Bounds on point-conic incidences over finite fields and applications FGC-IPM Number Theory Seminar

Ali Mohammadi Joint work with Thang Pham and Audie Warren (arXiv:2111.04072)

Institute for Research in Fundamental Sciences (IPM)

23 November 2021

 $\bullet\,$ We use $\mathbb F$ to denote an arbitrary field.

< => < => < => < =>

æ

- $\bullet\,$ We use $\mathbb F$ to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.

伺 ト イ ヨ ト イ

- We use $\mathbb F$ to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.

- We use ${\mathbb F}$ to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.
- *P* will be a set of points, *L* a set of lines and *C* a set of curves
 (generally conics) over 𝔽^d (generally *d* = 2).

- We use ${\mathbb F}$ to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.
- *P* will be a set of points, *L* a set of lines and *C* a set of curves
 (generally conics) over 𝔽^d (generally *d* = 2).
- Bold lowercase letters, e.g. *p*, will be points.

- $\bullet\,$ We use $\mathbb F$ to denote an arbitrary field.
- \mathbb{F}_q is a finite field of order q and characteristic p.
- *P* will be a set of points, *L* a set of lines and *C* a set of curves (generally conics) over 𝔽^d (generally *d* = 2).
- Bold lowercase letters, e.g. *p*, will be points.
- A ≪ B and B ≫ A will mean A ≤ CB for some absolute constant C (not always the same).

Let $\mathbb F$ be a field. Given a finite set of points $\mathcal P$ and a finite set of algebraic curves $\mathcal C$, we denote the number of incidences between $\mathcal P$ and $\mathcal C$ by

$$I(\mathcal{P},\mathcal{C}) = |\{(\boldsymbol{p},\mathcal{C}) \in \mathcal{P} \times \mathcal{C} : \boldsymbol{p} \in \mathcal{C}\}|.$$

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C} , we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$I(\mathcal{P},\mathcal{C}) = |\{(\boldsymbol{p},\mathcal{C}) \in \mathcal{P} \times \mathcal{C} : \boldsymbol{p} \in \mathcal{C}\}|.$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2. Then the curve $C = \{ \mathbf{x} \in \mathbb{FP}^2 : \phi(\mathbf{x}) = 0 \}$ is called a *conic*.

Let $\mathbb F$ be a field. Given a finite set of points $\mathcal P$ and a finite set of algebraic curves $\mathcal C$, we denote the number of incidences between $\mathcal P$ and $\mathcal C$ by

$$I(\mathcal{P},\mathcal{C}) = |\{(\boldsymbol{p},\mathcal{C}) \in \mathcal{P} \times \mathcal{C} : \boldsymbol{p} \in \mathcal{C}\}|.$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2. Then the curve $C = \{x \in \mathbb{FP}^2 : \phi(x) = 0\}$ is called a *conic*. A conic is called *irreducible* or *nondegenerate* if ϕ cannot be written as the product of two degree 1 polynomials.

Let $\mathbb F$ be a field. Given a finite set of points $\mathcal P$ and a finite set of algebraic curves $\mathcal C$, we denote the number of incidences between $\mathcal P$ and $\mathcal C$ by

$$I(\mathcal{P},\mathcal{C}) = |\{(\boldsymbol{p},\mathcal{C}) \in \mathcal{P} \times \mathcal{C} : \boldsymbol{p} \in \mathcal{C}\}|.$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2. Then the curve $C = \{x \in \mathbb{FP}^2 : \phi(x) = 0\}$ is called a *conic*. A conic is called *irreducible* or *nondegenerate* if ϕ cannot be written as the product of two degree 1 polynomials.

This talk will be mostly about upper bounds on $I(\mathcal{P}, \mathcal{C})$, where $\mathcal{P} \subset \mathbb{F}_p^2$ and \mathcal{C} is a set of irreducible conics over \mathbb{F}_p .

Theorem (Kővári-Sós-Turán)

Suppose that the incidence graph on $\mathcal{P} \times \mathcal{C}$ (over \mathbb{F}^2) contains no copy of $K_{s,t}$, i.e. for any s points in \mathcal{P} there are fewer than t curves in \mathcal{C} incident to it, then

$$I(\mathcal{P},\mathcal{C}) \ll t^{1/s}|\mathcal{P}|\mathcal{C}|^{1-1/s} + s|\mathcal{C}|.$$

The roles of \mathcal{P} and \mathcal{C} and respectively s and t may be reversed.

Theorem (Kővári-Sós-Turán)

Suppose that the incidence graph on $\mathcal{P} \times \mathcal{C}$ (over \mathbb{F}^2) contains no copy of $K_{s,t}$, i.e. for any s points in \mathcal{P} there are fewer than t curves in \mathcal{C} incident to it, then

$$I(\mathcal{P}, \mathcal{C}) \ll t^{1/s} |\mathcal{P}|\mathcal{C}|^{1-1/s} + s|\mathcal{C}|.$$

The roles of \mathcal{P} and \mathcal{C} and respectively s and t may be reversed.

Writing $(\mathcal{P}, \mathcal{C}, I)$ for the incidence graph on \mathcal{P} and \mathcal{C} , we have:

С	$(\mathcal{P},\mathcal{C},I)$ has no	$(\mathcal{C},\mathcal{P},I)$ has no
Lines	K _{2,2}	K _{2,2}
General irreducible conics	K _{5,2}	K _{2,5}
Circles and parabolas	K _{3,2}	K _{2,3}

• Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

 $I(\mathcal{P},\mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$

• Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

 $I(\mathcal{P},\mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$

• In particular, if $|\mathcal{P}| = |\mathcal{L}| = N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3/2}$.

 \bullet Two lines over the plane \mathbb{F}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

 $I(\mathcal{P},\mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$

• In particular, if $|\mathcal{P}| = |\mathcal{L}| = N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3/2}$.

• An irreducible conic is determined uniquely by five points (with no three collinear). Also by Bézout's theorem, any two distinct conics meet in at most four distinct points. So

 $I(\mathcal{P},\mathcal{C}) \ll \min\{|\mathcal{P}||\mathcal{C}|^{4/5} + |\mathcal{C}|, |\mathcal{P}|^{1/2}|\mathcal{C}| + |\mathcal{P}|\}.$

 $\bullet\,$ Two lines over the plane \mathbb{P}^2 meet in at most one point. Also for any two points, there is at most one line passing both. So

 $I(\mathcal{P},\mathcal{L}) \ll \min\{|\mathcal{L}|^{1/2}|\mathcal{P}| + |\mathcal{L}|, |\mathcal{P}|^{1/2}|\mathcal{L}| + |\mathcal{P}|\}.$

• In particular, if $|\mathcal{P}| = |\mathcal{L}| = N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3/2}$.

• An irreducible conic is determined uniquely by five points (with no three collinear). Also by Bézout's theorem, any two distinct conics meet in at most four distinct points. So

 $I(\mathcal{P},\mathcal{C}) \ll \min\{|\mathcal{P}||\mathcal{C}|^{4/5} + |\mathcal{C}|, |\mathcal{P}|^{1/2}|\mathcal{C}| + |\mathcal{P}|\}.$

 Any two parabolas or circles meet in at most two points. Also they are determined uniquely by three (non-collinear) points. So

$$I(\mathcal{P},\mathcal{C}) \ll \min\{|\mathcal{P}||\mathcal{C}|^{2/3} + |\mathcal{C}|, |\mathcal{P}|^{1/2}|\mathcal{C}| + |\mathcal{P}|\}.$$

¬ • • **=** • • **=** •

Incidences: some well-known results

Over \mathbb{R}^2 : (This was extended to \mathbb{C}^2 by Toth in 2015.)

Theorem (Szemerédi-Trotter (1983))

For finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{R}^2 , we have

 $I(\mathcal{P},\mathcal{L}) \ll |\mathcal{P}|^{2/3}|\mathcal{L}|^{2/3} + |\mathcal{P}| + |\mathcal{L}|.$

Incidences: some well-known results

Over \mathbb{R}^2 : (This was extended to \mathbb{C}^2 by Toth in 2015.)

Theorem (Szemerédi-Trotter (1983))

For finite sets of points $\mathcal P$ and lines $\mathcal L$ over $\mathbb R^2,$ we have

 $I(\mathcal{P},\mathcal{L}) \ll |\mathcal{P}|^{2/3}|\mathcal{L}|^{2/3} + |\mathcal{P}| + |\mathcal{L}|.$

Over \mathbb{F}_p^2 : (Various explicit forms, based on the same principal ideas, appeared later.)

Theorem (Bourgain-Katz-Tao (2004))

For any point set \mathcal{P} and any line set \mathcal{L} in \mathbb{F}_p^2 with $|\mathcal{P}| = |\mathcal{L}| = N = p^{\alpha}$, $0 < \alpha < 2$, we have

$$I(\mathcal{P},\mathcal{L}) \ll N^{\frac{3}{2}-\varepsilon}, \text{ where } \varepsilon = \varepsilon(\alpha) > 0.$$

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2 , with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if char(\mathbb{F}) = p > 0, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

 $I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15} |\mathcal{L}|^{11/15}.$

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2 , with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if char(\mathbb{F}) = p > 0, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

 $I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15} |\mathcal{L}|^{11/15}.$

 \bullet Stevens and de Zeeuw proved a substantially stronger bound when ${\cal P}$ is a Cartesian product, which they used to deduce the result above.

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2 , with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if char(\mathbb{F}) = p > 0, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

 $I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15} |\mathcal{L}|^{11/15}.$

- Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.
- Their result is a consequence of a point-plane incidence bound of Rudnev (2018).

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^2 , with $|\mathcal{L}|^{7/8} \ll |\mathcal{P}| \ll |\mathcal{L}|^{8/7}$, if char(\mathbb{F}) = p > 0, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

 $I(\mathcal{P}, \mathcal{L}) \ll |\mathcal{P}|^{11/15} |\mathcal{L}|^{11/15}.$

- \bullet Stevens and de Zeeuw proved a substantially stronger bound when $\mathcal P$ is a Cartesian product, which they used to deduce the result above.
- Their result is a consequence of a point-plane incidence bound of Rudnev (2018).
- For $|\mathcal{P}| = |\mathcal{L}| = N \ll p^{15/11}$, the above result gives $I(\mathcal{P}, \mathcal{L}) \ll N^{3/2-1/30} = N^{4/3+2/15}$ (the bound $N^{4/3}$ would be tight).

Incidences: some well-known results

Point-line incidences for "large sets" in \mathbb{F}_q :

Theorem (Vinh (2011))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}_a^2 , we have

$$\left| I(\mathcal{P},\mathcal{L}) - rac{|\mathcal{P}||\mathcal{L}|}{q}
ight| \leq \sqrt{q|\mathcal{P}||\mathcal{L}|}.$$

Incidences: some well-known results

Point-line incidences for "large sets" in \mathbb{F}_q :

Theorem (Vinh (2011))

Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}_q^2 , we have

$$\left| I(\mathcal{P},\mathcal{L}) - rac{|\mathcal{P}||\mathcal{L}|}{q}
ight| \leq \sqrt{q|\mathcal{P}||\mathcal{L}|}.$$

More generally:

Theorem (Vinh (2011))

Let \mathcal{P} be a set of points and \mathcal{H} be a set of hyperplanes in \mathbb{F}_q^d . The number of incidences between \mathcal{P} and \mathcal{H} satisfies

$$\left|I(\mathcal{P},\mathcal{H})-rac{|\mathcal{P}||\mathcal{H}|}{q}
ight|\leq \sqrt{q^{d-1}|\mathcal{P}||\mathcal{H}|}.$$

Recall a Möbius transformation is the mapping

$$f(x) = rac{ax+b}{cx+d}$$
, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{F}_p).$

 Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over 𝑘_p.

Recall a Möbius transformation is the mapping

$$f(x) = rac{ax+b}{cx+d}$$
, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p).$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over 𝔽_p.
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae (x - a)(y - b) = 1 with (a, b) coming from Cartesian products.

Recall a Möbius transformation is the mapping

$$f(x) = rac{ax+b}{cx+d}$$
, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p).$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over 𝔽_p.
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae (x - a)(y - b) = 1 with (a, b) coming from Cartesian products.
- Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov's result, as well as a result allowing for more general (*a*, *b*).

Recall a Möbius transformation is the mapping

$$f(x) = rac{ax+b}{cx+d}$$
, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_p).$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over 𝑘_p.
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae (x - a)(y - b) = 1 with (a, b) coming from Cartesian products.
- Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov's result, as well as a result allowing for more general (*a*, *b*).
- Wheeler and Warren (2021+) proved a quantitative incidence bound concerning more general Möbius transformations.

• Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.

伺 ト イヨト イヨト

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y x^2)$ to the plane.

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y x^2)$ to the plane.
- Note that ϕ is a bijection.

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y x^2)$ to the plane.
- Note that ϕ is a bijection.
- It maps each $C_{a,b}$ to the line $I_{a,b}$ of the form y = ax + b.

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y x^2)$ to the plane.
- Note that ϕ is a bijection.
- It maps each $C_{a,b}$ to the line $I_{a,b}$ of the form y = ax + b.
- $\boldsymbol{\rho} \in C_{\boldsymbol{a},b} \iff \phi(\boldsymbol{p}) \in I_{\boldsymbol{a},b}.$

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y x^2)$ to the plane.
- Note that \(\phi\) is a bijection.
- It maps each $C_{a,b}$ to the line $I_{a,b}$ of the form y = ax + b.

•
$$\boldsymbol{p} \in \mathcal{C}_{\boldsymbol{a},\boldsymbol{b}} \iff \phi(\boldsymbol{p}) \in I_{\boldsymbol{a},\boldsymbol{b}}.$$

• So $I(\mathcal{P}, \mathcal{C}) = I(\phi(\mathcal{P}), \mathcal{L})$ where $|\mathcal{L}| = |\mathcal{C}|$ and $|\mathcal{P}| = |\phi(\mathcal{P})|$.

- Let C be parabolas $C_{a,b}$ of the form $y = x^2 + ax + b$.
- Apply the mapping $\phi : \mathbb{F}_q^2 \to \mathbb{F}_q^2$, defined by $(x, y) \mapsto (x, y x^2)$ to the plane.
- Note that \(\phi\) is a bijection.
- It maps each $C_{a,b}$ to the line $I_{a,b}$ of the form y = ax + b.

•
$$\boldsymbol{\rho} \in \mathcal{C}_{\boldsymbol{a},\boldsymbol{b}} \iff \phi(\boldsymbol{\rho}) \in I_{\boldsymbol{a},\boldsymbol{b}}.$$

- So $I(\mathcal{P}, \mathcal{C}) = I(\phi(\mathcal{P}), \mathcal{L})$ where $|\mathcal{L}| = |\mathcal{C}|$ and $|\mathcal{P}| = |\phi(\mathcal{P})|$.
- This idea was due to Pham, Vinh and de Zeeuw (2018).

For any set C of irreducible conics in \mathbb{F}_p^2 , and any set of points $\mathcal{P} \subseteq \mathbb{F}_p^2$ with $|\mathcal{P}| \ll p^{15/13}$, we have

 $I(\mathcal{P}, \mathcal{C}) \ll |\mathcal{P}|^{23/27} |\mathcal{C}|^{23/27} + |\mathcal{P}|^{13/9} |\mathcal{C}|^{12/27} + |\mathcal{C}|.$

For any set C of irreducible conics in \mathbb{F}_p^2 , and any set of points $\mathcal{P} \subseteq \mathbb{F}_p^2$ with $|\mathcal{P}| \ll p^{15/13}$, we have

$$I(\mathcal{P}, \mathcal{C}) \ll |\mathcal{P}|^{23/27} |\mathcal{C}|^{23/27} + |\mathcal{P}|^{13/9} |\mathcal{C}|^{12/27} + |\mathcal{C}|.$$

• This improves the trivial bound in the range

$$|\mathcal{P}|^{19/8} \le |\mathcal{C}| \le |\mathcal{P}|^{20/7}.$$

For any set C of irreducible conics in \mathbb{F}_p^2 , and any set of points $\mathcal{P} \subseteq \mathbb{F}_p^2$ with $|\mathcal{P}| \ll p^{15/13}$, we have

$$I(\mathcal{P}, \mathcal{C}) \ll |\mathcal{P}|^{23/27} |\mathcal{C}|^{23/27} + |\mathcal{P}|^{13/9} |\mathcal{C}|^{12/27} + |\mathcal{C}|.$$

• This improves the trivial bound in the range

$$|\mathcal{P}|^{19/8} \le |\mathcal{C}| \le |\mathcal{P}|^{20/7}.$$

 \bullet A much better bound is proved when ${\cal P}$ is a Cartesian product.

Let $\mathcal{P} \subseteq \mathbb{F}_p^2$, with $|\mathcal{P}| \ll p^{15/13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3 \pmod{4}$, or
- parabolas of the form $y = ax^2 + bx + c$, or
- hyperbolas of the form (x a)(y b) = c.

Then

$$I(P,C) \ll |\mathcal{P}|^{15/19} |\mathcal{C}|^{15/19} + |\mathcal{P}|^{23/19} |\mathcal{C}|^{4/19} + |\mathcal{C}|.$$

Let $\mathcal{P} \subseteq \mathbb{F}_p^2$, with $|\mathcal{P}| \ll p^{15/13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3 \pmod{4}$, or
- parabolas of the form $y = ax^2 + bx + c$, or
- hyperbolas of the form (x a)(y b) = c.

Then

$$I(P,C) \ll |\mathcal{P}|^{15/19} |\mathcal{C}|^{15/19} + |\mathcal{P}|^{23/19} |\mathcal{C}|^{4/19} + |\mathcal{C}|.$$

• This improves the trivial bound in the range

$$|\mathcal{P}|^{11/8} \ll |\mathcal{C}| \ll |\mathcal{P}|^{12/7}.$$

Let $\mathcal{P} \subseteq \mathbb{F}_p^2$, with $|\mathcal{P}| \ll p^{15/13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3 \pmod{4}$, or
- parabolas of the form $y = ax^2 + bx + c$, or
- hyperbolas of the form (x a)(y b) = c.

Then

$$I(P,C) \ll |\mathcal{P}|^{15/19} |\mathcal{C}|^{15/19} + |\mathcal{P}|^{23/19} |\mathcal{C}|^{4/19} + |\mathcal{C}|.$$

• This improves the trivial bound in the range

$$|\mathcal{P}|^{11/8} \ll |\mathcal{C}| \ll |\mathcal{P}|^{12/7}.$$

 \bullet A much better bound is proved when ${\cal P}$ is a Cartesian product.

 The key observation for circles etc.: If we fix a point *q* ∈ *P*, then the incidence structure arising from *P* and the curves through *q* resembles that of a point-line one.

- The key observation for circles etc.: If we fix a point *q* ∈ *P*, then the incidence structure arising from *P* and the curves through *q* resembles that of a point-line one.
- The key observation for general conics: If we fix two points *q*₁, *q*₂ ∈ *P*, then the incidence structure arising from *P* and the curves through both points resembles that of a point-Möbius transformations one.

- The key observation for circles etc.: If we fix a point *q* ∈ *P*, then the incidence structure arising from *P* and the curves through *q* resembles that of a point-line one.
- The key observation for general conics: If we fix two points *q*₁, *q*₂ ∈ *P*, then the incidence structure arising from *P* and the curves through both points resembles that of a point-Möbius transformations one.
- Based on these, initially we show that there cannot be too many such curves with too many points on them.

- The key observation for circles etc.: If we fix a point *q* ∈ *P*, then the incidence structure arising from *P* and the curves through *q* resembles that of a point-line one.
- The key observation for general conics: If we fix two points *q*₁, *q*₂ ∈ *P*, then the incidence structure arising from *P* and the curves through both points resembles that of a point-Möbius transformations one.
- Based on these, initially we show that there cannot be too many such curves with too many points on them.
- This easily leads to a similar statement about all of C.
 Specifically, we bound the number of k-rich curves: curves in C containing at least k points of P.

- The key observation for circles etc.: If we fix a point *q* ∈ *P*, then the incidence structure arising from *P* and the curves through *q* resembles that of a point-line one.
- The key observation for general conics: If we fix two points *q*₁, *q*₂ ∈ *P*, then the incidence structure arising from *P* and the curves through both points resembles that of a point-Möbius transformations one.
- Based on these, initially we show that there cannot be too many such curves with too many points on them.
- This easily leads to a similar statement about all of C.
 Specifically, we bound the number of k-rich curves: curves in C containing at least k points of P.
- This is converted to a bound on $I(\mathcal{P}, \mathcal{C})$.

医子宫医子宫 医

• We write C_k for the set of k-rich curves in C (w.r.t. P), i.e.

$$\mathcal{C}_k = \{ C \in \mathcal{C} : |C \cap \mathcal{P}| \ge k \}.$$

伺 ト イヨト イヨト

• We write C_k for the set of k-rich curves in C (w.r.t. P), i.e.

$$\mathcal{C}_k = \{ \mathcal{C} \in \mathcal{C} : |\mathcal{C} \cap \mathcal{P}| \ge k \}.$$

• Our strategy (for circles etc.) is to first bound the number of *k*-rich curves through some fixed arbitrary **q**:

$$\mathcal{C}_{\boldsymbol{q},k} = \{ \boldsymbol{C} \in \mathcal{C} : \boldsymbol{q} \in \boldsymbol{C} \text{ and } |\boldsymbol{C} \cap \mathcal{P}| \geq k \}.$$

• We write C_k for the set of k-rich curves in C (w.r.t. P), i.e.

$$\mathcal{C}_k = \{ \mathcal{C} \in \mathcal{C} : |\mathcal{C} \cap \mathcal{P}| \ge k \}.$$

• Our strategy (for circles etc.) is to first bound the number of *k*-rich curves through some fixed arbitrary **q**:

$$\mathcal{C}_{\boldsymbol{q},k} = \{ \boldsymbol{C} \in \mathcal{C} : \boldsymbol{q} \in \boldsymbol{C} \text{ and } |\boldsymbol{C} \cap \mathcal{P}| \geq k \}.$$

Then note that

$$|\mathcal{C}_k| \ll \frac{1}{k} \sum_{\boldsymbol{q} \in \mathcal{P}} |\mathcal{C}_{\boldsymbol{q},k}|.$$

• Clearly

$$I(\mathcal{P},\mathcal{C}) = \sum_{k=1}^{|\mathcal{P}|} |\mathcal{C}_{=k}|k,$$

æ

・日・ ・ ヨ・ ・ ヨ・

• Clearly

$$I(\mathcal{P},\mathcal{C}) = \sum_{k=1}^{|\mathcal{P}|} |\mathcal{C}_{=k}|k,$$

• which we split as

$$\sum_{k\leq\Delta} |\mathcal{C}_{=k}|k + \sum_{k>\Delta} |\mathcal{C}_{=k}|k,$$

÷,

⇒ →

• Clearly

$$I(\mathcal{P},\mathcal{C}) = \sum_{k=1}^{|\mathcal{P}|} |\mathcal{C}_{=k}|k,$$

• which we split as

$$\sum_{k\leq\Delta}|\mathcal{C}_{=k}|k+\sum_{k>\Delta}|\mathcal{C}_{=k}|k,$$

• which is bounded by

$$\ll \Delta |\mathcal{C}| + \sum_{i} \sum_{\substack{C \in \mathcal{C} \\ 2^{i}\Delta \leq |C \cap \mathcal{P}| < 2^{i+1}\Delta}} (2^{i}\Delta)$$

 $\exists \rightarrow$

Clearly

$$I(\mathcal{P},\mathcal{C}) = \sum_{k=1}^{|\mathcal{P}|} |\mathcal{C}_{=k}|k,$$

• which we split as

$$\sum_{k\leq\Delta} |\mathcal{C}_{=k}|k + \sum_{k>\Delta} |\mathcal{C}_{=k}|k,$$

• which is bounded by

$$\ll \Delta |\mathcal{C}| + \sum_{i} \sum_{\substack{C \in \mathcal{C} \\ 2^{i}\Delta \leq |\mathcal{C} \cap \mathcal{P}| < 2^{i+1}\Delta}} (2^{i}\Delta)$$

• and further by

$$\Delta |\mathcal{C}| + \sum_{i} |\mathcal{C}_{2^{i}\Delta}| (2^{i}\Delta).$$

Clearly

$$I(\mathcal{P},\mathcal{C}) = \sum_{k=1}^{|\mathcal{P}|} |\mathcal{C}_{=k}|k,$$

which we split as

$$\sum_{k\leq\Delta} |\mathcal{C}_{=k}|k + \sum_{k>\Delta} |\mathcal{C}_{=k}|k,$$

which is bounded by

$$\ll \Delta |\mathcal{C}| + \sum_i \sum_{\substack{C \in \mathcal{C} \ 2^i \Delta \leq |C \cap \mathcal{P}| < 2^{i+1} \Delta}} (2^i \Delta)$$

and further by

$$\Delta |\mathcal{C}| + \sum_{i} |\mathcal{C}_{2^{i}\Delta}| (2^{i}\Delta).$$

Applying a bound on |C_k| and optimizing for Δ results in an incidence bound.

• Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$(x,y)\in \mathbb{F}_q^2: \quad (x-c)^2+(y-d)^2=r \ \ ext{for some} \ \ c,d,r\in \mathbb{F}_q.$$

・日本・ (日本・) (日本)

• Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$(x,y)\in \mathbb{F}_q^2: \quad (x-c)^2+(y-d)^2=r \ \ ext{for some} \ \ c,d,r\in \mathbb{F}_q.$$

• By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a,b}$ must take the form

$$(x,y)\in \mathbb{F}_q^2: \quad (x\!-\!a)^2\!+\!(y\!-\!b)^2=a^2\!+\!b^2 ext{ for some } a,b\in \mathbb{F}_q.$$

• Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$(x,y)\in \mathbb{F}_q^2: \quad (x-c)^2+(y-d)^2=r \ \ ext{for some} \ \ c,d,r\in \mathbb{F}_q.$$

• By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a,b}$ must take the form

$$(x,y)\in \mathbb{F}_q^2: \quad (x{-}a)^2{+}(y{-}b)^2=a^2{+}b^2 ext{ for some } a,b\in \mathbb{F}_q.$$

• Suppose C is k-rich and so the points $(\alpha_1, \beta_1), ..., (\alpha_{k-1}, \beta_{k-1}) \in \mathcal{P} \setminus \{(0, 0)\}$ lie on C.

• Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$(x,y)\in \mathbb{F}_q^2: \quad (x-c)^2+(y-d)^2=r \ \ ext{for some} \ \ c,d,r\in \mathbb{F}_q.$$

• By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a,b}$ must take the form

$$(x,y)\in \mathbb{F}_q^2: \quad (x{-}a)^2{+}(y{-}b)^2=a^2{+}b^2 ext{ for some } a,b\in \mathbb{F}_q.$$

- Suppose C is k-rich and so the points $(\alpha_1, \beta_1), ..., (\alpha_{k-1}, \beta_{k-1}) \in \mathcal{P} \setminus \{(0, 0)\}$ lie on C.
- We associate each of the points to a line I_{α_i,β_i} of the form

$$(X, Y) \in \mathbb{F}_q^2$$
: $-2\alpha_i X - 2\beta_i Y + \alpha_i^2 + \beta_i^2 = 0.$

• Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$(x,y)\in \mathbb{F}_q^2: \quad (x-c)^2+(y-d)^2=r \ \ ext{for some} \ \ c,d,r\in \mathbb{F}_q.$$

• By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a,b}$ must take the form

$$(x,y)\in \mathbb{F}_q^2: \quad (x{-}a)^2{+}(y{-}b)^2=a^2{+}b^2 ext{ for some } a,b\in \mathbb{F}_q.$$

- Suppose C is k-rich and so the points $(\alpha_1, \beta_1), ..., (\alpha_{k-1}, \beta_{k-1}) \in \mathcal{P} \setminus \{(0,0)\}$ lie on C.
- We associate each of the points to a line I_{α_i,β_i} of the form

$$(X, Y) \in \mathbb{F}_q^2$$
: $-2\alpha_i X - 2\beta_i Y + \alpha_i^2 + \beta_i^2 = 0.$

 By assuming q ≡ 3 (mod 4), -1 is a non-square and these lines are defined without multiplicity. We have transformed our point-circle incidence relation to a line-point one. I.e. C_{a,b} → (a, b) and (α_i, β_i) → l_{α_i,β_i}.

- We have transformed our point-circle incidence relation to a line-point one. I.e. C_{a,b} → (a, b) and (α_i, β_i) → l_{α_i,β_i}.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines L with |L| = |P|).

- We have transformed our point-circle incidence relation to a line-point one. I.e. C_{a,b} → (a, b) and (α_i, β_i) → l_{α_i,β_i}.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines L with |L| = |P|).
- That is $|\mathcal{C}_{\boldsymbol{q},k}| = |\mathcal{Q}_k|$ for some point set \mathcal{Q} .

- We have transformed our point-circle incidence relation to a line-point one. I.e. C_{a,b} → (a, b) and (α_i, β_i) → l_{α_i,β_i}.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines L with |L| = |P|).
- That is $|\mathcal{C}_{\boldsymbol{q},k}| = |\mathcal{Q}_k|$ for some point set \mathcal{Q} .
- The number of *k*-rich points Q_k (w.r.t. \mathcal{L}) can be bounded simply using existing point-line incidence bounds based on the observation

 $k|\mathcal{Q}_k| \leq I(\mathcal{Q}_k, \mathcal{L}).$

- We have transformed our point-circle incidence relation to a line-point one. I.e. C_{a,b} → (a, b) and (α_i, β_i) → l_{α_i,β_i}.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines L with |L| = |P|).
- That is $|\mathcal{C}_{\boldsymbol{q},k}| = |\mathcal{Q}_k|$ for some point set \mathcal{Q} .
- The number of k-rich points Q_k (w.r.t. \mathcal{L}) can be bounded simply using existing point-line incidence bounds based on the observation

$$k|\mathcal{Q}_k| \leq I(\mathcal{Q}_k, \mathcal{L}).$$

• In higher dimensions, the same scheme reduces the point-circle problem to a hyperplane-point problem.

¬ > < = > < = >

Key observation: Given (the homogenized form of) an irreducible conic γ , we have

 γ is a Möbius transformation $\iff \{[0:1:0], [1:0:0]\} \subseteq \gamma.$

Key observation: Given (the homogenized form of) an irreducible conic γ , we have

 γ is a Möbius transformation $\iff \{[0:1:0], [1:0:0]\} \subseteq \gamma.$

To bound $|C_k|$, we proceed as follows:

(*) >) *) >)

Key observation: Given (the homogenized form of) an irreducible conic γ , we have

 γ is a Möbius transformation $\iff \{[0:1:0], [1:0:0]\} \subseteq \gamma.$

To bound $|C_k|$, we proceed as follows:

• For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in \mathcal{C} incident to q_1 and q_2 .

Key observation: Given (the homogenized form of) an irreducible conic γ , we have

 γ is a Möbius transformation $\iff \{[\mathbf{0}:\mathbf{1}:\mathbf{0}], [\mathbf{1}:\mathbf{0}:\mathbf{0}]\} \subseteq \gamma.$

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in \mathcal{C} incident to q_1 and q_2 .
- Let π be a projective transformation sending

$$oldsymbol{q}_1
ightarrow [0:1:0], \qquad oldsymbol{q}_2
ightarrow [1:0:0].$$

Key observation: Given (the homogenized form of) an irreducible conic γ , we have

 $\gamma \text{ is a M\"obius transformation } \iff \{[\mathbf{0}:\mathbf{1}:\mathbf{0}], [\mathbf{1}:\mathbf{0}:\mathbf{0}]\} \subseteq \gamma.$

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in \mathcal{C} incident to q_1 and q_2 .
- Let π be a projective transformation sending

$$\label{eq:relation} \pmb{q}_1 \rightarrow [0:1:0], \qquad \pmb{q}_2 \rightarrow [1:0:0].$$

 π(C_{q1,q2,k}) corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.

Key observation: Given (the homogenized form of) an irreducible conic γ , we have

 $\gamma \text{ is a M\"obius transformation } \iff \{[\mathbf{0}:\mathbf{1}:\mathbf{0}], [\mathbf{1}:\mathbf{0}:\mathbf{0}]\} \subseteq \gamma.$

To bound $|C_k|$, we proceed as follows:

- For $q_1, q_2 \in \mathcal{P}$, let $C_{q_1,q_2,k}$ be the set of k-rich conics in \mathcal{C} incident to q_1 and q_2 .
- Let π be a projective transformation sending

$$\boldsymbol{q}_1 \rightarrow [0:1:0], \qquad \boldsymbol{q}_2 \rightarrow [1:0:0].$$

- π(C_{q1,q2,k}) corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.
- Then

$$|\mathcal{C}_k| \leq \binom{k}{2}^{-1} \sum_{\boldsymbol{q}_1, \boldsymbol{q}_2 \in \mathcal{P}} |\mathcal{C}_{\boldsymbol{q}_1, \boldsymbol{q}_2, k}| \ll \frac{|\mathcal{P}|^2}{k^2} \max_{\boldsymbol{q}_1, \boldsymbol{q}_2 \in \mathcal{P}} |\mathcal{C}_{\boldsymbol{q}_1, \boldsymbol{q}_2, k}|.$$

The Erdős distinct distances problem

Given $\boldsymbol{p} = (p_1, p_2)$ and $\boldsymbol{q} = (q_1, q_2)$, define their distance by

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$

伺 ト イヨト イヨト

The Erdős distinct distances problem

Given $\boldsymbol{p}=(p_1,p_2)$ and $\boldsymbol{q}=(q_1,q_2),$ define their distance by

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$

The number of distances formed by \mathcal{P} is

$$D(\mathcal{P}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}\}|.$$

• • = • • = •

The Erdős distinct distances problem

Given $\boldsymbol{p}=(p_1,p_2)$ and $\boldsymbol{q}=(q_1,q_2),$ define their distance by

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$

The number of distances formed by \mathcal{P} is

$$D(\mathcal{P}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}\}|.$$

Conjecture (Erdős (1946))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}$.

The Erdős distinct distances problem

Given $\boldsymbol{p}=(p_1,p_2)$ and $\boldsymbol{q}=(q_1,q_2),$ define their distance by

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + (p_2 - q_2)^2.$$

The number of distances formed by \mathcal{P} is

$$D(\mathcal{P}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}\}|.$$

Conjecture (Erdős (1946))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}$.

Theorem (Guth and Katz (2015)) For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1}$.

The number of distances of $\mathcal P,$ pinned at ${\pmb q} \in \mathcal P$ is defined by

$$D(\mathcal{P}; \boldsymbol{q}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p} \in \mathcal{P}\}|.$$

The number of distances of $\mathcal P$, pinned at $\boldsymbol q \in \mathcal P$ is defined by

$$D(\mathcal{P}; \boldsymbol{q}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p} \in \mathcal{P}\}|.$$

We also write

$$D_{\mathsf{pin}}(\mathcal{P}) = \max_{\boldsymbol{q}\in\mathcal{P}} D(\mathcal{P}; \boldsymbol{q})$$

The number of distances of \mathcal{P} , pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; \boldsymbol{q}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p} \in \mathcal{P}\}|.$$

We also write

$$D_{\mathsf{pin}}(\mathcal{P}) = \max_{oldsymbol{q}\in\mathcal{P}} D(\mathcal{P};oldsymbol{q})$$

Conjecture (Erdős (1975))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{pin}(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}$.

The number of distances of \mathcal{P} , pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; \boldsymbol{q}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p} \in \mathcal{P}\}|.$$

We also write

$$D_{\mathsf{pin}}(\mathcal{P}) = \max_{oldsymbol{q}\in\mathcal{P}} D(\mathcal{P};oldsymbol{q})$$

Conjecture (Erdős (1975))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{pin}(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}$.

Theorem (Katz and Tardos (2004)) For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{pin}(\mathcal{P})| \gg |\mathcal{P}|^{0.8641...}$.

The number of distances of \mathcal{P} , pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$D(\mathcal{P}; \boldsymbol{q}) = |\{d(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p} \in \mathcal{P}\}|.$$

We also write

$$D_{\mathsf{pin}}(\mathcal{P}) = \max_{\boldsymbol{q}\in\mathcal{P}} D(\mathcal{P}; \boldsymbol{q})$$

Conjecture (Erdős (1975))

For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{pin}(\mathcal{P})| \gg |\mathcal{P}|(\log |\mathcal{P}|)^{-1/2}$.

Theorem (Katz and Tardos (2004)) For finite $\mathcal{P} \subset \mathbb{R}^2$, we have $|D_{pin}(\mathcal{P})| \gg |\mathcal{P}|^{0.8641...}$.

Theorem (Murphy, Petridis, Pham, Rudnev and Stevens (2021)) Let $\mathcal{P} \subset \mathbb{F}^2$ be finite and if $char(\mathbb{F}) = p$, suppose $p \equiv 3 \pmod{4}$ and $|\mathcal{P}| \leq p^{4/3}$. Then $|D_{pin}(\mathcal{P})| \gg |\mathcal{P}|^{2/3}$.

Finite field Falconer-type questions ask how large must

 P ⊂ 𝔅²_q be such that *D*(*P*) (or *D*_{pin}(*P*)) is of size *q* (or up to constants).

- Finite field Falconer-type questions ask how large must

 P ⊂ 𝔅²_q be such that *D*(*P*) (or *D*_{pin}(*P*)) is of size *q* (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4/3}$ then $D(\mathcal{P}) \gg q$.

- Finite field Falconer-type questions ask how large must

 P ⊂ 𝔅²_q be such that *D*(*P*) (or *D*_{pin}(*P*)) is of size *q* (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4/3}$ then $D(\mathcal{P}) \gg q$.
- Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.

- Finite field Falconer-type questions ask how large must

 P ⊂ 𝔅²_q be such that *D*(*P*) (or *D*_{pin}(*P*)) is of size *q* (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4/3}$ then $D(\mathcal{P}) \gg q$.
- Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.
- Murphy and Petridis (2019) gave examples showing that for general 𝔽_q, the exponent 4/3 is sharp.

• • = • • = •

- Finite field Falconer-type questions ask how large must

 P ⊂ 𝔅²_q be such that *D*(*P*) (or *D*_{pin}(*P*)) is of size *q* (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4/3}$ then $D(\mathcal{P}) \gg q$.
- Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.
- Murphy and Petridis (2019) gave examples showing that for general 𝔽_q, the exponent 4/3 is sharp.
- Murphy, Petridis, Pham, Rudnev and Stevens (2021) improved the exponent 4/3 (for D_{pin}) to 5/4 over prime order fields.

伺 ト イヨト イヨト

Pinned algebraic distances: variations

Noting that $d(\mathbf{p}, \mathbf{e}) = f(\mathbf{p} - \mathbf{e})$, where f is $(x, y) \mapsto x^2 + y^2$, one may naturally wish to study the distances problem for other choices of f:

伺 ト イヨト イヨト

Noting that $d(\mathbf{p}, \mathbf{e}) = f(\mathbf{p} - \mathbf{e})$, where f is $(x, y) \mapsto x^2 + y^2$, one may naturally wish to study the distances problem for other choices of f:

Theorem (M., Pham and Warren (2021+))

Let $\mathcal{E} \subset \mathbb{F}_p^2$ with $|\mathcal{E}| \ll p^{15/13}$ and $p \equiv 3 \pmod{4}$. Let f(x, y) be one of the following polynomials:

- $x^2 + y^2$ (usual distance function), or
- xy (Minkowski distance function), or
- $y + x^2$ (parabolic distance function).

There exists a point $p \in \mathcal{E}$ such that $|f(p - \mathcal{E})| \gg |\mathcal{E}|^{\frac{8}{15}}$, where

$$f(\boldsymbol{p}-\mathcal{E}) := \{f(\boldsymbol{p}-\boldsymbol{e}) \colon \boldsymbol{e} \in \mathcal{E}\}.$$

 $\bullet \ \, {\sf For} \ \, {\pmb p} \in {\mathcal E}, \ \, {\sf let}$

$$\mathcal{C}_{\boldsymbol{p}} = \left\{ \boldsymbol{x} \in \mathbb{F}_p^2 : f(\boldsymbol{p} - \boldsymbol{x}) = t \quad \text{with} \quad t \in f(\boldsymbol{p} - \mathcal{E}) \setminus \{0\} \right\}$$

◆聞▶ ◆臣▶ ◆臣▶

• For
$$oldsymbol{p}\in\mathcal{E}$$
, let

$$\mathcal{C}_{\boldsymbol{p}} = \left\{ \boldsymbol{x} \in \mathbb{F}_{\boldsymbol{p}}^2 : f(\boldsymbol{p} - \boldsymbol{x}) = t \quad \text{with} \quad t \in f(\boldsymbol{p} - \mathcal{E}) \setminus \{0\} \right\}$$

• Let
$$\mathcal{C} = \bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$$

э

伺 ト イヨト

 $\bullet \ \, {\sf For} \ \, {\pmb p} \in {\mathcal E}, \ \, {\sf let}$

$$\mathcal{C}_{m{p}} = \left\{ m{x} \in \mathbb{F}_p^2 : f(m{p} - m{x}) = t \quad ext{with} \quad t \in f(m{p} - \mathcal{E}) \setminus \{0\}
ight\}$$

- Let $\mathcal{C} = \bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- Note that $I(\mathcal{E},\mathcal{C})\gg |\mathcal{E}|^2$.

 $\bullet \ \, \mathsf{For} \ \, {\pmb{\rho}} \in \mathcal{E} \text{, let}$

$$\mathcal{C}_{m{p}} = \left\{ m{x} \in \mathbb{F}_p^2 : f(m{p} - m{x}) = t \quad ext{with} \quad t \in f(m{p} - \mathcal{E}) \setminus \{0\}
ight\}$$

- Let $\mathcal{C} = \bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- Note that $I(\mathcal{E},\mathcal{C})\gg |\mathcal{E}|^2$.
- Further note that

$$|\mathcal{C}| \leq \sum_{oldsymbol{p}\in\mathcal{E}} |f(oldsymbol{p}-\mathcal{E})| \leq |\mathcal{E}| \cdot \max_{oldsymbol{p}\in\mathcal{E}} |f(oldsymbol{p}-\mathcal{E})|.$$

 $\bullet \ \, \mathsf{For} \ \, {\pmb{p}} \in \mathcal{E} \text{, let}$

$$\mathcal{C}_{m{p}} = \left\{ m{x} \in \mathbb{F}_p^2 : f(m{p} - m{x}) = t \quad ext{with} \quad t \in f(m{p} - \mathcal{E}) \setminus \{0\}
ight\}$$

- Let $\mathcal{C} = \bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- Note that $I(\mathcal{E},\mathcal{C})\gg |\mathcal{E}|^2$.
- Further note that

$$|\mathcal{C}| \leq \sum_{oldsymbol{p}\in\mathcal{E}} |f(oldsymbol{p}-\mathcal{E})| \leq |\mathcal{E}| \cdot \max_{oldsymbol{p}\in\mathcal{E}} |f(oldsymbol{p}-\mathcal{E})|.$$

• An upper bound on $I(\mathcal{E}, \mathcal{C})$ follows from our point-conic incidence bound, yielding the result.

• Let $\boldsymbol{p} = (p_1, \dots, p_d)$ and $\boldsymbol{q} = (q_1, \dots, q_d)$, be points in \mathbb{F}_q^d . Then we write

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + \dots + (p_d - q_d)^2.$$

• Let $\boldsymbol{p} = (p_1, \dots, p_d)$ and $\boldsymbol{q} = (q_1, \dots, q_d)$, be points in \mathbb{F}_q^d . Then we write

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + \dots + (p_d - q_d)^2.$$

• We define the number of distances between point sets $\mathcal E$ and $\mathcal F$, in $\mathbb F^d_a$, by

$$D(\mathcal{E},\mathcal{F}) = |\{d(\boldsymbol{e},\boldsymbol{f}): \boldsymbol{e} \in \mathcal{E} \text{ and } \boldsymbol{f} \in \mathcal{F}\}|.$$

• Let $\boldsymbol{p} = (p_1, \dots, p_d)$ and $\boldsymbol{q} = (q_1, \dots, q_d)$, be points in \mathbb{F}_q^d . Then we write

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + \dots + (p_d - q_d)^2.$$

• We define the number of distances between point sets $\mathcal E$ and $\mathcal F$, in $\mathbb F^d_a$, by

$$D(\mathcal{E},\mathcal{F}) = |\{d(\boldsymbol{e},\boldsymbol{f}): \boldsymbol{e} \in \mathcal{E} \text{ and } \boldsymbol{f} \in \mathcal{F}\}|.$$

• Let $\boldsymbol{p} = (p_1, \dots, p_d)$ and $\boldsymbol{q} = (q_1, \dots, q_d)$, be points in \mathbb{F}_q^d . Then we write

$$d(\mathbf{p}, \mathbf{q}) = (p_1 - q_1)^2 + \dots + (p_d - q_d)^2.$$

 \bullet We define the number of distances between point sets ${\mathcal E}$ and ${\mathcal F},$ in ${\mathbb F}_q^d,$ by

$$D(\mathcal{E},\mathcal{F}) = |\{d(\boldsymbol{e},\boldsymbol{f}): \boldsymbol{e}\in\mathcal{E} \text{ and } \boldsymbol{f}\in\mathcal{F}\}|.$$

Theorem (Shparlinski (2006)) For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_q^d$, we have $D(\mathcal{E}, \mathcal{F}) \gg \min\left\{q, \frac{|\mathcal{E}||\mathcal{F}|}{q^d}\right\}.$ In particular, if $|\mathcal{E}||\mathcal{F}| \ge q^{d+1}$ then $D(\mathcal{E}, \mathcal{F}) \gg q$. Theorem (Koh and Sun (2014)) For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_q^d$, if $d \ge 3$ is odd, then $D(\mathcal{E}, \mathcal{F}) \ge \begin{cases} \min\left\{\frac{q}{2}, \frac{|\mathcal{E}||\mathcal{F}|}{8q^{d-1}}\right\} & \text{if } 1 \le |\mathcal{E}| < q^{\frac{d-1}{2}} \\ \min\left\{\frac{q}{2}, \frac{|\mathcal{F}|}{8q^{\frac{d-1}{2}}}\right\} & \text{if } q^{\frac{d-1}{2}} \le |\mathcal{E}| < q^{\frac{d+1}{2}} \\ \min\left\{\frac{q}{2}, \frac{|\mathcal{E}||\mathcal{F}|}{2q^d}\right\} & \text{if } q^{\frac{d+1}{2}} \le |\mathcal{E}| \le q^d \end{cases}$ Theorem (Koh and Sun (2014))

For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_q^d$, if $d \geq 2$ is even, under the assumption $|\mathcal{E}||\mathcal{F}| \geq 16q^d$, one has

$$D(\mathcal{E}, \mathcal{F}) \ge \left\{ egin{array}{ll} rac{q}{144} & ext{for } 1 \le |\mathcal{E}| < q^{rac{d-1}{2}} \ rac{1}{144} \min \left\{ q, rac{|\mathcal{F}|}{2q^{rac{d-1}{2}}}
ight\} & ext{for } q^{rac{d-1}{2}} \le |\mathcal{E}| < q^{rac{d+1}{2}} \ rac{1}{144} \min \left\{ q, rac{2|\mathcal{E}||\mathcal{F}|}{q^d}
ight\} & ext{for } q^{rac{d+1}{2}} \le |\mathcal{E}| \le q^d \end{array}
ight.$$

Theorem (M., Pham and Warren (2021+))

Let \mathcal{E}, \mathcal{F} be sets in \mathbb{F}_q^d . Assume that $|\mathcal{E}| \sim |\mathcal{F}| \leq q^{\frac{d+1}{2}}$, then we have

$$\mathcal{D}(\mathcal{E},\mathcal{F})\gg\min\left\{q,rac{|\mathcal{E}|^{1/2}|\mathcal{F}|^{1/2}}{q^{rac{d-1}{2}}}
ight\}.$$

Theorem (M., Pham and Warren (2021+))

Let \mathcal{E}, \mathcal{F} be sets in \mathbb{F}_q^d . Assume that $|\mathcal{E}| \sim |\mathcal{F}| \leq q^{\frac{d+1}{2}}$, then we have

$$\mathcal{D}(\mathcal{E},\mathcal{F}) \gg \min\left\{q, \frac{|\mathcal{E}|^{1/2}|\mathcal{F}|^{1/2}}{q^{\frac{d-1}{2}}}\right\}$$

That is, the condition $|\mathcal{E}||\mathcal{F}| \gg q^d$ is removed from Koh-Sun's result for even d in the range $q^{\frac{d-1}{2}} \leq |\mathcal{E}| \leq q^{\frac{d+1}{2}}$.

Thank you for your attention!

æ