelberger

Computer algebra: Daniel Lazard and Paul Pedersen

Numerical analysis: Winfried Auzinger and Hans Stetter

Real algebraic geometry: Eberhard Becker, Marie-Françoise Roy
and Aviva Szpirglas

Thank you!
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