Bounds on point-conic incidences over finite fields and applications

FGC-IPM Number Theory Seminar

Ali Mohammadi
Joint work with Thang Pham and Audie Warren
(arXiv:2111.04072)

Institute for Research in Fundamental Sciences (IPM)

23 November 2021
We use \mathbb{F} to denote an arbitrary field.
Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.

\mathbb{F}_d will be the d-dimensional projective space over \mathbb{F}.

P will be a set of points, L a set of lines and C a set of curves (generally conics) over \mathbb{F}_d (generally $d = 2$).

Bold lowercase letters, e.g. p, will be points.

$A \ll B$ and $B \gg A$ will mean $A \leq CB$ for some absolute constant C (not always the same).
We use \mathbb{F} to denote an arbitrary field.

\mathbb{F}_q is a finite field of order q and characteristic p.

$\mathbb{F}P^d$ will be the d-dimensional projective space over \mathbb{F}.

Sometimes, we write \mathbb{F}^2 but really mean $\{[x, y, 1] : x, y \in \mathbb{F}\}$.
Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.
- $\mathbb{F}P^d$ will be the d-dimensional projective space over \mathbb{F}. Sometimes, we write \mathbb{F}^2 but really mean $\{[x, y, 1] : x, y \in \mathbb{F}\}$.
- \mathcal{P} will be a set of points, \mathcal{L} a set of lines and \mathcal{C} a set of curves (generally conics) over \mathbb{F}^d (generally $d = 2$).
We use \mathbb{F} to denote an arbitrary field.

- \mathbb{F}_q is a finite field of order q and characteristic p.
- \mathbb{F}^d will be the d-dimensional projective space over \mathbb{F}.
 Sometimes, we write \mathbb{F}^2 but really mean $\{[x, y, 1] : x, y \in \mathbb{F}\}$.
- \mathcal{P} will be a set of points, \mathcal{L} a set of lines and \mathcal{C} a set of curves (generally conics) over \mathbb{F}^d (generally $d = 2$).
- Bold lowercase letters, e.g. p, will be points.
Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.
- $\mathbb{F}P^d$ will be the d-dimensional projective space over \mathbb{F}. Sometimes, we write \mathbb{F}^2 but really mean $\{[x, y, 1] : x, y \in \mathbb{F}\}$.
- \mathcal{P} will be a set of points, \mathcal{L} a set of lines and \mathcal{C} a set of curves (generally conics) over \mathbb{F}^d (generally $d = 2$).
- Bold lowercase letters, e.g. p, will be points.
- $A \ll B$ and $B \gg A$ will mean $A \leq CB$ for some absolute constant C (not always the same).
Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$I(\mathcal{P}, \mathcal{C}) = |\{(p, C) \in \mathcal{P} \times \mathcal{C} : p \in C\}|.$$
Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$I(\mathcal{P}, \mathcal{C}) = |\{(p, C) \in \mathcal{P} \times \mathcal{C} : p \in C\}|.$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2. Then the curve $C = \{x \in \mathbb{F}P^2 : \phi(x) = 0\}$ is called a conic.
Objective

Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$I(\mathcal{P}, \mathcal{C}) = |\{(p, C) \in \mathcal{P} \times \mathcal{C} : p \in C\}|.$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2. Then the curve $C = \{x \in \mathbb{F}\mathbb{P}^2 : \phi(x) = 0\}$ is called a *conic*. A conic is called *irreducible* or *nondegenerate* if ϕ cannot be written as the product of two degree 1 polynomials.
Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$I(\mathcal{P}, \mathcal{C}) = |\{(p, C) \in \mathcal{P} \times \mathcal{C} : p \in C\}|.$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2. Then the curve $C = \{x \in \mathbb{F}P^2 : \phi(x) = 0\}$ is called a conic. A conic is called irreducible or nondegenerate if ϕ cannot be written as the product of two degree 1 polynomials.

This talk will be mostly about upper bounds on $I(\mathcal{P}, \mathcal{C})$, where $\mathcal{P} \subset \mathbb{F}P^2_p$ and \mathcal{C} is a set of irreducible conics over \mathbb{F}_p.
Theorem (Kővári-Sós-Turán)

Suppose that the incidence graph on $P \times C$ (over \mathbb{F}^2) contains no copy of $K_{s,t}$, i.e. for any s points in P there are fewer than t curves in C incident to it, then

$$I(P, C) \ll t^{1/s} |P| |C|^{1-1/s} + s|C|.$$

The roles of P and C and respectively s and t may be reversed.

Theorem (Kővári-Sós-Turán)

Suppose that the incidence graph on $\mathcal{P} \times \mathcal{C}$ (over \mathbb{F}^2) contains no copy of $K_{s,t}$, i.e. for any s points in \mathcal{P} there are fewer than t curves in \mathcal{C} incident to it, then

$$I(\mathcal{P}, \mathcal{C}) \ll t^{1/s} |\mathcal{P}| |\mathcal{C}|^{1-1/s} + s |\mathcal{C}|.$$

The roles of \mathcal{P} and \mathcal{C} and respectively s and t may be reversed.

Writing $(\mathcal{P}, \mathcal{C}, I)$ for the incidence graph on \mathcal{P} and \mathcal{C}, we have:

<table>
<thead>
<tr>
<th>\mathcal{C}</th>
<th>$(\mathcal{P}, \mathcal{C}, I)$ has no $K_{2,2}$</th>
<th>$(\mathcal{C}, \mathcal{P}, I)$ has no $K_{2,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines</td>
<td>$K_{2,2}$</td>
<td>$K_{2,2}$</td>
</tr>
<tr>
<td>General irreducible conics</td>
<td>$K_{5,2}$</td>
<td>$K_{2,5}$</td>
</tr>
<tr>
<td>Circles and parabolas</td>
<td>$K_{3,2}$</td>
<td>$K_{2,3}$</td>
</tr>
</tbody>
</table>
Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

$$I(\mathcal{P}, \mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$$
Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

$$I(\mathcal{P}, \mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$$

- In particular, if $|\mathcal{P}| = |\mathcal{L}| = N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3/2}$.

Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

$$I(\mathcal{P}, \mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$$

- In particular, if $|\mathcal{P}| = |\mathcal{L}| = N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3/2}$.

- An irreducible conic is determined uniquely by five points (with no three collinear). Also by Bézout’s theorem, any two distinct conics meet in at most four distinct points. So

$$I(\mathcal{P}, C) \ll \min\{|\mathcal{P}|C|^{4/5} + |C|, |\mathcal{P}|^{1/2}|C| + |\mathcal{P}|\}.$$
Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

\[I(P, L) \ll \min\{|L|^{1/2}|P| + |L|, |P|^{1/2}|L| + |P|\}. \]

- In particular, if $|P| = |L| = N$, then $I(P, L) \ll N^{3/2}$.

- An irreducible conic is determined uniquely by five points (with no three collinear). Also by Bézout’s theorem, any two distinct conics meet in at most four distinct points. So

\[I(P, C) \ll \min\{|P||C|^{4/5} + |C|, |P|^{1/2}|C| + |P|\}. \]

- Any two parabolas or circles meet in at most two points. Also they are determined uniquely by three (non-collinear) points. So

\[I(P, C) \ll \min\{|P||C|^{2/3} + |C|, |P|^{1/2}|C| + |P|\}. \]
Incidences: some well-known results

Over \mathbb{R}^2: (This was extended to \mathbb{C}^2 by Toth in 2015.)

Theorem (Szemerédi-Trotter (1983))

For finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{R}^2, we have

$$I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{2/3} |\mathcal{L}|^{2/3} + |\mathcal{P}| + |\mathcal{L}|.$$

Over \mathbb{F}_p^2: (Various explicit forms, based on the same principal ideas, appeared later.)

Theorem (Bourgain-Katz-Tao (2004))

For any point set \mathcal{P} and any line set \mathcal{L} in \mathbb{F}_p^2 with $|\mathcal{P}| = |\mathcal{L}| = N = p^\alpha$, $0 < \alpha < 2$, we have

$$I(\mathcal{P}, \mathcal{L}) \ll N^{3/2 - \epsilon},$$

where $\epsilon = \epsilon(\alpha) > 0$.
Incidences: some well-known results

Over \mathbb{R}^2 : (This was extended to \mathbb{C}^2 by Toth in 2015.)

Theorem (Szemerédi-Trotter (1983))

For finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{R}^2, we have

$$I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{2/3} |\mathcal{L}|^{2/3} + |\mathcal{P}| + |\mathcal{L}|.$$

Over \mathbb{F}_p^2 : (Various explicit forms, based on the same principal ideas, appeared later.)

Theorem (Bourgain-Katz-Tao (2004))

For any point set \mathcal{P} and any line set \mathcal{L} in \mathbb{F}_p^2 with $|\mathcal{P}| = |\mathcal{L}| = N = p^\alpha$, $0 < \alpha < 2$, we have

$$I(\mathcal{P}, \mathcal{L}) \ll N^{3/2 - \varepsilon}, \text{ where } \varepsilon = \varepsilon(\alpha) > 0.$$
Theorem (Stevens-de Zeeuw (2017))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2, with
$|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if $\text{char}(\mathbb{F}) = p > 0$, suppose
$|\mathcal{P}|^{13} |\mathcal{L}|^{-2} \ll p^{15}$. Then

$$I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15} |\mathcal{L}|^{11/15}.$$
Theorem (Stevens-de Zeeuw (2017))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2, with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if $\text{char}(\mathbb{F}) = p > 0$, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

$$I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15}|\mathcal{L}|^{11/15}.$$

Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.
Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2, with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if $\text{char}(\mathbb{F}) = p > 0$, suppose $|\mathcal{P}|^{13} |\mathcal{L}|^{-2} \ll p^{15}$. Then

$$I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15} |\mathcal{L}|^{11/15}.$$

- Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.
- Their result is a consequence of a point-plane incidence bound of Rudnev (2018).
Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2, with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if $\text{char}(\mathbb{F}) = p > 0$, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

$$I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15}|\mathcal{L}|^{11/15}.$$

- Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.
- Their result is a consequence of a point-plane incidence bound of Rudnev (2018).
- For $|\mathcal{P}| = |\mathcal{L}| = N \ll p^{15/11}$, the above result gives
 $$I(\mathcal{P}, \mathcal{L}) \ll N^{3/2-1/30} = N^{4/3+2/15}$$ (the bound $N^{4/3}$ would be tight).
Incidences: some well-known results

Point-line incidences for “large sets” in \mathbb{F}_q:

Theorem (Vinh (2011))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}_q^2, we have

$$\left| l(\mathcal{P}, \mathcal{L}) - \frac{|\mathcal{P}||\mathcal{L}|}{q} \right| \leq \sqrt{q |\mathcal{P}||\mathcal{L}|}.$$
Incidences: some well-known results

Point-line incidences for “large sets” in \mathbb{F}_q:

Theorem (Vinh (2011))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}_q^2, we have

$$
\left| I(\mathcal{P}, \mathcal{L}) - \frac{|\mathcal{P}||\mathcal{L}|}{q} \right| \leq \sqrt{q|\mathcal{P}||\mathcal{L}|}.
$$

More generally:

Theorem (Vinh (2011))

Let \mathcal{P} be a set of points and \mathcal{H} be a set of hyperplanes in \mathbb{F}_q^d. The number of incidences between \mathcal{P} and \mathcal{H} satisfies

$$
\left| I(\mathcal{P}, \mathcal{H}) - \frac{|\mathcal{P}||\mathcal{H}|}{q} \right| \leq \sqrt{q^{d-1}|\mathcal{P}||\mathcal{H}|}.
$$
Recall a Möbius transformation is the mapping

\[f(x) = \frac{ax + b}{cx + d}, \quad \text{where} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{F}_p). \]

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \(\mathbb{F}_p \).
Recall a Möbius transformation is the mapping

\[f(x) = \frac{ax + b}{cx + d}, \quad \text{where} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{F}_p). \]

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \(\mathbb{F}_p \).
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae \((x - a)(y - b) = 1\) with \((a, b)\) coming from Cartesian products.

Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov’s result, as well as a result allowing for more general \((a, b)\).

Wheeler and Warren (2021+) proved a quantitative incidence bound concerning more general Möbius transformations.
Recall a Möbius transformation is the mapping

\[f(x) = \frac{ax + b}{cx + d}, \quad \text{where} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{F}_p). \]

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \(\mathbb{F}_p \).
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae \((x - a)(y - b) = 1\) with \((a, b)\) coming from Cartesian products.
- Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov’s result, as well as a result allowing for more general \((a, b)\).
Recall a Möbius transformation is the mapping

\[f(x) = \frac{ax + b}{cx + d}, \text{ where } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{F}_p). \]

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \(\mathbb{F}_p \).
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae \((x - a)(y - b) = 1\) with \((a, b)\) coming from Cartesian products.
- Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov’s result, as well as a result allowing for more general \((a, b)\).
- Wheeler and Warren (2021+) proved a quantitative incidence bound concerning more general Möbius transformations.
Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.

This idea was due to Pham, Vinh and de Zeeuw (2018).
Point-conic incidences: warm up

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \rightarrow \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y - x^2)$ to the plane.

This idea was due to Pham, Vinh and de Zeeuw (2018).
Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.

Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y - x^2)$ to the plane.

Note that ϕ is a bijection.
Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.

Apply the mapping $\phi : \mathbb{F}_q^2 \rightarrow \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y - x^2)$ to the plane.

Note that ϕ is a bijection.

It maps each $C_{a,b}$ to the line $l_{a,b}$ of the form $y = ax + b$.
Let \(C \) be parabolas \(C_{a,b} \) of the form \(y = x^2 + ax + b \).

Apply the mapping \(\phi : \mathbb{F}_q^2 \rightarrow \mathbb{F}_q^2 \), defined by \((x, y) \mapsto (x, y - x^2) \) to the plane.

Note that \(\phi \) is a bijection.

It maps each \(C_{a,b} \) to the line \(l_{a,b} \) of the form \(y = ax + b \).

\[p \in C_{a,b} \iff \phi(p) \in l_{a,b}. \]
Let \(C \) be parabolas \(C_{a,b} \) of the form \(y = x^2 + ax + b \).

Apply the mapping \(\phi : \mathbb{F}_q^2 \rightarrow \mathbb{F}_q^2 \), defined by \((x, y) \mapsto (x, y - x^2)\) to the plane.

Note that \(\phi \) is a bijection.

It maps each \(C_{a,b} \) to the line \(l_{a,b} \) of the form \(y = ax + b \).

\[p \in C_{a,b} \iff \phi(p) \in l_{a,b}. \]

So \(I(\mathcal{P}, \mathcal{C}) = I(\phi(\mathcal{P}), \mathcal{L}) \) where \(|\mathcal{L}| = |\mathcal{C}| \) and \(|\mathcal{P}| = |\phi(\mathcal{P})| \). This idea was due to Pham, Vinh and de Zeeuw (2018).
Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.

Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y - x^2)$ to the plane.

Note that ϕ is a bijection.

It maps each $C_{a,b}$ to the line $l_{a,b}$ of the form $y = ax + b$.

$p \in C_{a,b} \iff \phi(p) \in l_{a,b}$.

So $I(\mathcal{P}, \mathcal{C}) = I(\phi(\mathcal{P}), \mathcal{L})$ where $|\mathcal{L}| = |\mathcal{C}|$ and $|\mathcal{P}| = |\phi(\mathcal{P})|$.

This idea was due to Pham, Vinh and de Zeeuw (2018).
Theorem (M., Pham and Warren (2021+))

For any set C of irreducible conics in \mathbb{F}_p^2, and any set of points $\mathcal{P} \subseteq \mathbb{F}_p^2$ with $|\mathcal{P}| \ll p^{15/13}$, we have

$$I(\mathcal{P}, C) \ll |\mathcal{P}|^{23/27} |C|^{23/27} + |\mathcal{P}|^{13/9} |C|^{12/27} + |C|.$$
Theorem (M., Pham and Warren (2021+))

For any set C of irreducible conics in \mathbb{F}_p^2, and any set of points $\mathcal{P} \subseteq \mathbb{F}_p^2$ with $|\mathcal{P}| \ll p^{15/13}$, we have

$$I(\mathcal{P}, C) \ll |\mathcal{P}|^{23/27} |C|^{23/27} + |\mathcal{P}|^{13/9} |C|^{12/27} + |C|.$$

This improves the trivial bound in the range

$$|\mathcal{P}|^{19/8} \leq |C| \leq |\mathcal{P}|^{20/7}.$$
Theorem (M., Pham and Warren (2021+))

For any set C of irreducible conics in \mathbb{F}_p^2, and any set of points $\mathcal{P} \subseteq \mathbb{F}_p^2$ with $|\mathcal{P}| \ll p^{15/13}$, we have

$$I(\mathcal{P}, C) \ll |\mathcal{P}|^{23/27} |C|^{23/27} + |\mathcal{P}|^{13/9} |C|^{12/27} + |C|.$$

- This improves the trivial bound in the range

 $$|\mathcal{P}|^{19/8} \leq |C| \leq |\mathcal{P}|^{20/7}.$$

- A much better bound is proved when \mathcal{P} is a Cartesian product.
Theorem (M., Pham and Warren (2021+))

Let $\mathcal{P} \subseteq \mathbb{F}_p^2$, with $|\mathcal{P}| \ll p^{15/13}$ and let \mathcal{C} be either a set of
- circles (in which case, suppose $p \equiv 3 \pmod{4}$), or
- parabolas of the form $y = ax^2 + bx + c$, or
- hyperbolas of the form $(x - a)(y - b) = c$.

Then

$$I(\mathcal{P}, \mathcal{C}) \ll |\mathcal{P}|^{15/19}|\mathcal{C}|^{15/19} + |\mathcal{P}|^{23/19}|\mathcal{C}|^{4/19} + |\mathcal{C}|.$$
Theorem (M., Pham and Warren (2021+))

Let $\mathcal{P} \subseteq \mathbb{F}_p^2$, with $|\mathcal{P}| \ll p^{15/13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3 \pmod{4}$), or
- parabolas of the form $y = ax^2 + bx + c$, or
- hyperbolas of the form $(x - a)(y - b) = c$.

Then

$$I(\mathcal{P}, \mathcal{C}) \ll |\mathcal{P}|^{15/19}|\mathcal{C}|^{15/19} + |\mathcal{P}|^{23/19}|\mathcal{C}|^{4/19} + |\mathcal{C}|.$$

This improves the trivial bound in the range

$$|\mathcal{P}|^{11/8} \ll |\mathcal{C}| \ll |\mathcal{P}|^{12/7}.$$
Theorem (M., Pham and Warren (2021+))

Let $\mathcal{P} \subseteq \mathbb{F}_p^2$, with $|\mathcal{P}| \ll p^{15/13}$ and let \mathcal{C} be either a set of
- circles (in which case, suppose $p \equiv 3 \pmod{4}$), or
- parabolas of the form $y = ax^2 + bx + c$, or
- hyperbolas of the form $(x - a)(y - b) = c$.

Then

$$I(\mathcal{P}, \mathcal{C}) \ll |\mathcal{P}|^{15/19} |\mathcal{C}|^{15/19} + |\mathcal{P}|^{23/19} |\mathcal{C}|^{4/19} + |\mathcal{C}|.$$

- This improves the trivial bound in the range

 $$|\mathcal{P}|^{11/8} \ll |\mathcal{C}| \ll |\mathcal{P}|^{12/7}.$$

- A much better bound is proved when \mathcal{P} is a Cartesian product.
The key observation for circles etc.: If we fix a point $q \in P$, then the incidence structure arising from P and the curves through q resembles that of a point-line one.

Specifically, we bound the number of k-rich curves: curves in C containing at least k points of P. This is converted to a bound on $I(P, C)$.

The overall strategy
The overall strategy

- **The key observation for circles etc.:** If we fix a point \(q \in \mathcal{P} \), then the incidence structure arising from \(\mathcal{P} \) and the curves through \(q \) resembles that of a point-line one.

- **The key observation for general conics:** If we fix two points \(q_1, q_2 \in \mathcal{P} \), then the incidence structure arising from \(\mathcal{P} \) and the curves through both points resembles that of a point-Möbius transformations one.
The overall strategy

- **The key observation for circles etc.**: If we fix a point \(q \in \mathcal{P} \), then the incidence structure arising from \(\mathcal{P} \) and the curves through \(q \) resembles that of a point-line one.

- **The key observation for general conics**: If we fix two points \(q_1, q_2 \in \mathcal{P} \), then the incidence structure arising from \(\mathcal{P} \) and the curves through both points resembles that of a point-Möbius transformations one.

- Based on these, initially we show that there cannot be too many such curves with too many points on them.
The overall strategy

- **The key observation for circles etc.:** If we fix a point $q \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through q resembles that of a point-line one.

- **The key observation for general conics:** If we fix two points $q_1, q_2 \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through both points resembles that of a point-Möbius transformations one.

- Based on these, initially we show that there cannot be too many such curves with too many points on them.

- This easily leads to a similar statement about all of \mathcal{C}. Specifically, we bound the number of *k-rich curves*: curves in \mathcal{C} containing at least k points of \mathcal{P}.
The overall strategy

- **The key observation for circles etc.:** If we fix a point \(q \in \mathcal{P} \), then the incidence structure arising from \(\mathcal{P} \) and the curves through \(q \) resembles that of a point-line one.

- **The key observation for general conics:** If we fix two points \(q_1, q_2 \in \mathcal{P} \), then the incidence structure arising from \(\mathcal{P} \) and the curves through both points resembles that of a point-Möbius transformations one.

- Based on these, initially we show that there cannot be too many such curves with too many points on them.

- This easily leads to a similar statement about all of \(\mathcal{C} \). Specifically, we bound the number of \emph{k-rich curves}: curves in \(\mathcal{C} \) containing at least \(k \) points of \(\mathcal{P} \).

- This is converted to a bound on \(I(\mathcal{P}, \mathcal{C}) \).
We write C_k for the set of k-rich curves in C (w.r.t. \mathcal{P}), i.e.

$$C_k = \{ C \in C : |C \cap \mathcal{P}| \geq k \}.$$
We write C_k for the set of k-rich curves in C (w.r.t. \mathcal{P}), i.e.

$$C_k = \{ C \in C : |C \cap \mathcal{P}| \geq k \}.$$

Our strategy (for circles etc.) is to first bound the number of k-rich curves through some fixed arbitrary q:

$$C_{q,k} = \{ C \in C : q \in C \quad \text{and} \quad |C \cap \mathcal{P}| \geq k \}.$$
We write C_k for the set of k-rich curves in C (w.r.t. \mathcal{P}), i.e.

$$C_k = \{ C \in C : |C \cap \mathcal{P}| \geq k \}.$$

Our strategy (for circles etc.) is to first bound the number of k-rich curves through some fixed arbitrary q:

$$C_{q,k} = \{ C \in C : q \in C \text{ and } |C \cap \mathcal{P}| \geq k \}.$$

Then note that

$$|C_k| \ll \frac{1}{k} \sum_{q \in \mathcal{P}} |C_{q,k}|.$$
Clearly

$$I(\mathcal{P}, \mathcal{C}) = \sum_{k=1}^{\lvert \mathcal{P} \rvert} \lvert \mathcal{C} = k \rvert k,$$

which we split as

$$\sum_{k \leq \Delta} \lvert \mathcal{C} = k \rvert k + \sum_{k > \Delta} \lvert \mathcal{C} = k \rvert k,$$

which is bounded by

$$\ll \Delta \lvert \mathcal{C} \rvert + \sum_{i} \sum_{\mathcal{C} \in \mathcal{C}_2} \Delta \leq \lvert \mathcal{C} \cap \mathcal{P} \rvert < 2^i + 1 \Delta (2^i \Delta)$$

Applying a bound on $$\lvert \mathcal{C} \rvert$$ and optimizing for $$\Delta$$ results in an incidence bound.
Clearly

\[I(\mathcal{P}, \mathcal{C}) = \sum_{k=1}^{\mathcal{P}} |C_{=k}| k, \]

which we split as

\[\sum_{k \leq \Delta} |C_{=k}| k + \sum_{k > \Delta} |C_{=k}| k, \]
Clearly

\[I(\mathcal{P}, \mathcal{C}) = \sum_{k=1}^{\frac{|\mathcal{P}|}{k=1}} |\mathcal{C}|_{k} k, \]

which we split as

\[\sum_{k \leq \Delta} |\mathcal{C}|_{k} k + \sum_{k > \Delta} |\mathcal{C}|_{k} k, \]

which is bounded by

\[\ll \Delta |\mathcal{C}| + \sum_{i} \sum_{\mathcal{C} \in \mathcal{C}} (2^{i} \Delta) \]

\[2^{i} \Delta \leq |\mathcal{C} \cap \mathcal{P}| < 2^{i+1} \Delta \]
From k-rich curves to incidences

Clearly

$$I(\mathcal{P}, \mathcal{C}) = \sum_{k=1}^{\vert \mathcal{P} \vert} \vert \mathcal{C}_{=k} \vert k,$$

which we split as

$$\sum_{k \leq \Delta} \vert \mathcal{C}_{=k} \vert k + \sum_{k > \Delta} \vert \mathcal{C}_{=k} \vert k,$$

which is bounded by

$$\ll \Delta \vert \mathcal{C} \vert + \sum_{i} \sum_{\mathcal{C} \in \mathcal{C}} (2^i \Delta) \quad 2^i \Delta \leq \vert \mathcal{C} \cap \mathcal{P} \vert < 2^{i+1} \Delta$$

and further by

$$\Delta \vert \mathcal{C} \vert + \sum_{i} \vert \mathcal{C}_{2i} \Delta \vert (2^i \Delta).$$
Clearly

$$I(\mathcal{P}, \mathcal{C}) = \sum_{k=1}^{\left|\mathcal{P}\right|} |\mathcal{C}_{=k}| k,$$

which we split as

$$\sum_{k \leq \Delta} |\mathcal{C}_{=k}| k + \sum_{k > \Delta} |\mathcal{C}_{=k}| k,$$

which is bounded by

$$\ll \Delta |\mathcal{C}| + \sum_i \sum_{\substack{\mathcal{C} \in \mathcal{C} \\ 2^i \Delta \leq |\mathcal{C} \cap \mathcal{P}| < 2^{i+1} \Delta}} (2^i \Delta)$$

and further by

$$\Delta |\mathcal{C}| + \sum_i |\mathcal{C}_{2^i \Delta}| (2^i \Delta).$$

Applying a bound on $|\mathcal{C}_k|$ and optimizing for Δ results in an incidence bound.
Bounding $|C_{q,k}|$ (for circles)

Fix $q \in \mathcal{P}$ and let C be a circle through it:

$$(x, y) \in \mathbb{F}^2_q : \quad (x - c)^2 + (y - d)^2 = r \quad \text{for some} \quad c, d, r \in \mathbb{F}_q.$$
Bounding $|\mathcal{C}_{q,k}|$ (for circles)

- Fix $q \in \mathcal{P}$ and let C be a circle through it:

 \[(x, y) \in \mathbb{F}^2_q : (x - c)^2 + (y - d)^2 = r \text{ for some } c, d, r \in \mathbb{F}_q.\]

- By a translation, we assume $q = (0, 0)$ and so $C = C_{a,b}$ must take the form

 \[(x, y) \in \mathbb{F}^2_q : (x - a)^2 + (y - b)^2 = a^2 + b^2 \text{ for some } a, b \in \mathbb{F}_q.\]
Bounding $|C_{q,k}|$ (for circles)

- Fix $q \in \mathcal{P}$ and let C be a circle through it:

 \[(x, y) \in \mathbb{F}_q^2 : \quad (x - c)^2 + (y - d)^2 = r \quad \text{for some } c, d, r \in \mathbb{F}_q.\]

- By a translation, we assume $q = (0, 0)$ and so $C = C_{a,b}$ must take the form

 \[(x, y) \in \mathbb{F}_q^2 : \quad (x - a)^2 + (y - b)^2 = a^2 + b^2 \quad \text{for some } a, b \in \mathbb{F}_q.\]

- Suppose C is k-rich and so the points
 \[(\alpha_1, \beta_1), \ldots, (\alpha_{k-1}, \beta_{k-1}) \in \mathcal{P} \setminus \{(0, 0)\} \text{ lie on } C.\]
Bounding $|\mathcal{C}_{q,k}|$ (for circles)

- Fix $q \in \mathcal{P}$ and let C be a circle through it:

 \[(x, y) \in \mathbb{F}_q^2 : (x - c)^2 + (y - d)^2 = r \text{ for some } c, d, r \in \mathbb{F}_q.\]

- By a translation, we assume $q = (0, 0)$ and so $C = C_{a,b}$ must take the form

 \[(x, y) \in \mathbb{F}_q^2 : (x - a)^2 + (y - b)^2 = a^2 + b^2 \text{ for some } a, b \in \mathbb{F}_q.\]

- Suppose C is k-rich and so the points

 \[(\alpha_1, \beta_1), \ldots, (\alpha_{k-1}, \beta_{k-1}) \in \mathcal{P} \setminus \{(0,0)\} \text{ lie on } C.\]

- We associate each of the points to a line l_{α_i, β_i} of the form

 \[(X, Y) \in \mathbb{F}_q^2 : -2\alpha_i X - 2\beta_i Y + \alpha_i^2 + \beta_i^2 = 0.\]
Bounding $|C_{q,k}|$ (for circles)

- Fix $q \in \mathcal{P}$ and let C be a circle through it:
 $$(x, y) \in \mathbb{F}_q^2 : (x - c)^2 + (y - d)^2 = r \text{ for some } c, d, r \in \mathbb{F}_q.$$

- By a translation, we assume $q = (0, 0)$ and so $C = C_{a,b}$ must take the form
 $$(x, y) \in \mathbb{F}_q^2 : (x-a)^2 + (y-b)^2 = a^2 + b^2 \text{ for some } a, b \in \mathbb{F}_q.$$

- Suppose C is k-rich and so the points
 $$(\alpha_1, \beta_1), \ldots, (\alpha_{k-1}, \beta_{k-1}) \in \mathcal{P} \setminus \{(0,0)\} \text{ lie on } C.$$

- We associate each of the points to a line l_{α_i, β_i} of the form
 $$(X, Y) \in \mathbb{F}_q^2 : -2\alpha_i X - 2\beta_i Y + \alpha_i^2 + \beta_i^2 = 0.$$

- By assuming $q \equiv 3 \pmod{4}$, -1 is a non-square and these lines are defined without multiplicity.
We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a,b} \mapsto (a, b)$ and $(\alpha_i, \beta_i) \mapsto l_{\alpha_i, \beta_i}$. So a k-rich circle is now a k-rich point (w.r.t. a set of lines L with $|L| = |P|$). That is $|C_{q,k}| = |Q_k|$ for some point set Q_k. The number of k-rich points Q_k (w.r.t. L) can be bounded simply using existing point-line incidence bounds based on the observation $k|Q_k| \leq I(Q_k, L)$. In higher dimensions, the same scheme reduces the point-circle problem to a hyperplane-point problem.
We have transformed our point-circle incidence relation to a line-point one. I.e. \(C_{a,b} \mapsto (a, b) \) and \((\alpha_i, \beta_i) \mapsto l_{\alpha_i, \beta_i} \).

So a \(k \)-rich circle is now a \(k \)-rich point (w.r.t. a set of lines \(\mathcal{L} \) with \(|\mathcal{L}| = |\mathcal{P}| \)).
We have transformed our point-circle incidence relation to a line-point one. I.e. \(C_{a,b} \mapsto (a, b) \) and \((\alpha_i, \beta_i) \mapsto l_{\alpha_i, \beta_i} \).

So a \(k \)-rich circle is now a \(k \)-rich point (w.r.t. a set of lines \(\mathcal{L} \) with \(|\mathcal{L}| = |\mathcal{P}| \)).

That is \(|C_{q,k}| = |Q_k| \) for some point set \(Q \).
We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a,b} \mapsto (a, b)$ and $(\alpha_i, \beta_i) \mapsto l_{\alpha_i, \beta_i}$.

So a k-rich circle is now a k-rich point (w.r.t. a set of lines \mathcal{L} with $|\mathcal{L}| = |\mathcal{P}|$).

That is $|C_{q,k}| = |Q_k|$ for some point set Q.

The number of k-rich points Q_k (w.r.t. \mathcal{L}) can be bounded simply using existing point-line incidence bounds based on the observation

$$k|Q_k| \leq I(Q_k, \mathcal{L}).$$
We have transformed our point-circle incidence relation to a line-point one. I.e. \(C_{a,b} \mapsto (a, b) \) and \((\alpha_i, \beta_i) \mapsto l_{\alpha_i, \beta_i} \).

So a \(k \)-rich circle is now a \(k \)-rich point (w.r.t. a set of lines \(\mathcal{L} \) with \(|\mathcal{L}| = |\mathcal{P}| \)).

That is \(|C_{q,k}| = |Q_k| \) for some point set \(Q \).

The number of \(k \)-rich points \(Q_k \) (w.r.t. \(\mathcal{L} \)) can be bounded simply using existing point-line incidence bounds based on the observation

\[
k|Q_k| \leq I(Q_k, \mathcal{L}).
\]

In higher dimensions, the same scheme reduces the point-circle problem to a hyperplane-point problem.
Key observation: Given (the homogenized form of) an irreducible conic γ, we have

γ is a Möbius transformation $\iff \{[0 : 1 : 0], [1 : 0 : 0]\} \subseteq \gamma$.
Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have

$$\gamma \text{ is a Möbius transformation } \iff \{[0 : 1 : 0], [1 : 0 : 0]\} \subseteq \gamma.$$

To bound $|C_k|$, we proceed as follows:
Key observation: Given (the homogenized form of) an irreducible conic γ, we have

γ is a Möbius transformation $\iff \{[0 : 1 : 0], [1 : 0 : 0]\} \subseteq \gamma$.

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in P$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in C incident to q_1 and q_2.

Let π be a projective transformation sending $q_1 \rightarrow [0 : 1 : 0], q_2 \rightarrow [1 : 0 : 0]$.

$\pi(C_{q_1,q_2,k})$ corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.

Then $|C_k| \leq (k^2)^{-1} \sum_{q_1, q_2 \in P} |C_{q_1,q_2,k}| \ll |P|^2 k^{2\max q_1, q_2 \in P} |C_{q_1,q_2,k}|$.

Ali Mohammadi
Point-conic incidences in \mathbb{F}_q
Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have

$$\gamma \text{ is a Möbius transformation } \iff \{[0 : 1 : 0], [1 : 0 : 0]\} \subseteq \gamma.$$

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in \mathcal{C} incident to q_1 and q_2.
- Let π be a projective transformation sending
 $$q_1 \rightarrow [0 : 1 : 0], \quad q_2 \rightarrow [1 : 0 : 0].$$
Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have

$$\gamma \text{ is a Möbius transformation } \iff \{[0:1:0],[1:0:0]\} \subseteq \gamma.$$

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in \mathcal{C} incident to q_1 and q_2.
- Let π be a projective transformation sending $q_1 \rightarrow [0:1:0]$, $q_2 \rightarrow [1:0:0]$.
- $\pi(C_{q_1,q_2,k})$ corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.
Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have

γ is a Möbius transformation $\iff \{[0 : 1 : 0], [1 : 0 : 0]\} \subseteq \gamma$.

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in C incident to q_1 and q_2.
- Let π be a projective transformation sending

 $q_1 \rightarrow [0 : 1 : 0], \quad q_2 \rightarrow [1 : 0 : 0]$.

- $\pi(C_{q_1,q_2,k})$ corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.

- Then

 $$|C_k| \leq \binom{k}{2}^{-1} \sum_{q_1,q_2 \in \mathcal{P}} |C_{q_1,q_2,k}| \ll \frac{|\mathcal{P}|^2}{k^2} \max_{q_1,q_2 \in \mathcal{P}} |C_{q_1,q_2,k}|.$$
Given $p = (p_1, p_2)$ and $q = (q_1, q_2)$, define their distance by

$$d(p, q) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$
Given \(p = (p_1, p_2) \) and \(q = (q_1, q_2) \), define their distance by

\[
d(p, q) = (p_1 - q_1)^2 + (p_2 - q_2)^2.
\]

The number of distances formed by \(\mathcal{P} \) is

\[
D(\mathcal{P}) = |\{d(p, q) : p, q \in \mathcal{P}\}|.
\]
The Erdős distinct distances problem

Given $p = (p_1, p_2)$ and $q = (q_1, q_2)$, define their distance by

$$d(p, q) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$

The number of distances formed by P is

$$D(P) = |\{d(p, q) : p, q \in P\}|.$$

Conjecture (Erdős (1946))

For finite $P \subset \mathbb{R}^2$, we have $|D(P)| \gg |P|(\log |P|)^{-1/2}$.
The Erdős distinct distances problem

Given $p = (p_1, p_2)$ and $q = (q_1, q_2)$, define their distance by

$$d(p, q) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$

The number of distances formed by P is

$$D(P) = |\{d(p, q) : p, q \in P\}|.$$

Conjecture (Erdős (1946))

For finite $P \subset \mathbb{R}^2$, we have $|D(P)| \gg |P|(\log |P|)^{-1/2}$.

Theorem (Guth and Katz (2015))

For finite $P \subset \mathbb{R}^2$, we have $|D(P)| \gg |P|(\log |P|)^{-1}$.

Ali Mohammadi

Point-conic incidences in \mathbb{F}_q
The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $q \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; q) = |\{d(p, q) : p \in \mathcal{P}\}|.$$
The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $q \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; q) = |\{d(p, q) : p \in \mathcal{P}\}|.$$

We also write

$$D_{\text{pin}}(\mathcal{P}) = \max_{q \in \mathcal{P}} D(\mathcal{P}; q)$$
The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $q \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; q) = |\{d(p, q) : p \in \mathcal{P}\}|.$$

We also write

$$D_{\text{pin}}(\mathcal{P}) = \max_{q \in \mathcal{P}} D(\mathcal{P}; q)$$

Conjecture (Erdős (1975))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}$.

Theorem (Katz and Tardos (2004))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|^{0.8641}$.

Theorem (Murphy, Petridis, Pham, Rudnev and Stevens (2021))

Let $\mathcal{P} \subset \mathbb{F}_q^2$ be finite and if $\text{char}(\mathbb{F}_q) = p$, suppose $p \equiv 3 \pmod{4}$ and $|\mathcal{P}| \leq p^{4/3}$. Then $|D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|^{2/3}$.

Ali Mohammadi
The pinned distinct distances problem

The number of distances of \(\mathcal{P} \), pinned at \(q \in \mathcal{P} \) is defined by

\[
D(\mathcal{P}; q) = |\{ d(p, q) : p \in \mathcal{P} \}|.
\]

We also write

\[
D_{\text{pin}}(\mathcal{P}) = \max_{q \in \mathcal{P}} D(\mathcal{P}; q)
\]

Conjecture (Erdős (1975))

\(\text{For finite } \mathcal{P} \subset \mathbb{R}^2, \text{ we have } |D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}. \)

Theorem (Katz and Tardos (2004))

\(\text{For finite } \mathcal{P} \subset \mathbb{R}^2, \text{ we have } |D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|^{0.8641...}. \)
The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $q \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; q) = |\{d(p, q) : p \in \mathcal{P}\}|.$$

We also write

$$D_{\text{pin}}(\mathcal{P}) = \max_{q \in \mathcal{P}} D(\mathcal{P}; q).$$

Conjecture (Erdős (1975))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}.$

Theorem (Katz and Tardos (2004))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|^{0.8641\ldots}.$

Theorem (Murphy, Petridis, Pham, Rudnev and Stevens (2021))

Let $\mathcal{P} \subset \mathbb{F}^2$ be finite and if $\text{char}(\mathbb{F}) = p$, suppose $p \equiv 3 \pmod{4}$ and $|\mathcal{P}| \leq p^{4/3}$. Then $|D_{\text{pin}}(\mathcal{P})| \gg |\mathcal{P}|^{2/3}.$
Related problems: Falconer-type questions

Finite field Falconer-type questions ask how large must \(P \subset \mathbb{F}_q^2 \) be such that \(D(P) \) (or \(D_{\text{pin}}(P) \)) is of size \(q \) (or up to constants).

Chapman, Erdogan, Hart, Iosevich and Koh (2012) showed if \(|P| \gg q^{4/3} \) then \(D(P) \gg q \).

Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.

Murphy and Petridis (2019) gave examples showing that for general \(\mathbb{F}_q \), the exponent \(4/3 \) is sharp.

Murphy, Petridis, Pham, Rudnev and Stevens (2021) improved the exponent \(4/3 \) (for \(D_{\text{pin}}(P) \)) to \(5/4 \) over prime order fields.
Finite field Falconer-type questions ask how large must $P \subset \mathbb{F}_q^2$ be such that $D(P)$ (or $D_{\text{pin}}(P)$) is of size q (or up to constants).

Chapman, Erdogan, Hart, Iosevich and Koh (2012) showed if $|P| \gg q^{4/3}$ then $D(P) \gg q$.

Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.

Murphy and Petridis (2019) gave examples showing that for general \mathbb{F}_q, the exponent $4/3$ is sharp.

Murphy, Petridis, Pham, Rudnev and Stevens (2021) improved the exponent $4/3$ (for D_{pin}) to $5/4$ over prime order fields.
Finite field Falconer-type questions ask how large must $\mathcal{P} \subset \mathbb{F}_q^2$ be such that $D(\mathcal{P})$ (or $D_{\text{pin}}(\mathcal{P})$) is of size q (or up to constants).

Chapman, Erdogan, Hart, Iosevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4/3}$ then $D(\mathcal{P}) \gg q$.

Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.
Finite field Falconer-type questions ask how large must $P \subset \mathbb{F}_q^2$ be such that $D(P)$ (or $D_{\text{pin}}(P)$) is of size q (or up to constants).

Chapman, Erdogan, Hart, Iosevich and Koh (2012) showed if $|P| \gg q^{4/3}$ then $D(P) \gg q$.

Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.

Murphy and Petridis (2019) gave examples showing that for general \mathbb{F}_q, the exponent $4/3$ is sharp.
Finite field Falconer-type questions ask how large must \(\mathcal{P} \subset \mathbb{F}_q^2 \) be such that \(D(\mathcal{P}) \) (or \(D_{\text{pin}}(\mathcal{P}) \)) is of size \(q \) (or up to constants).

Chapman, Erdogan, Hart, Iosevich and Koh (2012) showed if \(|\mathcal{P}| \gg q^{4/3} \) then \(D(\mathcal{P}) \gg q \).

Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.

Murphy and Petridis (2019) gave examples showing that for general \(\mathbb{F}_q \), the exponent 4/3 is sharp.

Murphy, Petridis, Pham, Rudnev and Stevens (2021) improved the exponent 4/3 (for \(D_{\text{pin}} \)) to 5/4 over prime order fields.
Noting that \(d(p, e) = f(p - e) \), where \(f \) is \((x, y) \mapsto x^2 + y^2\), one may naturally wish to study the distances problem for other choices of \(f \):
Pinned algebraic distances: variations

Noting that $d(p, e) = f(p - e)$, where f is $(x, y) \mapsto x^2 + y^2$, one may naturally wish to study the distances problem for other choices of f:

Theorem (M., Pham and Warren (2021+))

Let $\mathcal{E} \subset \mathbb{F}_p^2$ with $|\mathcal{E}| \ll p^{15/13}$ and $p \equiv 3 \pmod{4}$. Let $f(x, y)$ be one of the following polynomials:

- $x^2 + y^2$ *(usual distance function)*, or
- xy *(Minkowski distance function)*, or
- $y + x^2$ *(parabolic distance function)*.

There exists a point $p \in \mathcal{E}$ such that $|f(p - \mathcal{E})| \gg |\mathcal{E}|^{8/15}$, where

$$f(p - \mathcal{E}) := \{f(p - e) : e \in \mathcal{E}\}.$$

Ali Mohammadi

Point-conic incidences in \mathbb{F}_q
For $p \in \mathcal{E}$, let

$$C_p = \{ x \in \mathbb{F}_p^2 : f(p - x) = t \text{ with } t \in f(p - \mathcal{E}) \setminus \{0\} \}$$
For $p \in \mathcal{E}$, let

$$C_p = \{ x \in \mathbb{F}_p^2 : f(p - x) = t \text{ with } t \in f(p - \mathcal{E}) \setminus \{0\} \}$$

Let $C = \bigcup_{p \in \mathcal{E}} C_p$.
Pinned algebraic distances: proof

For $p \in \mathcal{E}$, let

$$C_p = \{x \in \mathbb{F}_p^2 : f(p - x) = t \quad \text{with} \quad t \in f(p - \mathcal{E}) \setminus \{0\}\}$$

Let $C = \bigcup_{p \in \mathcal{E}} C_p$.

Note that $I(\mathcal{E}, C) \gg |\mathcal{E}|^2$.
For $p \in \mathcal{E}$, let

$$C_p = \{x \in \mathbb{F}_p^2 : f(p - x) = t \quad \text{with} \quad t \in f(p - \mathcal{E}) \setminus \{0\}\}$$

Let $C = \bigcup_{p \in \mathcal{E}} C_p$.

Note that $I(\mathcal{E}, C) \gg |\mathcal{E}|^2$.

Further note that

$$|C| \leq \sum_{p \in \mathcal{E}} |f(p - \mathcal{E})| \leq |\mathcal{E}| \cdot \max_{p \in \mathcal{E}} |f(p - \mathcal{E})|.$$
For $p \in \mathcal{E}$, let

$$C_p = \{x \in \mathbb{F}_p^2 : f(p - x) = t \text{ with } t \in f(p - \mathcal{E}) \setminus \{0\}\}$$

Let $C = \bigcup_{p \in \mathcal{E}} C_p$.

Note that $I(\mathcal{E}, C) \gg |\mathcal{E}|^2$.

Further note that

$$|C| \leq \sum_{p \in \mathcal{E}} |f(p - \mathcal{E})| \leq |\mathcal{E}| \cdot \max_{p \in \mathcal{E}} |f(p - \mathcal{E})|.$$

An upper bound on $I(\mathcal{E}, C)$ follows from our point-conic incidence bound, yielding the result.
Let $p = (p_1, \ldots, p_d)$ and $q = (q_1, \ldots, q_d)$, be points in F_q^d. Then we write

$$d(p, q) = (p_1 - q_1)^2 + \cdots + (p_d - q_d)^2.$$
Let \(p = (p_1, \ldots, p_d) \) and \(q = (q_1, \ldots, q_d) \), be points in \(\mathbb{F}_q^d \). Then we write

\[
d(p, q) = (p_1 - q_1)^2 + \cdots + (p_d - q_d)^2.
\]

We define the number of distances between point sets \(\mathcal{E} \) and \(\mathcal{F} \), in \(\mathbb{F}_q^d \), by

\[
D(\mathcal{E}, \mathcal{F}) = |\{d(e, f) : e \in \mathcal{E} \text{ and } f \in \mathcal{F}\}|.
\]
Let $p = (p_1, \ldots, p_d)$ and $q = (q_1, \ldots, q_d)$, be points in \mathbb{F}_q^d. Then we write

$$d(p, q) = (p_1 - q_1)^2 + \cdots + (p_d - q_d)^2.$$

We define the number of distances between point sets \mathcal{E} and \mathcal{F}, in \mathbb{F}_q^d, by

$$D(\mathcal{E}, \mathcal{F}) = |\{d(e, f) : e \in \mathcal{E} \text{ and } f \in \mathcal{F}\}|.$$
Related problems: higher dimensions etc.

- Let \(\mathbf{p} = (p_1, \ldots, p_d) \) and \(\mathbf{q} = (q_1, \ldots, q_d) \), be points in \(\mathbb{F}_q^d \).
- Then we write
 \[
d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + \cdots + (p_d - q_d)^2.
 \]
- We define the number of distances between point sets \(\mathcal{E} \) and \(\mathcal{F} \), in \(\mathbb{F}_q^d \), by
 \[
 D(\mathcal{E}, \mathcal{F}) = |\{d(e, f) : e \in \mathcal{E} \text{ and } f \in \mathcal{F}\}|.
 \]

Theorem (Shparlinski (2006))

For \(\mathcal{E}, \mathcal{F} \subset \mathbb{F}_q^d \), we have

\[
D(\mathcal{E}, \mathcal{F}) \gg \min \left\{ q, \frac{|\mathcal{E}||\mathcal{F}|}{q^d} \right\}.
\]

In particular, if \(|\mathcal{E}||\mathcal{F}| \geq q^{d+1} \) then \(D(\mathcal{E}, \mathcal{F}) \gg q \).
Theorem (Koh and Sun (2014))

For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_q^d$, if $d \geq 3$ is odd, then

$$D(\mathcal{E}, \mathcal{F}) \geq \begin{cases} \min \left\{ \frac{q}{2}, \frac{|\mathcal{E}||\mathcal{F}|}{8q^{d-1}} \right\} & \text{if } 1 \leq |\mathcal{E}| < q^{\frac{d-1}{2}} \\ \min \left\{ \frac{q}{2}, \frac{|\mathcal{F}|}{8q^{d-1}} \right\} & \text{if } q^{\frac{d-1}{2}} \leq |\mathcal{E}| < q^{\frac{d+1}{2}} \\ \min \left\{ \frac{q}{2}, \frac{|\mathcal{E}||\mathcal{F}|}{2q^d} \right\} & \text{if } q^{\frac{d+1}{2}} \leq |\mathcal{E}| \leq q^d \end{cases}$$
Theorem (Koh and Sun (2014))

For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_q^d$, if $d \geq 2$ is even, under the assumption $|\mathcal{E}||\mathcal{F}| \geq 16q^d$, one has

$$D(\mathcal{E}, \mathcal{F}) \geq \begin{cases} \frac{q}{144} & \text{for } 1 \leq |\mathcal{E}| < q^{d-1} \\ \frac{1}{144} \min \left\{ q, \frac{|\mathcal{F}|}{2q^{d-1}} \right\} & \text{for } q^{\frac{d-1}{2}} \leq |\mathcal{E}| < q^{d+1} \\ \frac{1}{144} \min \left\{ q, \frac{2|\mathcal{E}||\mathcal{F}|}{q^d} \right\} & \text{for } q^{\frac{d+1}{2}} \leq |\mathcal{E}| \leq q^d \end{cases}.$$
Theorem (M., Pham and Warren (2021+))

Let \mathcal{E}, \mathcal{F} be sets in \mathbb{F}_q^d. Assume that $|\mathcal{E}| \sim |\mathcal{F}| \leq q^{\frac{d+1}{2}}$, then we have

$$D(\mathcal{E}, \mathcal{F}) \gg \min \left\{ q, \frac{|\mathcal{E}|^{1/2} |\mathcal{F}|^{1/2}}{q^{\frac{d-1}{2}}} \right\}.$$
Theorem (M., Pham and Warren (2021+))

Let \mathcal{E}, \mathcal{F} be sets in \mathbb{F}_q^d. Assume that $|\mathcal{E}| \sim |\mathcal{F}| \leq q^{\frac{d+1}{2}}$, then we have

$$D(\mathcal{E}, \mathcal{F}) \gg \min \left\{ q, \frac{|\mathcal{E}|^{1/2}|\mathcal{F}|^{1/2}}{q^{\frac{d-1}{2}}} \right\}.$$

That is, the condition $|\mathcal{E}| |\mathcal{F}| \gg q^d$ is removed from Koh-Sun’s result for even d in the range $q^{\frac{d-1}{2}} \leq |\mathcal{E}| \leq q^{\frac{d+1}{2}}$.

Thank you for your attention!