Bounds on point-conic incidences over finite fields and applications
 FGC-IPM Number Theory Seminar

Ali Mohammadi
Joint work with Thang Pham and Audie Warren (arXiv:2111.04072)
Institute for Research in Fundamental Sciences (IPM)

23 November 2021

Notation

- We use \mathbb{F} to denote an arbitrary field.

Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_{q} is a finite field of order q and characteristic p.

Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_{q} is a finite field of order q and characteristic p.
- $\mathbb{F P}^{d}$ will be the d-dimensional projective space over \mathbb{F}. Sometimes, we write \mathbb{F}^{2} but really mean $\{[x, y, 1]: x, y \in \mathbb{F}\}$.

Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_{q} is a finite field of order q and characteristic p.
- $\mathbb{F P}^{d}$ will be the d-dimensional projective space over \mathbb{F}. Sometimes, we write \mathbb{F}^{2} but really mean $\{[x, y, 1]: x, y \in \mathbb{F}\}$.
- \mathcal{P} will be a set of points, \mathcal{L} a set of lines and \mathcal{C} a set of curves (generally conics) over \mathbb{F}^{d} (generally $d=2$).

Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_{q} is a finite field of order q and characteristic p.
- $\mathbb{F P}^{d}$ will be the d-dimensional projective space over \mathbb{F}.

Sometimes, we write \mathbb{F}^{2} but really mean $\{[x, y, 1]: x, y \in \mathbb{F}\}$.

- \mathcal{P} will be a set of points, \mathcal{L} a set of lines and \mathcal{C} a set of curves (generally conics) over \mathbb{F}^{d} (generally $d=2$).
- Bold lowercase letters, e.g. p, will be points.

Notation

- We use \mathbb{F} to denote an arbitrary field.
- \mathbb{F}_{q} is a finite field of order q and characteristic p.
- $\mathbb{F P}^{d}$ will be the d-dimensional projective space over \mathbb{F}. Sometimes, we write \mathbb{F}^{2} but really mean $\{[x, y, 1]: x, y \in \mathbb{F}\}$.
- \mathcal{P} will be a set of points, \mathcal{L} a set of lines and \mathcal{C} a set of curves (generally conics) over \mathbb{F}^{d} (generally $d=2$).
- Bold lowercase letters, e.g. p, will be points.
- $A \ll B$ and $B \gg A$ will mean $A \leq C B$ for some absolute constant C (not always the same).

Objective

Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$
I(\mathcal{P}, \mathcal{C})=|\{(\boldsymbol{p}, C) \in \mathcal{P} \times \mathcal{C}: \boldsymbol{p} \in C\}|
$$

Objective

Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$
I(\mathcal{P}, \mathcal{C})=|\{(\boldsymbol{p}, C) \in \mathcal{P} \times \mathcal{C}: \boldsymbol{p} \in C\}|
$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2 . Then the curve $C=\left\{\boldsymbol{x} \in \mathbb{F P}^{2}: \phi(\boldsymbol{x})=0\right\}$ is called a conic.

Objective

Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$
I(\mathcal{P}, \mathcal{C})=|\{(\boldsymbol{p}, C) \in \mathcal{P} \times \mathcal{C}: \boldsymbol{p} \in C\}|
$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2 . Then the curve $C=\left\{\boldsymbol{x} \in \mathbb{F P}^{2}: \phi(\boldsymbol{x})=0\right\}$ is called a conic.
A conic is called irreducible or nondegenerate if ϕ cannot be written as the product of two degree 1 polynomials.

Objective

Definition (Incidences)

Let \mathbb{F} be a field. Given a finite set of points \mathcal{P} and a finite set of algebraic curves \mathcal{C}, we denote the number of incidences between \mathcal{P} and \mathcal{C} by

$$
I(\mathcal{P}, \mathcal{C})=|\{(\boldsymbol{p}, C) \in \mathcal{P} \times \mathcal{C}: \boldsymbol{p} \in C\}|
$$

Definition (Conics)

Let $\phi \in \mathbb{F}[x, y, z]$ be a homogeneous polynomial of degree 2 . Then the curve $C=\left\{\boldsymbol{x} \in \mathbb{F P}^{2}: \phi(\boldsymbol{x})=0\right\}$ is called a conic.
A conic is called irreducible or nondegenerate if ϕ cannot be written as the product of two degree 1 polynomials.

This talk will be mostly about upper bounds on $I(\mathcal{P}, \mathcal{C})$, where $\mathcal{P} \subset \mathbb{F}_{p}^{2}$ and \mathcal{C} is a set of irreducible conics over \mathbb{F}_{p}.

Incidences: trivial bounds

Theorem (Kővári-Sós-Turán)
Suppose that the incidence graph on $\mathcal{P} \times \mathcal{C}$ (over \mathbb{F}^{2}) contains no copy of $K_{s, t}$, i.e. for any soints in \mathcal{P} there are fewer than t curves in \mathcal{C} incident to it, then

$$
\left.I(\mathcal{P}, \mathcal{C}) \ll t^{1 / s}|\mathcal{P}| \mathcal{C}\right|^{1-1 / s}+s|\mathcal{C}| .
$$

The roles of \mathcal{P} and \mathcal{C} and respectively s and t may be reversed.

Incidences: trivial bounds

Theorem (Kővári-Sós-Turán)
Suppose that the incidence graph on $\mathcal{P} \times \mathcal{C}$ (over \mathbb{F}^{2}) contains no copy of $K_{s, t}$, i.e. for any s points in \mathcal{P} there are fewer than t curves in \mathcal{C} incident to it, then

$$
\left.I(\mathcal{P}, \mathcal{C}) \ll t^{1 / s}|\mathcal{P}| \mathcal{C}\right|^{1-1 / s}+s|\mathcal{C}|
$$

The roles of \mathcal{P} and \mathcal{C} and respectively s and t may be reversed.
Writing ($\mathcal{P}, \mathcal{C}, I)$ for the incidence graph on \mathcal{P} and \mathcal{C}, we have:

\mathcal{C}	$(\mathcal{P}, \mathcal{C}, I)$ has no	$(\mathcal{C}, \mathcal{P}, I)$ has no
Lines	$K_{2,2}$	$K_{2,2}$
General irreducible conics	$K_{5,2}$	$K_{2,5}$
Circles and parabolas	$K_{3,2}$	$K_{2,3}$

Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^{2} meet in at most one point. Also for any two points, there is at most one line passing both. So

$$
I(\mathcal{P}, \mathcal{L}) \ll \min \left\{|\mathcal{L}|^{1 / 2}|\mathcal{P}|+|\mathcal{L}|,|\mathcal{P}|^{1 / 2}|\mathcal{L}|+|\mathcal{P}|\right\}
$$

Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^{2} meet in at most one point. Also for any two points, there is at most one line passing both. So

$$
I(\mathcal{P}, \mathcal{L}) \ll \min \left\{|\mathcal{L}|^{1 / 2}|\mathcal{P}|+|\mathcal{L}|,|\mathcal{P}|^{1 / 2}|\mathcal{L}|+|\mathcal{P}|\right\}
$$

- In particular, if $|\mathcal{P}|=|\mathcal{L}|=N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3 / 2}$.

Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^{2} meet in at most one point. Also for any two points, there is at most one line passing both. So

$$
I(\mathcal{P}, \mathcal{L}) \ll \min \left\{|\mathcal{L}|^{1 / 2}|\mathcal{P}|+|\mathcal{L}|,|\mathcal{P}|^{1 / 2}|\mathcal{L}|+|\mathcal{P}|\right\}
$$

- In particular, if $|\mathcal{P}|=|\mathcal{L}|=N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3 / 2}$.
- An irreducible conic is determined uniquely by five points (with no three collinear). Also by Bézout's theorem, any two distinct conics meet in at most four distinct points. So

$$
I(\mathcal{P}, \mathcal{C}) \ll \min \left\{|\mathcal{P}||\mathcal{C}|^{4 / 5}+|\mathcal{C}|,|\mathcal{P}|^{1 / 2}|\mathcal{C}|+|\mathcal{P}|\right\}
$$

Incidences: trivial bounds

- Two lines over the plane \mathbb{F}^{2} meet in at most one point. Also for any two points, there is at most one line passing both. So

$$
I(\mathcal{P}, \mathcal{L}) \ll \min \left\{|\mathcal{L}|^{1 / 2}|\mathcal{P}|+|\mathcal{L}|,|\mathcal{P}|^{1 / 2}|\mathcal{L}|+|\mathcal{P}|\right\}
$$

- In particular, if $|\mathcal{P}|=|\mathcal{L}|=N$, then $I(\mathcal{P}, \mathcal{L}) \ll N^{3 / 2}$.
- An irreducible conic is determined uniquely by five points (with no three collinear). Also by Bézout's theorem, any two distinct conics meet in at most four distinct points. So

$$
I(\mathcal{P}, \mathcal{C}) \ll \min \left\{|\mathcal{P}||\mathcal{C}|^{4 / 5}+|\mathcal{C}|,|\mathcal{P}|^{1 / 2}|\mathcal{C}|+|\mathcal{P}|\right\}
$$

- Any two parabolas or circles meet in at most two points. Also they are determined uniquely by three (non-collinear) points. So

$$
I(\mathcal{P}, \mathcal{C}) \ll \min \left\{|\mathcal{P}||\mathcal{C}|^{2 / 3}+|\mathcal{C}|,|\mathcal{P}|^{1 / 2}|\mathcal{C}|+|\mathcal{P}|\right\}
$$

Incidences: some well-known results

Over \mathbb{R}^{2} : (This was extended to \mathbb{C}^{2} by Toth in 2015.)
Theorem (Szemerédi-Trotter (1983))
For finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{R}^{2}, we have

$$
I(\mathcal{P}, \mathcal{L}) \ll|\mathcal{P}|^{2 / 3}|\mathcal{L}|^{2 / 3}+|\mathcal{P}|+|\mathcal{L}| .
$$

Incidences: some well-known results

Over $\mathbb{R}^{2}:\left(\right.$ This was extended to \mathbb{C}^{2} by Toth in 2015.)
Theorem (Szemerédi-Trotter (1983))
For finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{R}^{2}, we have

$$
I(\mathcal{P}, \mathcal{L}) \ll|\mathcal{P}|^{2 / 3}|\mathcal{L}|^{2 / 3}+|\mathcal{P}|+|\mathcal{L}| .
$$

Over \mathbb{F}_{p}^{2} : (Various explicit forms, based on the same principal ideas, appeared later.)

Theorem (Bourgain-Katz-Tao (2004))
For any point set \mathcal{P} and any line set \mathcal{L} in \mathbb{F}_{p}^{2} with $|\mathcal{P}|=|\mathcal{L}|=N=p^{\alpha}, 0<\alpha<2$, we have

$$
I(\mathcal{P}, \mathcal{L}) \ll N^{\frac{3}{2}-\varepsilon}, \text { where } \varepsilon=\varepsilon(\alpha)>0
$$

Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))
Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^{2}, with $|\mathcal{L}|^{7 / 8} \ll|\mathcal{P}| \ll|\mathcal{L}|^{8 / 7}$, if char $(\mathbb{F})=p>0$, suppose $|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

$$
I(\mathcal{P}, \mathcal{L}) \ll|\mathcal{P}|^{11 / 15}|\mathcal{L}|^{11 / 15}
$$

Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))
Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^{2}, with
$|\mathcal{L}|^{7 / 8} \ll|\mathcal{P}| \ll|\mathcal{L}|^{8 / 7}$, if char $(\mathbb{F})=p>0$, suppose
$|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

$$
I(\mathcal{P}, \mathcal{L}) \ll|\mathcal{P}|^{11 / 15}|\mathcal{L}|^{11 / 15}
$$

- Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.

Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))
Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^{2}, with
$|\mathcal{L}|^{7 / 8} \ll|\mathcal{P}| \ll|\mathcal{L}|^{8 / 7}$, if char $(\mathbb{F})=p>0$, suppose
$|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

$$
I(\mathcal{P}, \mathcal{L}) \ll|\mathcal{P}|^{11 / 15}|\mathcal{L}|^{11 / 15}
$$

- Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.
- Their result is a consequence of a point-plane incidence bound of Rudnev (2018).

Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))
Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}^{2}, with
$|\mathcal{L}|^{7 / 8} \ll|\mathcal{P}| \ll|\mathcal{L}|^{8 / 7}$, if char $(\mathbb{F})=p>0$, suppose
$|\mathcal{P}|^{13}|\mathcal{L}|^{-2} \ll p^{15}$. Then

$$
I(\mathcal{P}, \mathcal{L}) \ll|\mathcal{P}|^{11 / 15}|\mathcal{L}|^{11 / 15}
$$

- Stevens and de Zeeuw proved a substantially stronger bound when \mathcal{P} is a Cartesian product, which they used to deduce the result above.
- Their result is a consequence of a point-plane incidence bound of Rudnev (2018).
- For $|\mathcal{P}|=|\mathcal{L}|=N \ll p^{15 / 11}$, the above result gives $I(\mathcal{P}, \mathcal{L}) \ll N^{3 / 2-1 / 30}=N^{4 / 3+2 / 15}$ (the bound $N^{4 / 3}$ would be tight).

Incidences: some well-known results

Point-line incidences for "large sets" in \mathbb{F}_{q} :
Theorem (Vinh (2011))
Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}_{q}^{2}, we have

$$
\left|I(\mathcal{P}, \mathcal{L})-\frac{|\mathcal{P}||\mathcal{L}|}{q}\right| \leq \sqrt{q|\mathcal{P} \| \mathcal{L}|} .
$$

Incidences: some well-known results

Point-line incidences for "large sets" in \mathbb{F}_{q} :
Theorem (Vinh (2011))
Given finite sets of points \mathcal{P} and lines \mathcal{L} over \mathbb{F}_{q}^{2}, we have

$$
\left|I(\mathcal{P}, \mathcal{L})-\frac{|\mathcal{P} \| \mathcal{L}|}{q}\right| \leq \sqrt{q|\mathcal{P} \| \mathcal{L}|} .
$$

More generally:
Theorem (Vinh (2011))
Let \mathcal{P} be a set of points and \mathcal{H} be a set of hyperplanes in \mathbb{F}_{q}^{d}. The number of incidences between \mathcal{P} and \mathcal{H} satisfies

$$
\left|I(\mathcal{P}, \mathcal{H})-\frac{|\mathcal{P} \| \mathcal{H}|}{q}\right| \leq \sqrt{q^{d-1}|\mathcal{P} \| \mathcal{H}|} .
$$

Non-linear incidence theorems over \mathbb{F}_{p}

Recall a Möbius transformation is the mapping

$$
f(x)=\frac{a x+b}{c x+d}, \quad \text { where } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \mathbb{F}_{p}.

Non-linear incidence theorems over \mathbb{F}_{p}

Recall a Möbius transformation is the mapping

$$
f(x)=\frac{a x+b}{c x+d}, \quad \text { where } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \mathbb{F}_{p}.
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae $(x-a)(y-b)=1$ with (a, b) coming from Cartesian products.

Non-linear incidence theorems over \mathbb{F}_{p}

Recall a Möbius transformation is the mapping

$$
f(x)=\frac{a x+b}{c x+d}, \quad \text { where } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \mathbb{F}_{p}.
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae $(x-a)(y-b)=1$ with (a, b) coming from Cartesian products.
- Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov's result, as well as a result allowing for more general (a, b).

Non-linear incidence theorems over \mathbb{F}_{p}

Recall a Möbius transformation is the mapping

$$
f(x)=\frac{a x+b}{c x+d}, \quad \text { where } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

- Bourgain (2012) proved the first (non-quantitative) bound between points and Möbius transformations over \mathbb{F}_{p}.
- Shkredov (2021) proved an explicit bound on incidences between points and hyperbolae $(x-a)(y-b)=1$ with (a, b) coming from Cartesian products.
- Rudnev and Wheeler (2021+) obtained a quantitative strengthening of Shkredov's result, as well as a result allowing for more general (a, b).
- Wheeler and Warren (2021+) proved a quantitative incidence bound concerning more general Möbius transformations.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.
- Apply the mapping $\phi: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{2}$, defined by $(x, y) \mapsto\left(x, y-x^{2}\right)$ to the plane.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.
- Apply the mapping $\phi: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{2}$, defined by $(x, y) \mapsto\left(x, y-x^{2}\right)$ to the plane.
- Note that ϕ is a bijection.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.
- Apply the mapping $\phi: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{2}$, defined by $(x, y) \mapsto\left(x, y-x^{2}\right)$ to the plane.
- Note that ϕ is a bijection.
- It maps each $C_{a, b}$ to the line $I_{a, b}$ of the form $y=a x+b$.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.
- Apply the mapping $\phi: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{2}$, defined by $(x, y) \mapsto\left(x, y-x^{2}\right)$ to the plane.
- Note that ϕ is a bijection.
- It maps each $C_{a, b}$ to the line $l_{a, b}$ of the form $y=a x+b$.
- $\boldsymbol{p} \in C_{a, b} \Longleftrightarrow \phi(\boldsymbol{p}) \in I_{a, b}$.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.
- Apply the mapping $\phi: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{2}$, defined by $(x, y) \mapsto\left(x, y-x^{2}\right)$ to the plane.
- Note that ϕ is a bijection.
- It maps each $C_{a, b}$ to the line $l_{a, b}$ of the form $y=a x+b$.
- $\boldsymbol{p} \in C_{a, b} \Longleftrightarrow \phi(\boldsymbol{p}) \in I_{a, b}$.
- So $I(\mathcal{P}, \mathcal{C})=I(\phi(\mathcal{P}), \mathcal{L})$ where $|\mathcal{L}|=|\mathcal{C}|$ and $|\mathcal{P}|=|\phi(\mathcal{P})|$.

Point-conic incidences: warm up

- Let \mathcal{C} be parabolas $C_{a, b}$ of the form $y=x^{2}+a x+b$.
- Apply the mapping $\phi: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}^{2}$, defined by $(x, y) \mapsto\left(x, y-x^{2}\right)$ to the plane.
- Note that ϕ is a bijection.
- It maps each $C_{a, b}$ to the line $I_{a, b}$ of the form $y=a x+b$.
- $\boldsymbol{p} \in C_{a, b} \Longleftrightarrow \phi(\boldsymbol{p}) \in I_{a, b}$.
- So $I(\mathcal{P}, \mathcal{C})=I(\phi(\mathcal{P}), \mathcal{L})$ where $|\mathcal{L}|=|\mathcal{C}|$ and $|\mathcal{P}|=|\phi(\mathcal{P})|$.
- This idea was due to Pham, Vinh and de Zeeuw (2018).

Point-conic incidences

Theorem (M., Pham and Warren (2021+))
For any set \mathcal{C} of irreducible conics in \mathbb{F}_{p}^{2}, and any set of points $\mathcal{P} \subseteq \mathbb{F}_{p}^{2}$ with $|\mathcal{P}| \ll p^{15 / 13}$, we have

$$
I(\mathcal{P}, \mathcal{C}) \ll|\mathcal{P}|^{23 / 27}|\mathcal{C}|^{23 / 27}+|\mathcal{P}|^{13 / 9}|\mathcal{C}|^{12 / 27}+|\mathcal{C}|
$$

Point-conic incidences

Theorem (M., Pham and Warren (2021+))
For any set \mathcal{C} of irreducible conics in \mathbb{F}_{p}^{2}, and any set of points $\mathcal{P} \subseteq \mathbb{F}_{p}^{2}$ with $|\mathcal{P}| \ll p^{15 / 13}$, we have

$$
I(\mathcal{P}, \mathcal{C}) \ll|\mathcal{P}|^{23 / 27}|\mathcal{C}|^{23 / 27}+|\mathcal{P}|^{13 / 9}|\mathcal{C}|^{12 / 27}+|\mathcal{C}| .
$$

- This improves the trivial bound in the range

$$
|\mathcal{P}|^{19 / 8} \leq|\mathcal{C}| \leq|\mathcal{P}|^{20 / 7} .
$$

Point-conic incidences

Theorem (M., Pham and Warren (2021+))
For any set \mathcal{C} of irreducible conics in \mathbb{F}_{p}^{2}, and any set of points $\mathcal{P} \subseteq \mathbb{F}_{p}^{2}$ with $|\mathcal{P}| \ll p^{15 / 13}$, we have

$$
I(\mathcal{P}, \mathcal{C}) \ll|\mathcal{P}|^{23 / 27}|\mathcal{C}|^{23 / 27}+|\mathcal{P}|^{13 / 9}|\mathcal{C}|^{12 / 27}+|\mathcal{C}| .
$$

- This improves the trivial bound in the range

$$
|\mathcal{P}|^{19 / 8} \leq|\mathcal{C}| \leq|\mathcal{P}|^{20 / 7}
$$

- A much better bound is proved when \mathcal{P} is a Cartesian product.

Point-conic incidences

Theorem (M., Pham and Warren (2021+))
Let $\mathcal{P} \subseteq \mathbb{F}_{p}^{2}$, with $|\mathcal{P}| \ll p^{15 / 13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3(\bmod 4)$), or
- parabolas of the form $y=a x^{2}+b x+c$, or
- hyperbolas of the form $(x-a)(y-b)=c$.

Then

$$
I(P, \mathcal{C}) \ll|\mathcal{P}|^{15 / 19}|\mathcal{C}|^{15 / 19}+|\mathcal{P}|^{23 / 19}|\mathcal{C}|^{4 / 19}+|\mathcal{C}| .
$$

Point-conic incidences

Theorem (M., Pham and Warren (2021+))
Let $\mathcal{P} \subseteq \mathbb{F}_{p}^{2}$, with $|\mathcal{P}| \ll p^{15 / 13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3(\bmod 4)$), or
- parabolas of the form $y=a x^{2}+b x+c$, or
- hyperbolas of the form $(x-a)(y-b)=c$.

Then

$$
I(P, \mathcal{C}) \ll|\mathcal{P}|^{15 / 19}|\mathcal{C}|^{15 / 19}+|\mathcal{P}|^{23 / 19}|\mathcal{C}|^{4 / 19}+|\mathcal{C}| .
$$

- This improves the trivial bound in the range

$$
|\mathcal{P}|^{11 / 8} \ll|\mathcal{C}| \ll|\mathcal{P}|^{12 / 7} .
$$

Theorem (M., Pham and Warren (2021+))
Let $\mathcal{P} \subseteq \mathbb{F}_{p}^{2}$, with $|\mathcal{P}| \ll p^{15 / 13}$ and let \mathcal{C} be either a set of

- circles (in which case, suppose $p \equiv 3(\bmod 4)$), or
- parabolas of the form $y=a x^{2}+b x+c$, or
- hyperbolas of the form $(x-a)(y-b)=c$.

Then

$$
I(P, \mathcal{C}) \ll|\mathcal{P}|^{15 / 19}|\mathcal{C}|^{15 / 19}+|\mathcal{P}|^{23 / 19}|\mathcal{C}|^{4 / 19}+|\mathcal{C}|
$$

- This improves the trivial bound in the range

$$
|\mathcal{P}|^{11 / 8} \ll|\mathcal{C}| \ll|\mathcal{P}|^{12 / 7} .
$$

- A much better bound is proved when \mathcal{P} is a Cartesian product.
- The key observation for circles etc.: If we fix a point $\boldsymbol{q} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through \boldsymbol{q} resembles that of a point-line one.

The overall strategy

- The key observation for circles etc.: If we fix a point $\boldsymbol{q} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through \boldsymbol{q} resembles that of a point-line one.
- The key observation for general conics: If we fix two points $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through both points resembles that of a point-Möbius transformations one.

The overall strategy

- The key observation for circles etc.: If we fix a point $\boldsymbol{q} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through \boldsymbol{q} resembles that of a point-line one.
- The key observation for general conics: If we fix two points $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through both points resembles that of a point-Möbius transformations one.
- Based on these, initially we show that there cannot be too many such curves with too many points on them.

The overall strategy

- The key observation for circles etc.: If we fix a point $\boldsymbol{q} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through \boldsymbol{q} resembles that of a point-line one.
- The key observation for general conics: If we fix two points $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through both points resembles that of a point-Möbius transformations one.
- Based on these, initially we show that there cannot be too many such curves with too many points on them.
- This easily leads to a similar statement about all of \mathcal{C}. Specifically, we bound the number of k-rich curves: curves in \mathcal{C} containing at least k points of \mathcal{P}.

The overall strategy

- The key observation for circles etc.: If we fix a point $\boldsymbol{q} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through \boldsymbol{q} resembles that of a point-line one.
- The key observation for general conics: If we fix two points $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, then the incidence structure arising from \mathcal{P} and the curves through both points resembles that of a point-Möbius transformations one.
- Based on these, initially we show that there cannot be too many such curves with too many points on them.
- This easily leads to a similar statement about all of \mathcal{C}. Specifically, we bound the number of k-rich curves: curves in \mathcal{C} containing at least k points of \mathcal{P}.
- This is converted to a bound on $I(\mathcal{P}, \mathcal{C})$.

From k-rich curves to incidences

- We write \mathcal{C}_{k} for the set of k-rich curves in \mathcal{C} (w.r.t. \mathcal{P}), i.e.

$$
\mathcal{C}_{k}=\{C \in \mathcal{C}:|C \cap \mathcal{P}| \geq k\}
$$

- We write \mathcal{C}_{k} for the set of k-rich curves in \mathcal{C} (w.r.t. \mathcal{P}), i.e.

$$
\mathcal{C}_{k}=\{C \in \mathcal{C}:|C \cap \mathcal{P}| \geq k\}
$$

- Our strategy (for circles etc.) is to first bound the number of k-rich curves through some fixed arbitrary \boldsymbol{q} :

$$
\mathcal{C}_{\boldsymbol{q}, k}=\{C \in \mathcal{C}: \boldsymbol{q} \in \mathcal{C} \quad \text { and } \quad|C \cap \mathcal{P}| \geq k\} .
$$

- We write \mathcal{C}_{k} for the set of k-rich curves in \mathcal{C} (w.r.t. \mathcal{P}), i.e.

$$
\mathcal{C}_{k}=\{C \in \mathcal{C}:|C \cap \mathcal{P}| \geq k\}
$$

- Our strategy (for circles etc.) is to first bound the number of k-rich curves through some fixed arbitrary \boldsymbol{q} :

$$
\mathcal{C}_{\boldsymbol{q}, k}=\{C \in \mathcal{C}: \boldsymbol{q} \in \mathcal{C} \quad \text { and } \quad|C \cap \mathcal{P}| \geq k\} .
$$

- Then note that

$$
\left|\mathcal{C}_{k}\right| \ll \frac{1}{k} \sum_{\boldsymbol{q} \in \mathcal{P}}\left|\mathcal{C}_{\boldsymbol{q}, k}\right| .
$$

From k-rich curves to incidences

- Clearly

$$
I(\mathcal{P}, \mathcal{C})=\sum_{k=1}^{|\mathcal{P}|}\left|\mathcal{C}_{=k}\right| k
$$

From k-rich curves to incidences

- Clearly

$$
I(\mathcal{P}, \mathcal{C})=\sum_{k=1}^{|\mathcal{P}|}\left|\mathcal{C}_{=k}\right| k
$$

- which we split as

$$
\sum_{k \leq \Delta}\left|\mathcal{C}_{=k}\right| k+\sum_{k>\Delta}\left|\mathcal{C}_{=k}\right| k,
$$

From k-rich curves to incidences

- Clearly

$$
I(\mathcal{P}, \mathcal{C})=\sum_{k=1}^{|\mathcal{P}|}\left|\mathcal{C}_{=k}\right| k
$$

- which we split as

$$
\sum_{k \leq \Delta}\left|\mathcal{C}_{=k}\right| k+\sum_{k>\Delta}\left|\mathcal{C}_{=k}\right| k,
$$

- which is bounded by

$$
\ll \Delta|\mathcal{C}|+\sum_{i} \sum_{\substack{C \in \mathcal{C} \\ 2^{i} \Delta \leq|C \cap \mathcal{P}|<2^{i+1} \Delta}}\left(2^{i} \Delta\right)
$$

From k-rich curves to incidences

- Clearly

$$
I(\mathcal{P}, \mathcal{C})=\sum_{k=1}^{|\mathcal{P}|}\left|\mathcal{C}_{=k}\right| k
$$

- which we split as

$$
\sum_{k \leq \Delta}\left|\mathcal{C}_{=k}\right| k+\sum_{k>\Delta}\left|\mathcal{C}_{=k}\right| k,
$$

- which is bounded by

$$
\ll \Delta|\mathcal{C}|+\sum_{i} \sum_{\substack{C \in \mathcal{C} \\ 2^{i} \Delta \leq|C \cap \mathcal{P}|<2^{i+1} \Delta}}\left(2^{i} \Delta\right)
$$

- and further by

$$
\Delta|\mathcal{C}|+\sum_{i}\left|\mathcal{C}_{2^{i} \Delta}\right|\left(2^{i} \Delta\right)
$$

From k-rich curves to incidences

- Clearly

$$
I(\mathcal{P}, \mathcal{C})=\sum_{k=1}^{|\mathcal{P}|}\left|\mathcal{C}_{=k}\right| k
$$

- which we split as

$$
\sum_{k \leq \Delta}\left|\mathcal{C}_{=k}\right| k+\sum_{k>\Delta}\left|\mathcal{C}_{=k}\right| k,
$$

- which is bounded by

$$
\ll \Delta|\mathcal{C}|+\sum_{i} \sum_{\substack{C \in \mathcal{C} \\ 2^{i} \Delta \leq|C \cap \mathcal{P}|<2^{i+1} \Delta}}\left(2^{i} \Delta\right)
$$

- and further by

$$
\Delta|\mathcal{C}|+\sum_{i}\left|\mathcal{C}_{2^{i} \Delta}\right|\left(2^{i} \Delta\right)
$$

- Applying a bound on $\left|\mathcal{C}_{k}\right|$ and optimizing for Δ results in an incidence bound.

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-c)^{2}+(y-d)^{2}=r \text { for some } c, d, r \in \mathbb{F}_{q}
$$

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-c)^{2}+(y-d)^{2}=r \text { for some } c, d, r \in \mathbb{F}_{q} .
$$

- By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a, b}$ must take the form

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2} \text { for some } a, b \in \mathbb{F}_{q} .
$$

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-c)^{2}+(y-d)^{2}=r \text { for some } c, d, r \in \mathbb{F}_{q} .
$$

- By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a, b}$ must take the form

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2} \text { for some } a, b \in \mathbb{F}_{q} .
$$

- Suppose C is k-rich and so the points $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k-1}, \beta_{k-1}\right) \in \mathcal{P} \backslash\{(0,0)\}$ lie on C.

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-c)^{2}+(y-d)^{2}=r \text { for some } c, d, r \in \mathbb{F}_{q} .
$$

- By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a, b}$ must take the form

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2} \text { for some } a, b \in \mathbb{F}_{q} .
$$

- Suppose C is k-rich and so the points $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k-1}, \beta_{k-1}\right) \in \mathcal{P} \backslash\{(0,0)\}$ lie on C.
- We associate each of the points to a line $I_{\alpha_{i}, \beta_{i}}$ of the form

$$
(X, Y) \in \mathbb{F}_{q}^{2}:-2 \alpha_{i} X-2 \beta_{i} Y+\alpha_{i}^{2}+\beta_{i}^{2}=0 .
$$

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- Fix $\boldsymbol{q} \in \mathcal{P}$ and let C be a circle through it:

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-c)^{2}+(y-d)^{2}=r \text { for some } c, d, r \in \mathbb{F}_{q} .
$$

- By a translation, we assume $\boldsymbol{q}=(0,0)$ and so $C=C_{a, b}$ must take the form

$$
(x, y) \in \mathbb{F}_{q}^{2}: \quad(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2} \text { for some } a, b \in \mathbb{F}_{q} .
$$

- Suppose C is k-rich and so the points $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k-1}, \beta_{k-1}\right) \in \mathcal{P} \backslash\{(0,0)\}$ lie on C.
- We associate each of the points to a line $I_{\alpha_{i}, \beta_{i}}$ of the form

$$
(X, Y) \in \mathbb{F}_{q}^{2}:-2 \alpha_{i} X-2 \beta_{i} Y+\alpha_{i}^{2}+\beta_{i}^{2}=0
$$

- By assuming $q \equiv 3(\bmod 4),-1$ is a non-square and these lines are defined without multiplicity.

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a, b} \mapsto(a, b)$ and $\left(\alpha_{i}, \beta_{i}\right) \mapsto I_{\alpha_{i}, \beta_{i}}$.

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a, b} \mapsto(a, b)$ and $\left(\alpha_{i}, \beta_{i}\right) \mapsto I_{\alpha_{i}, \beta_{i}}$.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines \mathcal{L} with $|\mathcal{L}|=|\mathcal{P}|$).

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a, b} \mapsto(a, b)$ and $\left(\alpha_{i}, \beta_{i}\right) \mapsto I_{\alpha_{i}, \beta_{i}}$.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines \mathcal{L} with $|\mathcal{L}|=|\mathcal{P}|)$.
- That is $\left|\mathcal{C}_{\boldsymbol{q}, k}\right|=\left|\mathcal{Q}_{k}\right|$ for some point set \mathcal{Q}.

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a, b} \mapsto(a, b)$ and $\left(\alpha_{i}, \beta_{i}\right) \mapsto I_{\alpha_{i}, \beta_{i}}$.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines \mathcal{L} with $|\mathcal{L}|=|\mathcal{P}|)$.
- That is $\left|\mathcal{C}_{\boldsymbol{q}, k}\right|=\left|\mathcal{Q}_{k}\right|$ for some point set \mathcal{Q}.
- The number of k-rich points $\mathcal{Q}_{k}($ w.r.t. $\mathcal{L})$ can be bounded simply using existing point-line incidence bounds based on the observation

$$
k\left|\mathcal{Q}_{k}\right| \leq I\left(\mathcal{Q}_{k}, \mathcal{L}\right)
$$

Bounding $\left|\mathcal{C}_{q, k}\right|$ (for circles)

- We have transformed our point-circle incidence relation to a line-point one. I.e. $C_{a, b} \mapsto(a, b)$ and $\left(\alpha_{i}, \beta_{i}\right) \mapsto I_{\alpha_{i}, \beta_{i}}$.
- So a k-rich circle is now a k-rich point (w.r.t. a set of lines \mathcal{L} with $|\mathcal{L}|=|\mathcal{P}|)$.
- That is $\left|\mathcal{C}_{\boldsymbol{q}, k}\right|=\left|\mathcal{Q}_{k}\right|$ for some point set \mathcal{Q}.
- The number of k-rich points $\mathcal{Q}_{k}($ w.r.t. $\mathcal{L})$ can be bounded simply using existing point-line incidence bounds based on the observation

$$
k\left|\mathcal{Q}_{k}\right| \leq I\left(\mathcal{Q}_{k}, \mathcal{L}\right)
$$

- In higher dimensions, the same scheme reduces the point-circle problem to a hyperplane-point problem.

Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have
γ is a Möbius transformation $\Longleftrightarrow\{[0: 1: 0],[1: 0: 0]\} \subseteq \gamma$.

Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have
γ is a Möbius transformation $\Longleftrightarrow\{[0: 1: 0],[1: 0: 0]\} \subseteq \gamma$.
To bound $\left|C_{k}\right|$, we proceed as follows:

Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have
γ is a Möbius transformation $\Longleftrightarrow\{[0: 1: 0],[1: 0: 0]\} \subseteq \gamma$.
To bound $\left|C_{k}\right|$, we proceed as follows:

- For $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, let $C_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}$ be the set of k-rich conics in \mathcal{C} incident to \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.

Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have
γ is a Möbius transformation $\Longleftrightarrow\{[0: 1: 0],[1: 0: 0]\} \subseteq \gamma$.
To bound $\left|C_{k}\right|$, we proceed as follows:

- For $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, let $C_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}$ be the set of k-rich conics in \mathcal{C} incident to \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.
- Let π be a projective transformation sending

$$
\boldsymbol{q}_{1} \rightarrow[0: 1: 0], \quad \boldsymbol{q}_{2} \rightarrow[1: 0: 0] .
$$

Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have
γ is a Möbius transformation $\Longleftrightarrow\{[0: 1: 0],[1: 0: 0]\} \subseteq \gamma$.
To bound $\left|C_{k}\right|$, we proceed as follows:

- For $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, let $C_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}$ be the set of k-rich conics in \mathcal{C} incident to \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.
- Let π be a projective transformation sending

$$
\boldsymbol{q}_{1} \rightarrow[0: 1: 0], \quad \boldsymbol{q}_{2} \rightarrow[1: 0: 0] .
$$

- $\pi\left(\mathcal{C}_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}\right)$ corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.

Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible conic γ, we have
γ is a Möbius transformation $\Longleftrightarrow\{[0: 1: 0],[1: 0: 0]\} \subseteq \gamma$.
To bound $\left|C_{k}\right|$, we proceed as follows:

- For $\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}$, let $C_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}$ be the set of k-rich conics in \mathcal{C} incident to \boldsymbol{q}_{1} and \boldsymbol{q}_{2}.
- Let π be a projective transformation sending

$$
\boldsymbol{q}_{1} \rightarrow[0: 1: 0], \quad \boldsymbol{q}_{2} \rightarrow[1: 0: 0] .
$$

- $\pi\left(\mathcal{C}_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}\right)$ corresponds to a set of k-rich Möbius transformations, whose size can be bounded by a result of Warren and Wheeler.
- Then

$$
\left|\mathcal{C}_{k}\right| \leq\binom{ k}{2}^{-1} \sum_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}}\left|\mathcal{C}_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}\right| \ll \frac{|\mathcal{P}|^{2}}{k^{2}} \max _{\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \in \mathcal{P}}\left|\mathcal{C}_{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, k}\right|
$$

The Erdős distinct distances problem

Given $\boldsymbol{p}=\left(p_{1}, p_{2}\right)$ and $\boldsymbol{q}=\left(q_{1}, q_{2}\right)$, define their distance by

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2} .
$$

Given $\boldsymbol{p}=\left(p_{1}, p_{2}\right)$ and $\boldsymbol{q}=\left(q_{1}, q_{2}\right)$, define their distance by

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2} .
$$

The number of distances formed by \mathcal{P} is

$$
D(\mathcal{P})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}\}| .
$$

The Erdős distinct distances problem

Given $\boldsymbol{p}=\left(p_{1}, p_{2}\right)$ and $\boldsymbol{q}=\left(q_{1}, q_{2}\right)$, define their distance by

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2} .
$$

The number of distances formed by \mathcal{P} is

$$
D(\mathcal{P})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}\}| .
$$

Conjecture (Erdős (1946))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $|D(\mathcal{P})| \gg|\mathcal{P}|(\log |\mathcal{P}|)^{-1 / 2}$.

The Erdős distinct distances problem

Given $\boldsymbol{p}=\left(p_{1}, p_{2}\right)$ and $\boldsymbol{q}=\left(q_{1}, q_{2}\right)$, define their distance by

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}
$$

The number of distances formed by \mathcal{P} is

$$
D(\mathcal{P})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p}, \boldsymbol{q} \in \mathcal{P}\}| .
$$

Conjecture (Erdős (1946))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $|D(\mathcal{P})| \gg|\mathcal{P}|(\log |\mathcal{P}|)^{-1 / 2}$.

Theorem (Guth and Katz (2015))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $|D(\mathcal{P})| \gg|\mathcal{P}|(\log |\mathcal{P}|)^{-1}$.

The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$
D(\mathcal{P} ; \boldsymbol{q})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p} \in \mathcal{P}\}| .
$$

The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$
D(\mathcal{P} ; \boldsymbol{q})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p} \in \mathcal{P}\}| .
$$

We also write

$$
D_{\mathrm{pin}}(\mathcal{P})=\max _{\boldsymbol{q} \in \mathcal{P}} D(\mathcal{P} ; \boldsymbol{q})
$$

The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$
D(\mathcal{P} ; \boldsymbol{q})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p} \in \mathcal{P}\}| .
$$

We also write

$$
D_{\text {pin }}(\mathcal{P})=\max _{\boldsymbol{q} \in \mathcal{P}} D(\mathcal{P} ; \boldsymbol{q})
$$

Conjecture (Erdős (1975))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $\left|D_{\text {pin }}(\mathcal{P})\right| \gg|\mathcal{P}|(\log |\mathcal{P}|)^{-1 / 2}$.

The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$
D(\mathcal{P} ; \boldsymbol{q})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p} \in \mathcal{P}\}| .
$$

We also write

$$
D_{\text {pin }}(\mathcal{P})=\max _{\boldsymbol{q} \in \mathcal{P}} D(\mathcal{P} ; \boldsymbol{q})
$$

Conjecture (Erdős (1975))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $\left|D_{\text {pin }}(\mathcal{P})\right| \gg|\mathcal{P}|(\log |\mathcal{P}|)^{-1 / 2}$.
Theorem (Katz and Tardos (2004))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $\left|D_{\text {pin }}(\mathcal{P})\right| \gg|\mathcal{P}|^{0.8641 \ldots}$.

The pinned distinct distances problem

The number of distances of \mathcal{P}, pinned at $\boldsymbol{q} \in \mathcal{P}$ is defined by

$$
D(\mathcal{P} ; \boldsymbol{q})=|\{d(\boldsymbol{p}, \boldsymbol{q}): \boldsymbol{p} \in \mathcal{P}\}| .
$$

We also write

$$
D_{\mathrm{pin}}(\mathcal{P})=\max _{\boldsymbol{q} \in \mathcal{P}} D(\mathcal{P} ; \boldsymbol{q})
$$

Conjecture (Erdős (1975))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $\left|D_{\text {pin }}(\mathcal{P})\right| \gg|\mathcal{P}|(\log |\mathcal{P}|)^{-1 / 2}$.
Theorem (Katz and Tardos (2004))
For finite $\mathcal{P} \subset \mathbb{R}^{2}$, we have $\left|D_{\text {pin }}(\mathcal{P})\right| \gg|\mathcal{P}|^{0.8641 \ldots}$.

Theorem (Murphy, Petridis, Pham, Rudnev and Stevens (2021)) Let $\mathcal{P} \subset \mathbb{F}^{2}$ be finite and if $\operatorname{char}(\mathbb{F})=p$, suppose $p \equiv 3(\bmod 4)$ and $|\mathcal{P}| \leq p^{4 / 3}$. Then $\left|D_{\text {pin }}(\mathcal{P})\right| \gg|\mathcal{P}|^{2 / 3}$.

Related problems: Falconer-type questions

- Finite field Falconer-type questions ask how large must $\mathcal{P} \subset \mathbb{F}_{q}^{2}$ be such that $D(\mathcal{P})$ (or $D_{\text {pin }}(\mathcal{P})$) is of size q (or up to constants).

Related problems: Falconer-type questions

- Finite field Falconer-type questions ask how large must $\mathcal{P} \subset \mathbb{F}_{q}^{2}$ be such that $D(\mathcal{P})$ (or $D_{\text {pin }}(\mathcal{P})$) is of size q (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4 / 3}$ then $D(\mathcal{P}) \gg q$.

Related problems: Falconer-type questions

- Finite field Falconer-type questions ask how large must $\mathcal{P} \subset \mathbb{F}_{q}^{2}$ be such that $D(\mathcal{P})$ (or $D_{\text {pin }}(\mathcal{P})$) is of size q (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4 / 3}$ then $D(\mathcal{P}) \gg q$.
- Bennett, Hart, losevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.

Related problems: Falconer-type questions

- Finite field Falconer-type questions ask how large must $\mathcal{P} \subset \mathbb{F}_{q}^{2}$ be such that $D(\mathcal{P})$ (or $D_{\text {pin }}(\mathcal{P})$) is of size q (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4 / 3}$ then $D(\mathcal{P}) \gg q$.
- Bennett, Hart, losevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.
- Murphy and Petridis (2019) gave examples showing that for general \mathbb{F}_{q}, the exponent $4 / 3$ is sharp.

Related problems: Falconer-type questions

- Finite field Falconer-type questions ask how large must $\mathcal{P} \subset \mathbb{F}_{q}^{2}$ be such that $D(\mathcal{P})$ (or $D_{\text {pin }}(\mathcal{P})$) is of size q (or up to constants).
- Chapman, Erdogan, Hart, losevich and Koh (2012) showed if $|\mathcal{P}| \gg q^{4 / 3}$ then $D(\mathcal{P}) \gg q$.
- Bennett, Hart, losevich, Pakinathan and Rudnev (2017) proved the same result for pinned distances problem.
- Murphy and Petridis (2019) gave examples showing that for general \mathbb{F}_{q}, the exponent $4 / 3$ is sharp.
- Murphy, Petridis, Pham, Rudnev and Stevens (2021) improved the exponent $4 / 3$ (for $D_{\text {pin }}$) to $5 / 4$ over prime order fields.

Pinned algebraic distances: variations

Noting that $d(\boldsymbol{p}, \boldsymbol{e})=f(\boldsymbol{p}-\boldsymbol{e})$, where f is $(x, y) \mapsto x^{2}+y^{2}$, one may naturally wish to study the distances problem for other choices of f :

Pinned algebraic distances: variations

Noting that $d(\boldsymbol{p}, \boldsymbol{e})=f(\boldsymbol{p}-\boldsymbol{e})$, where f is $(x, y) \mapsto x^{2}+y^{2}$, one may naturally wish to study the distances problem for other choices of f :

Theorem (M., Pham and Warren (2021+))
Let $\mathcal{E} \subset \mathbb{F}_{p}^{2}$ with $|\mathcal{E}| \ll p^{15 / 13}$ and $p \equiv 3(\bmod 4)$. Let $f(x, y)$ be one of the following polynomials:

- $x^{2}+y^{2}$ (usual distance function), or
- xy (Minkowski distance function), or
- $y+x^{2}$ (parabolic distance function).

There exists a point $\boldsymbol{p} \in \mathcal{E}$ such that $|f(\boldsymbol{p}-\mathcal{E})| \gg|\mathcal{E}|^{\frac{8}{15}}$, where

$$
f(\boldsymbol{p}-\mathcal{E}):=\{f(\boldsymbol{p}-\boldsymbol{e}): \boldsymbol{e} \in \mathcal{E}\} .
$$

Pinned algebraic distances: proof

- For $\boldsymbol{p} \in \mathcal{E}$, let

$$
\mathcal{C}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{F}_{p}^{2}: f(\boldsymbol{p}-\boldsymbol{x})=t \quad \text { with } \quad t \in f(\boldsymbol{p}-\mathcal{E}) \backslash\{0\}\right\}
$$

- For $\boldsymbol{p} \in \mathcal{E}$, let

$$
\mathcal{C}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{F}_{p}^{2}: f(\boldsymbol{p}-\boldsymbol{x})=t \quad \text { with } \quad t \in f(\boldsymbol{p}-\mathcal{E}) \backslash\{0\}\right\}
$$

- Let $\mathcal{C}=\bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- For $\boldsymbol{p} \in \mathcal{E}$, let

$$
\mathcal{C}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{F}_{p}^{2}: f(\boldsymbol{p}-\boldsymbol{x})=t \quad \text { with } \quad t \in f(\boldsymbol{p}-\mathcal{E}) \backslash\{0\}\right\}
$$

- Let $\mathcal{C}=\bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- Note that $I(\mathcal{E}, \mathcal{C}) \gg|\mathcal{E}|^{2}$.
- For $\boldsymbol{p} \in \mathcal{E}$, let

$$
\mathcal{C}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{F}_{p}^{2}: f(\boldsymbol{p}-\boldsymbol{x})=t \quad \text { with } \quad t \in f(\boldsymbol{p}-\mathcal{E}) \backslash\{0\}\right\}
$$

- Let $\mathcal{C}=\bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- Note that $I(\mathcal{E}, \mathcal{C}) \gg|\mathcal{E}|^{2}$.
- Further note that

$$
|\mathcal{C}| \leq \sum_{\boldsymbol{p} \in \mathcal{E}}|f(\boldsymbol{p}-\mathcal{E})| \leq|\mathcal{E}| \cdot \max _{\boldsymbol{p} \in \mathcal{E}}|f(\boldsymbol{p}-\mathcal{E})|
$$

- For $\boldsymbol{p} \in \mathcal{E}$, let

$$
\mathcal{C}_{\boldsymbol{p}}=\left\{\boldsymbol{x} \in \mathbb{F}_{p}^{2}: f(\boldsymbol{p}-\boldsymbol{x})=t \quad \text { with } t \in f(\boldsymbol{p}-\mathcal{E}) \backslash\{0\}\right\}
$$

- Let $\mathcal{C}=\bigcup_{\boldsymbol{p} \in \mathcal{E}} \mathcal{C}_{\boldsymbol{p}}$.
- Note that $I(\mathcal{E}, \mathcal{C}) \gg|\mathcal{E}|^{2}$.
- Further note that

$$
|\mathcal{C}| \leq \sum_{\boldsymbol{p} \in \mathcal{E}}|f(\boldsymbol{p}-\mathcal{E})| \leq|\mathcal{E}| \cdot \max _{\boldsymbol{p} \in \mathcal{E}}|f(\boldsymbol{p}-\mathcal{E})| .
$$

- An upper bound on $I(\mathcal{E}, \mathcal{C})$ follows from our point-conic incidence bound, yielding the result.

Related problems: higher dimensions etc.

- Let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$ and $\boldsymbol{q}=\left(q_{1}, \ldots, q_{d}\right)$, be points in \mathbb{F}_{q}^{d}. Then we write

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\cdots+\left(p_{d}-q_{d}\right)^{2} .
$$

Related problems: higher dimensions etc.

- Let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$ and $\boldsymbol{q}=\left(q_{1}, \ldots, q_{d}\right)$, be points in \mathbb{F}_{q}^{d}. Then we write

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\cdots+\left(p_{d}-q_{d}\right)^{2} .
$$

- We define the number of distances between point sets \mathcal{E} and \mathcal{F}, in \mathbb{F}_{q}^{d}, by

$$
D(\mathcal{E}, \mathcal{F})=\mid\{d(\boldsymbol{e}, \boldsymbol{f}): \boldsymbol{e} \in \mathcal{E} \quad \text { and } \quad \boldsymbol{f} \in \mathcal{F}\} \mid .
$$

Related problems: higher dimensions etc.

- Let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$ and $\boldsymbol{q}=\left(q_{1}, \ldots, q_{d}\right)$, be points in \mathbb{F}_{q}^{d}. Then we write

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\cdots+\left(p_{d}-q_{d}\right)^{2} .
$$

- We define the number of distances between point sets \mathcal{E} and \mathcal{F}, in \mathbb{F}_{q}^{d}, by

$$
D(\mathcal{E}, \mathcal{F})=\mid\{d(\boldsymbol{e}, \boldsymbol{f}): \boldsymbol{e} \in \mathcal{E} \quad \text { and } \quad \boldsymbol{f} \in \mathcal{F}\} \mid .
$$

Related problems: higher dimensions etc.

- Let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$ and $\boldsymbol{q}=\left(q_{1}, \ldots, q_{d}\right)$, be points in \mathbb{F}_{q}^{d}. Then we write

$$
d(\boldsymbol{p}, \boldsymbol{q})=\left(p_{1}-q_{1}\right)^{2}+\cdots+\left(p_{d}-q_{d}\right)^{2} .
$$

- We define the number of distances between point sets \mathcal{E} and \mathcal{F}, in \mathbb{F}_{q}^{d}, by

$$
D(\mathcal{E}, \mathcal{F})=\mid\{d(\boldsymbol{e}, \boldsymbol{f}): \boldsymbol{e} \in \mathcal{E} \quad \text { and } \quad \boldsymbol{f} \in \mathcal{F}\} \mid .
$$

Theorem (Shparlinski (2006))
For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_{q}^{d}$, we have

$$
D(\mathcal{E}, \mathcal{F}) \gg \min \left\{q, \frac{|\mathcal{E}||\mathcal{F}|}{q^{d}}\right\} .
$$

In particular, if $|\mathcal{E} \| \mathcal{F}| \geq q^{d+1}$ then $D(\mathcal{E}, \mathcal{F}) \gg q$.

Related problems: higher dimensions etc.

Theorem (Koh and Sun (2014))
For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_{q}^{d}$, if $d \geq 3$ is odd, then

$$
D(\mathcal{E}, \mathcal{F}) \geq \begin{cases}\min \left\{\frac{q}{2}, \frac{|\mathcal{E}||\mathcal{F}|}{8 q^{d-1}}\right\} & \text { if } 1 \leq|\mathcal{E}|<q^{\frac{d-1}{2}} \\ \min \left\{\frac{q}{2}, \frac{|\mathcal{F}|}{\left.8 q^{\frac{d-1}{2}}\right\}}\right. & \text { if } q^{\frac{d-1}{2}} \leq|E|<q^{\frac{d+1}{2}} \\ \min \left\{\frac{q}{2}, \frac{\mathcal{E}| | \mathcal{F} \mid}{2 q^{d}}\right\} & \text { if } q^{\frac{d+1}{2}} \leq|\mathcal{E}| \leq q^{d}\end{cases}
$$

Related problems: higher dimensions etc.

Theorem (Koh and Sun (2014))
For $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_{q}^{d}$, if $d \geq 2$ is even, under the assumption $|\mathcal{E}||\mathcal{F}| \geq 16 q^{d}$, one has

$$
D(\mathcal{E}, \mathcal{F}) \geq \begin{cases}\frac{q}{144} & \text { for } 1 \leq|\mathcal{E}|<q^{\frac{d-1}{2}} \\ \frac{1}{144} \min \left\{q, \frac{|\mathcal{F}|}{2 q^{\frac{\mathcal{L}}{2}-1}}\right\} & \text { for } q^{\frac{d d-1}{2}} \leq|\mathcal{E}|<q^{\frac{d+1}{2}} \\ \frac{1}{144} \min \left\{q, \frac{2 \mathcal{E}| | \mathcal{F} \mid}{q^{d}}\right\} & \text { for } q^{\frac{d+1}{2}} \leq|\mathcal{E}| \leq q^{d}\end{cases}
$$

Related problems: higher dimensions etc.

Theorem (M., Pham and Warren (2021+))
Let \mathcal{E}, \mathcal{F} be sets in \mathbb{F}_{q}^{d}. Assume that $|\mathcal{E}| \sim|\mathcal{F}| \leq q^{\frac{d+1}{2}}$, then we have

$$
D(\mathcal{E}, \mathcal{F}) \gg \min \left\{q, \frac{|\mathcal{E}|^{1 / 2}|\mathcal{F}|^{1 / 2}}{q^{\frac{d-1}{2}}}\right\} .
$$

Related problems: higher dimensions etc.

Theorem (M., Pham and Warren (2021+))
Let \mathcal{E}, \mathcal{F} be sets in \mathbb{F}_{q}^{d}. Assume that $|\mathcal{E}| \sim|\mathcal{F}| \leq q^{\frac{d+1}{2}}$, then we have

$$
D(\mathcal{E}, \mathcal{F}) \gg \min \left\{q, \frac{|\mathcal{E}|^{1 / 2}|\mathcal{F}|^{1 / 2}}{q^{\frac{d-1}{2}}}\right\} .
$$

That is, the condition $|\mathcal{E}||\mathcal{F}| \gg q^{d}$ is removed from Koh-Sun's result for even d in the range $q^{\frac{d-1}{2}} \leq|\mathcal{E}| \leq q^{\frac{d+1}{2}}$.

Thank you for your attention!

