
Polynomial Induction and Length
Minimization in Intuitionistic Bounded

Arithmetic

Morteza Moniri

Department of Mathematics, Shahid Beheshti University, Evin, Tehran, Iran.

AND: Institute for Studies in Theoretical Physics and Mathematics (IPM),

P.O. Box 19395-5746, Tehran, Iran.

email: ezmoniri@ipm.ir

Abstract

It is shown that the feasibly constructive arithmetic theory IPV does not prove
(double negation of) LMIN(NP), unless the polynomial hierarchy CPV-provably col-
lapses. It is proved that PV plus (double negation of) LMIN(NP) intuitionistically
proves PIND(coNP). It is observed that PV+ PIND(NP∪coNP) does not intuition-
istically prove NPB, a scheme which states that the extended Frege systems are not
polynomially bounded.
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1 Introducing Classical and Intuitionistic Bounded Arithmetic

The theory PV is an equational theory of polynomial time functions introduced by
Stephen Cook, (PV )i is its extension to intuitionistic first-order logic and IPV is the
intuitionistic theory of PV plus polynomial induction on NP formulas. Here an NP
formula is a formula equivalent to an atomic formula (in the language of PV ) prefixed by
a bounded existential quantifier (see [CU]). Also, the instance of the Polynomial Induction
PIND with respect to a distinguished free variable x on a formula ϕ(x) is the sentence

[A(0) ∧ ∀x(A(x
x

2
y) → A(x))] → ∀xA(x)

.
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The NP formulas represent precisely the NP relations in the standard model. coNP
formulas are defined dually. The theory (PV )i proves the Principle of Excluded Middle
for atomic formulas (of PV ).

The classical deductive closure of PV is usually denoted PV1. CPV is the classical
version of IPV .

In the following, the notation ≡i between two sets of formulas is used to show that they
have the same intuitionistic consequences. Also, `i denotes provability in intuitionistic
(first-order) logic.

If Γ is a set (collection) of formulas, ¬Γ denotes the set of formulas of the form ¬ϕ
with ϕ ∈ Γ.

For the definition of Kripke models of intuitionistic bounded arithmetic and basic
results about them, see [M2] and [B2]. The general results on intuitionistic logic and
arithmetic, and also Kripke models, can be found in [TD].

For a set T of sentences, a T -normal Kripke model is a Kripke model in which all the
worlds (classically) satisfy T .

2 Polynomial induction versus length minimization

In this section we work in the language of PV . Also, (PV )i is the underlying theory
for all intuitionistic theories we will mention.

The instance of the length minimization LMIN with respect to a distinguished free
variable x on a formula ϕ(x) is the sentence

∃xϕ(x) → [ϕ(0) ∨ ∃x(ϕ(x) ∧ (∀z 6 xx
2
y)¬ϕ(z))].

We will compare intuitionistic schemes of polynomial induction and length minimiza-
tion on NP formulas. By ¬¬LMIN(NP), we denote the intuitionistic theory axiomatized
by PV plus the set of all doubly negated instances of LMIN on NP formulas.

Proposition 2.1 If K 
 ¬¬LMIN(NP) is linear, then the union of the worlds in K
satisfies CPV .

Proof First note that (PV )i is contained in the theory ¬¬LMIN(NP) by our as-
sumption, so each of the nodes in K forces (PV )i. But (PV )i is a universal theory, so
each node satisfies the classical deductive closure of (PV )i, i.e. PV1. Therefore, the union
of the worlds in K satisfies PV1. Recall that CPV ≡c PV + PIND(coNP). So, it is
enough to show that PIND(coNP) holds in the union. Assume that the union does not
satisfy PIND(A(x)), for some coNP formula A. Here, it is possible that A has other free
variables, besides the one explicitly shown. Let A be of the form ∀yB(y, x), where B is a
quantifier-free formula. Assume C to be the formula ∃y¬B(y, x), an NP formula. There
would exist a node Mγ present in K and some a ∈ Mγ, such that (a) Mγ � ¬C(0) ∧C(a)
and (b) the union satisfies ∀x(¬C(xx

2
y) → ¬C(x)) (here we have replaced all other free
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variables of C with parameters from Mγ). We have γ 
 C(a) (because forcing and truth
of C(a) are equivalent) and γ 
 ¬C(0) (since the union satisfies ∀yB(y, 0)). Therefore,
by K 
 ¬¬LMIN(NP), we get

γ 
 ¬¬∃x(C(x) ∧ ∀z ≤ xx
2
y¬C(z)).

In particular, for some δ ≥ γ and some (necessarily nonzero) d ∈ Mδ, δ 
 C(d)∧∀z ≤
xd

2
y¬C(z).

Therefore, the union satisfies ¬C(xd
2
y). On the other hand, by δ 
 C(d), Mδ � C(d).

Hence, the union satisfies C(d). The combination of these two leads to a contradiction to
(b).�

It is known that CPV proves LMIN(NP). Here, we show that even ¬¬LMIN(NP)
is not provable in IPV under some plausible complexity-theoretic assumption.

Theorem 2.2 IPV 0 ¬¬LMIN(NP), unless CPV = PV1.

Proof Assume IPV ` ¬¬LMIN(NP). Any ω-chain of (classical) models of CPV can
be considered as a Kripke model of IPV whose underlying accessibility relation has order
type ω (the proof is straightforward, see [M2]). Now, by the assumption, this model forces
¬¬LMIN(NP) as well, hence by 2.1, the union of its worlds should satisfy CPV . This
shows that CPV is an inductive theory. Hence, using the well-known characterization
of the inductive theories (see e.g. [CK, Th. 3.2.3]), CPV should be ∀2. Now, using ∀2-
conservativity of CPV over PV1 (see [B1, Th. 5.3.6 and Coro. 6.4.8]), we get CPV ≡ PV1

which is what we wanted. �

It is known that, under the assumption CPV = PV1, the polynomial hierarchy CPV -
provably collapses, see [K, Theorem 10.2.4].

Here we state a small result which is a converse to Proposition 2.1.

Proposition 2.3 If K 
 (PV )i and the union of the worlds in any path of K satisfies
CPV , then K 
 PIND(coNP).

Proof Note that a coNP formula is forced at a node α of a Kripke model of PV if
and only if it is satisfied in the union of the worlds in any path above α. �

Theorem 2.4 PV + LMIN(NP) `i PIND(coNP).

Proof The proof is similar to the one for Proposition 2.1. Let K 
PV +LMIN(NP).
Consider an arbitrary coNP formula A(x, y). Assume α is an arbitrary node in K and
b ∈ Mα. Suppose also that α 
 A(0, b) ∧ ∀x(A(xx

2
y, b) → A(x, b)). We shall show

that α 
 ∀xA(x, b). If for every β > α, Mβ � A(x, b), then we have α 
 ∀xA(x, b).
Suppose not. Assume η > α does not have the mentioned property. Let A(x, b) be of
the form ∀zB(x, z), where B is a quantifier-free formula. Assume C(x) to be the formula
∃z¬B(x, z), an NP formula.

We have Mη 1 C(0) and Mη 
 C(a) for some a ∈ Mη. Hence, by K 
 LMIN(NP),
we get η 
 ∃x(C(x) ∧ ∀z ≤ xx

2
y¬C(z)). Clearly, such a node η forces PIND(A(x, b)).�
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Corollary 2.5 ¬¬LMIN(NP) `i PIND(coNP).

Proof Using the general equivalence ¬¬(A → B) ≡i (A → ¬¬B), it is easy to see that
in (PV )i, ¬¬PIND(A(x)) ≡i PIND(A(x)) for any coNP formula A. Now, Theorem 2.4
immediately implies what we want. �

3 Unprovability of NPB in PV + PIND(NP∪coNP)

Let f be a one-place function symbol of IPV . Suppose f is provably an increasing
function and provably dominates any polynomial growth rate function. Let NPB(f) be
the formula

∀x∃y(x 6 y ∧ TAUT (y) ∧ ∀z(z 6 f(y) → ¬z `eF y)).

Here TAUT (y) states that y is the Godel number of a propositional tautology and
z `eF y states that z is the Godel number of an extended Frege proof of the formula
coded by y, see [K] for the definitions. In the sequel, we fix f and write NPB instead of
NPBf .

Cook and Urquhart [CU, Th. 10.16] proved that, IPV 0 NPB using their characteri-
zation of provably total functions of IPV . Krajicek and Pudlak proved that PV1 0 NPB
by constructing a chain of models of PV1 such that the union of its worlds does not
satisfy NPB, see [K]. Buss [B2] used the model theoretic method of Krajicek and Pud-
lak and also used Kripke models to show that IPV + 0 ¬¬NPB. The theory IPV +

which was introduced by Buss [B2] apparently is stronger than IPV and is sound and
complete with respect to CPV -normal Kripke structures. Here, we use a simple model
theoretic proof to show PV + PIND(NP∪coNP ) 0i NPB. This theory is actually
equivalent to the theory IPV ∗, which is by definition the intuitionistic theory axioma-
tized by PV + PIND(NP ∪ ¬¬NP ), originally mentioned in [CU] and studied in [M1].
The reason is that, by [M2, Theorem 2.3], PV + PIND(coNP) ≡i PV + PIND(¬¬NP).
The proof of [M1, Theorem 2.5] actually shows that IPV + 0 IPV ∗ unless CPV = PV1.

NPB is intuitionistically equivalent to ∀x∃y∀zNPBM. Here NPBM is an atomic
formula formalizing ”x 6 y, and z is a satisfying assignment of y, and if z 6 f(y) then z
is not an extended Frege proof of y”. Below, we work with this form of NPB.

Theorem 3.1 PV + PIND(NP∪coNP) 0i NPB

Proof Let M � PV1 + ¬NPB be countable. Such a model exists by the above
mentioned result of Krajicek and Pudlak. Extend M Σb

1-elementarily to a model of CPV ,
for existence of such a model see [K, Theorem 7.6.3]. Now, consider the obvious two-node
Kripke model. It is easy to see that this Kripke model forces PV + PIND(NP∪coNP).
On the other hand this model does not force the prenex sentence NPB since otherwise
its root-model would satisfy this sentence, which is a contradiction. �

Note that the Kripke model constructed in the above Theorem forces IPV + if and

4



only if M � CPV , see [M1, Theorem 2.2].

Here we just mention that, by the following theorem, which is the main result of [CU],
all prenex consequences of IPV are already provable in (PV )i:

Theorem 3.2 (Cook and Urquhart, [CU])

(i) If f is a polynomial time computable function then f is Σb+
1 -definable in IS1

2 .

(ii) If IS1
2 ` ∀x∃yφ(x, y) then there is a polynomial time computable function f such

that IS1
2 ` ∀xφ(x, f(x)).

Note that, in part (ii) above, the function symbol f does not belong to the language
of IS1

2 ; however by part (i), it can be expressed in the language.
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