
Bounds on point-conic incidences over finite
fields and applications

FGC-IPM Number Theory Seminar

Ali Mohammadi
Joint work with Thang Pham and Audie Warren

(arXiv:2111.04072)

Institute for Research in Fundamental Sciences (IPM)

23 November 2021

Ali Mohammadi Point-conic incidences in Fq

https://arxiv.org/abs/2111.04072


Notation

We use F to denote an arbitrary field.

Fq is a finite field of order q and characteristic p.

FPd will be the d-dimensional projective space over F.
Sometimes, we write F2 but really mean {[x , y , 1] : x , y ∈ F}.
P will be a set of points, L a set of lines and C a set of curves
(generally conics) over Fd (generally d = 2).

Bold lowercase letters, e.g. p, will be points.

A� B and B � A will mean A ≤ CB for some absolute
constant C (not always the same).
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Objective

Definition (Incidences)

Let F be a field. Given a finite set of points P and a finite set of
algebraic curves C, we denote the number of incidences between P
and C by

I (P, C) = |{(p,C ) ∈ P × C : p ∈ C}|.

Definition (Conics)

Let φ ∈ F[x , y , z ] be a homogeneous polynomial of degree 2. Then
the curve C = {x ∈ FP2 : φ(x) = 0} is called a conic.
A conic is called irreducible or nondegenerate if φ cannot be
written as the product of two degree 1 polynomials.

This talk will be mostly about upper bounds on I (P, C), where
P ⊂ F2

p and C is a set of irreducible conics over Fp.
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Incidences: trivial bounds

Theorem (Kővári-Sós-Turán)

Suppose that the incidence graph on P × C (over F2) contains no
copy of Ks,t , i.e. for any s points in P there are fewer than t
curves in C incident to it, then

I (P, C)� t1/s |P|C|1−1/s + s|C|.

The roles of P and C and respectively s and t may be reversed.

Writing (P, C, I ) for the incidence graph on P and C, we have:

C (P, C, I ) has no (C,P, I ) has no

Lines K2,2 K2,2

General irreducible conics K5,2 K2,5

Circles and parabolas K3,2 K2,3
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Incidences: trivial bounds

Two lines over the plane F2 meet in at most one point. Also
for any two points, there is at most one line passing both. So

I (P,L)� min{|L|1/2|P|+ |L|, |P|1/2|L|+ |P|}.

In particular, if |P| = |L| = N, then I (P,L)� N3/2.

An irreducible conic is determined uniquely by five points
(with no three collinear). Also by Bézout’s theorem, any two
distinct conics meet in at most four distinct points. So

I (P, C)� min{|P||C|4/5 + |C|, |P|1/2|C|+ |P|}.

Any two parabolas or circles meet in at most two points. Also
they are determined uniquely by three (non-collinear) points.
So

I (P, C)� min{|P||C|2/3 + |C|, |P|1/2|C|+ |P|}.
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Incidences: some well-known results

Over R2 : (This was extended to C2 by Toth in 2015.)

Theorem (Szemerédi-Trotter (1983))

For finite sets of points P and lines L over R2, we have

I (P,L)� |P|2/3|L|2/3 + |P|+ |L|.

Over F2
p : (Various explicit forms, based on the same principal

ideas, appeared later.)

Theorem (Bourgain-Katz-Tao (2004))

For any point set P and any line set L in F2
p with

|P| = |L| = N = pα, 0 < α < 2, we have

I (P,L)� N
3
2
−ε, where ε = ε(α) > 0.
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Incidences: some well-known results

Theorem (Stevens-de Zeeuw (2017))

Given finite sets of points P and lines L over F2, with
|L|7/8 � |P| � |L|8/7, if char(F) = p > 0, suppose
|P|13|L|−2 � p15. Then

I (P,L)� |P|11/15|L|11/15.

Stevens and de Zeeuw proved a substantially stronger bound
when P is a Cartesian product, which they used to deduce the
result above.

Their result is a consequence of a point-plane incidence bound
of Rudnev (2018).

For |P| = |L| = N � p15/11, the above result gives
I (P,L)� N3/2−1/30 = N4/3+2/15 (the bound N4/3 would be
tight).
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Incidences: some well-known results

Point-line incidences for “large sets” in Fq:

Theorem (Vinh (2011))

Given finite sets of points P and lines L over F2
q, we have∣∣∣∣I (P,L)− |P||L|

q

∣∣∣∣ ≤√q|P||L|.

More generally:

Theorem (Vinh (2011))

Let P be a set of points and H be a set of hyperplanes in Fd
q . The

number of incidences between P and H satisfies∣∣∣∣I (P,H)− |P||H|
q

∣∣∣∣ ≤√qd−1|P||H|.
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Non-linear incidence theorems over Fp

Recall a Möbius transformation is the mapping

f (x) =
ax + b

cx + d
, where

(
a b
c d

)
∈ GL2(Fp).

Bourgain (2012) proved the first (non-quantitative) bound
between points and Möbius transformations over Fp.

Shkredov (2021) proved an explicit bound on incidences
between points and hyperbolae (x − a)(y − b) = 1 with (a, b)
coming from Cartesian products.

Rudnev and Wheeler (2021+) obtained a quantitative
strengthening of Shkredov’s result, as well as a result allowing
for more general (a, b).

Wheeler and Warren (2021+) proved a quantitative incidence
bound concerning more general Möbius transformations.

Ali Mohammadi Point-conic incidences in Fq



Non-linear incidence theorems over Fp
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Point-conic incidences: warm up

Let C be parabolas Ca,b of the form y = x2 + ax + b.

Apply the mapping φ : F2
q → F2

q, defined by
(x , y) 7→ (x , y − x2) to the plane.

Note that φ is a bijection.

It maps each Ca,b to the line la,b of the form y = ax + b.

p ∈ Ca,b ⇐⇒ φ(p) ∈ la,b.

So I (P, C) = I (φ(P),L) where |L| = |C| and |P| = |φ(P)|.
This idea was due to Pham, Vinh and de Zeeuw (2018).
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Point-conic incidences

Theorem (M., Pham and Warren (2021+))

For any set C of irreducible conics in F2
p, and any set of points

P ⊆ F2
p with |P| � p15/13, we have

I (P, C)� |P|23/27|C|23/27 + |P|13/9|C|12/27 + |C|.

This improves the trivial bound in the range

|P|19/8 ≤ |C| ≤ |P|20/7.

A much better bound is proved when P is a Cartesian product.
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A much better bound is proved when P is a Cartesian product.
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The overall strategy

The key observation for circles etc.: If we fix a point
q ∈ P, then the incidence structure arising from P and the
curves through q resembles that of a point-line one.

The key observation for general conics: If we fix two
points q1,q2 ∈ P, then the incidence structure arising from P
and the curves through both points resembles that of a
point-Möbius transformations one.

Based on these, initially we show that there cannot be too
many such curves with too many points on them.

This easily leads to a similar statement about all of C.
Specifically, we bound the number of k-rich curves: curves in
C containing at least k points of P.

This is converted to a bound on I (P, C).
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From k-rich curves to incidences

We write Ck for the set of k-rich curves in C (w.r.t. P), i.e.

Ck = {C ∈ C : |C ∩ P| ≥ k}.

Our strategy (for circles etc.) is to first bound the number of
k-rich curves through some fixed arbitrary q:

Cq,k = {C ∈ C : q ∈ C and |C ∩ P| ≥ k}.

Then note that

|Ck | �
1

k

∑
q∈P
|Cq,k |.
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From k-rich curves to incidences

Clearly

I (P, C) =

|P|∑
k=1

|C=k |k ,

which we split as ∑
k≤∆

|C=k |k +
∑
k>∆

|C=k |k ,

which is bounded by

� ∆|C|+
∑
i

∑
C∈C

2i∆≤|C∩P|<2i+1∆

(2i∆)

and further by

∆|C|+
∑
i

|C2i∆|(2i∆).

Applying a bound on |Ck | and optimizing for ∆ results in an
incidence bound.
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Bounding |Cq,k | (for circles)

Fix q ∈ P and let C be a circle through it:

(x , y) ∈ F2
q : (x − c)2 + (y − d)2 = r for some c, d , r ∈ Fq.

By a translation, we assume q = (0, 0) and so C = Ca,b must
take the form

(x , y) ∈ F2
q : (x−a)2+(y−b)2 = a2+b2 for some a, b ∈ Fq.

Suppose C is k-rich and so the points
(α1, β1),...,(αk−1, βk−1) ∈ P \ {(0, 0)} lie on C .

We associate each of the points to a line lαi ,βi of the form

(X ,Y ) ∈ F2
q : −2αiX − 2βiY + α2

i + β2
i = 0.

By assuming q ≡ 3 (mod 4), −1 is a non-square and these
lines are defined without multiplicity.
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Bounding |Cq,k | (for circles)

We have transformed our point-circle incidence relation to a
line-point one. I.e. Ca,b 7→ (a, b) and (αi , βi ) 7→ lαi ,βi .

So a k-rich circle is now a k-rich point (w.r.t. a set of lines L
with |L| = |P|).
That is |Cq,k | = |Qk | for some point set Q.

The number of k-rich points Qk (w.r.t. L) can be bounded
simply using existing point-line incidence bounds based on the
observation

k |Qk | ≤ I (Qk ,L).

In higher dimensions, the same scheme reduces the
point-circle problem to a hyperplane-point problem.
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Strategy for general conics

Key observation: Given (the homogenized form of) an irreducible
conic γ, we have

γ is a Möbius transformation ⇐⇒ {[0 : 1 : 0], [1 : 0 : 0]} ⊆ γ.

To bound |Ck |, we proceed as follows:

For q1,q2 ∈ P, let Cq1,q2,k be the set of k-rich conics in C
incident to q1 and q2.

Let π be a projective transformation sending

q1 → [0 : 1 : 0], q2 → [1 : 0 : 0].

π(Cq1,q2,k) corresponds to a set of k-rich Möbius
transformations, whose size can be bounded by a result of
Warren and Wheeler.

Then

|Ck | ≤
(
k

2

)−1 ∑
q1,q2∈P

|Cq1,q2,k | �
|P|2

k2
max

q1,q2∈P
|Cq1,q2,k |.
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The Erdős distinct distances problem

Given p = (p1, p2) and q = (q1, q2), define their distance by

d(p,q) = (p1 − q1)2 + (p2 − q2)2.

The number of distances formed by P is

D(P) = |{d(p,q) : p,q ∈ P}|.

Conjecture (Erdős (1946))

For finite P ⊂ R2, we have |D(P)| � |P|(log |P|)−1/2.

Theorem (Guth and Katz (2015))

For finite P ⊂ R2, we have |D(P)| � |P|(log |P|)−1.
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The pinned distinct distances problem

The number of distances of P, pinned at q ∈ P is defined by

D(P; q) = |{d(p,q) : p ∈ P}|.

We also write
Dpin(P) = max

q∈P
D(P; q)

Conjecture (Erdős (1975))

For finite P ⊂ R2, we have |Dpin(P)| � |P|(log |P|)−1/2.

Theorem (Katz and Tardos (2004))

For finite P ⊂ R2, we have |Dpin(P)| � |P|0.8641....

Theorem (Murphy, Petridis, Pham, Rudnev and Stevens (2021))

Let P ⊂ F2 be finite and if char(F) = p, suppose p ≡ 3 (mod 4)
and |P| ≤ p4/3. Then |Dpin(P)| � |P|2/3.
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Related problems: Falconer-type questions

Finite field Falconer-type questions ask how large must
P ⊂ F2

q be such that D(P) (or Dpin(P)) is of size q (or up to
constants).

Chapman, Erdogan, Hart, Iosevich and Koh (2012) showed if
|P| � q4/3 then D(P)� q.

Bennett, Hart, Iosevich, Pakinathan and Rudnev (2017)
proved the same result for pinned distances problem.

Murphy and Petridis (2019) gave examples showing that for
general Fq, the exponent 4/3 is sharp.

Murphy, Petridis, Pham, Rudnev and Stevens (2021) improved
the exponent 4/3 (for Dpin) to 5/4 over prime order fields.
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Pinned algebraic distances: variations

Noting that d(p, e) = f (p − e), where f is (x , y) 7→ x2 + y2, one
may naturally wish to study the distances problem for other
choices of f :

Theorem (M., Pham and Warren (2021+))

Let E ⊂ F2
p with |E| � p15/13 and p ≡ 3 (mod 4). Let f (x , y) be

one of the following polynomials:

x2 + y2 (usual distance function), or

xy (Minkowski distance function), or

y + x2 (parabolic distance function).

There exists a point p ∈ E such that |f (p − E)| � |E|
8

15 , where

f (p − E) := {f (p − e) : e ∈ E}.
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Pinned algebraic distances: proof

For p ∈ E , let

Cp =
{
x ∈ F2

p : f (p − x) = t with t ∈ f (p − E) \ {0}
}

Let C =
⋃

p∈E Cp.

Note that I (E , C)� |E|2.

Further note that

|C| ≤
∑
p∈E
|f (p − E)| ≤ |E| ·max

p∈E
|f (p − E)|.

An upper bound on I (E , C) follows from our point-conic
incidence bound, yielding the result.
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Related problems: higher dimensions etc.

Let p = (p1, . . . , pd) and q = (q1, . . . , qd), be points in Fd
q .

Then we write

d(p,q) = (p1 − q1)2 + · · ·+ (pd − qd)2.

We define the number of distances between point sets E and
F , in Fd

q , by

D(E ,F) = |{d(e, f ) : e ∈ E and f ∈ F}|.

Theorem (Shparlinski (2006))

For E ,F ⊂ Fd
q , we have

D(E ,F)� min

{
q,
|E||F|
qd

}
.

In particular, if |E||F| ≥ qd+1 then D(E ,F)� q.
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Related problems: higher dimensions etc.

Theorem (Koh and Sun (2014))

For E ,F ⊂ Fd
q , if d ≥ 3 is odd, then

D(E ,F) ≥


min

{
q
2 ,
|E||F|
8qd−1

}
if 1 ≤ |E| < q

d−1
2

min

{
q
2 ,

|F |

8q
d−1

2

}
if q

d−1
2 ≤ |E | < q

d+1
2

min
{

q
2 ,
|E||F|

2qd

}
if q

d+1
2 ≤ |E| ≤ qd

.
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Related problems: higher dimensions etc.

Theorem (Koh and Sun (2014))

For E ,F ⊂ Fd
q , if d ≥ 2 is even, under the assumption

|E||F| ≥ 16qd , one has

D(E ,F) ≥


q

144 for 1 ≤ |E| < q
d−1

2

1
144 min

{
q, |F|

2q
d−1

2

}
for q

d−1
2 ≤ |E| < q

d+1
2

1
144 min

{
q, 2|E||F|

qd

}
for q

d+1
2 ≤ |E| ≤ qd

.
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Related problems: higher dimensions etc.

Theorem (M., Pham and Warren (2021+))

Let E ,F be sets in Fd
q . Assume that |E| ∼ |F| ≤ q

d+1
2 , then we

have

D(E ,F)� min

{
q,
|E|1/2|F|1/2

q
d−1

2

}
.

That is, the condition |E||F| � qd is removed from Koh-Sun’s

result for even d in the range q
d−1

2 ≤ |E| ≤ q
d+1

2 .
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Thank you for your attention!
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