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I ζ(s) has an analytic continuation to C except a simple pole at
s = 1.

I It has symmetries : one with respect to the real axis so that
ζ(s) = ζ(s); one with respect to the so-called critical line
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2 which is a result of its functional equation:
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Zeros of the Riemann Zeta-Function

The zeros in the critical strip {s ∈ C : 0 ≤ <s ≤ 1 } are called
nontrivial zeros. A generic one is denoted by ρ = β + iγ, its
multiplicity is denoted by m(ρ).

t = Im(s)

σ = Re(s)
−2−4−6 σ = 1

2

ρ = 1
2 + iγ

ρ = β + iγ?

T

1

• Riemann Hypothesis (RH): Re(ρ) = β = 1
2 for all ρ.
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Some Conjectures on the Zeros

I Montgomery’s Pair Correlation Conjecture

1

N(T )

∑
2πα
log T ≤γ−γ

′≤ 2πβ
log T

1 ∼
∫ β

α

(
1− sin2(πx)

(πx)2
+ δ0

)
dx

I Zero-Spacing Hypothesis (Assuming RH)
Let 0 < α ≤ 1 be fixed.

lim sup
T→∞

1

N(T )
#

{
0 < γn ≤ T : 0 ≤ γn+1− γn ≤

c

logT

}
� cα

uniformly for 0 < c < 1.

I Simplicity Conjecture
All zeros are simple, i.e. m(ρ) = 1 for all ρ.



Some Conjectures on the Zeros

I Montgomery’s Pair Correlation Conjecture

1

N(T )

∑
2πα
log T ≤γ−γ

′≤ 2πβ
log T

1 ∼
∫ β

α

(
1− sin2(πx)

(πx)2
+ δ0

)
dx

I Zero-Spacing Hypothesis (Assuming RH)
Let 0 < α ≤ 1 be fixed.

lim sup
T→∞

1

N(T )
#

{
0 < γn ≤ T : 0 ≤ γn+1− γn ≤

c

logT

}
� cα

uniformly for 0 < c < 1.

I Simplicity Conjecture
All zeros are simple, i.e. m(ρ) = 1 for all ρ.



Some Conjectures on the Zeros

I Montgomery’s Pair Correlation Conjecture

1

N(T )

∑
2πα
log T ≤γ−γ

′≤ 2πβ
log T

1 ∼
∫ β

α

(
1− sin2(πx)

(πx)2
+ δ0

)
dx

I Zero-Spacing Hypothesis (Assuming RH)
Let 0 < α ≤ 1 be fixed.

lim sup
T→∞

1

N(T )
#

{
0 < γn ≤ T : 0 ≤ γn+1− γn ≤

c

logT

}
� cα

uniformly for 0 < c < 1.

I Simplicity Conjecture
All zeros are simple, i.e. m(ρ) = 1 for all ρ.



Some Conjectures on the Zeros

I Montgomery’s Pair Correlation Conjecture

1

N(T )

∑
2πα
log T ≤γ−γ

′≤ 2πβ
log T

1 ∼
∫ β

α

(
1− sin2(πx)

(πx)2
+ δ0

)
dx

I Zero-Spacing Hypothesis (Assuming RH)
Let 0 < α ≤ 1 be fixed.

lim sup
T→∞

1

N(T )
#

{
0 < γn ≤ T : 0 ≤ γn+1− γn ≤

c

logT

}
� cα

uniformly for 0 < c < 1.

I Simplicity Conjecture
All zeros are simple, i.e. m(ρ) = 1 for all ρ.



Riemann-von Mangoldt formula:

N(T ) =
T

2π
log

T

2πe
+

1

π
arg ζ

(1

2
+ iT

)
+

7

8
+ O

( 1

T

)

Define

S(t) =
1

π
arg ζ

(1

2
+ it

)
.

This is defined via continuous variation over the union of line
segments one from 2 to 2 + it, and the other from 2 + it to 1

2 + it
unless t is the ordinate of a nontrivial zero.
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Central Limit Theorem

Let X1,X2, . . . be a sequence of bounded random variables with
respective means EX1,EX2, . . . , and variances
Var(X1),Var(X2), . . . .
If
∑n

i=1 Var(Xi )→∞ as n→∞, then

lim
n→∞

P
(
X1 − EX1 + · · ·+ Xn − EXn√

Var(X1) + · · ·+ Var(Xn)
∈ [a, b]

)
=

1√
2π

∫ b

a
e−x

2/2 dx .

• The value on the left-hand side is the value over [a, b] of the
distribution function of the standard Gaussian random variable.
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Selberg’s central limit theorem



Theorem (Selberg, 1946)

For k ∈ Z+,∫ T

0
S(t)2k dt =

(2k)!

k! (2π)2k
T (log logT )k + Ok

(
T (log logT )k−1/2

)
.

I Moments of a random variable Z that has Gaussian
distribution of mean 0 and variance 1

2 log logT are given as

E[ZK ] =


(2k)!

k! 22k
(log logT )k K :even andK = 2k ,

0 K :odd.

I Distribution is completely determined by moments in the case
of Gaussian distribution.
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Selberg’s central limit theorem

Theorem (From Tsang’s thesis, 1984)
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T
µ
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log|ζ( 1

2 + it)|√
1
2 log logT
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}

=
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∫ b

a
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√
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)
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T
µ
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Selberg’s central limit theorem

Theorem
Let R ⊂ C be a rectangle with sides parallel to the coordinate axes.

1

T
µ
{

0 < t < T :
log ζ( 1

2 + it)
√

log logT
∈ R

}
=

1

2π

∫
R

e−(x2+y2)/2 dx dy +O

(
(log log logT )2

√
log logT

)



Results prior to Selberg’s central limit theorem:

I S(t) = O(log t) (von Mangoldt, 1908)

I S(t) = O

(
log t

log log t

)
on RH (Littlewood, 1924)

Here, f (t) = O(g(t)) as t →∞ means that for some constant
C > 0, we have |f (t)|≤ C |g(t)| for all sufficiently large t.
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Pointwise bounds succeeding Selberg’s theorem:

I S(t) = Ω±

(
(log t)1/3

(log log t)1/3

)
unconditionally (Tsang, 1986)

I S(t) = Ω±

( √
log t√

log log t

)
on RH (Montgomery, 1971)

I On RH,

S(t) = Ω±

(√
log t
√

log log log t√
log log t

)
∣∣∣ζ(1

2
+ it

)∣∣∣ = Ω

(
exp

(
(1 + o(1))

√
log t
√

log log log t√
log log t

))
(Bondarenko and Seip, 2018)
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Maximum of log ζ
(

1
2 + it

)
Let ε > 0 be close to 0 and 0 < t < T .

S(t) > ε

√
1

2
log logT

with probability of almost

1√
2π

∫ ∞
ε

e−x
2/2 dx ,

so almost half of the time. Similar result holds for

S(t) < −ε
√

1

2
log logT .

Thus, almost all the time

|S(t)|> ε

√
1

2
log logT .
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Conjectures on the maximum

Conjecture (Gonek, Farmer, Hughes, 2007)
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Conjecture (By ?, in ?)
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Remarks about the proof of Selberg’s central limit theorem



Method of Moments

Step 1. Approximate S(t) by the imaginary part of a short polynomial

1

π
Im
∑
p≤X 2

1

p1/2+it

Step 2. Compute the moments∫ T

0

(
Im
∑
p≤X 2

1

p1/2+it

)2k
dt

=
1

(2i)2k

2k∑
j=0

(
2k

j

){∫ T

0

( ∑
p≤X 2

1

p1/2+it

)j(∑
p≤X 2

−1

p1/2+it

)2k−j
}
dt

Note. It can be shown that these moments approximate moments of
S(t).
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Let s = σ + it. Start with the logarithmic derivative of ζ(s).

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns
for σ > 1.

Define

ΛX (n) =

{
Λ(n) n ≤ X ,

Λ(n) log(X 2/n)
log X X ≤ n ≤ X 2.

For convenience, we assume RH.
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Approximate Formula

Let s = σ + it be other than 1, ρ,−2n and X ≤ t2.
Selberg:

ζ ′

ζ
(s) =−

∑
n≤X 2

ΛX (n)

ns
+

1

logX

∑
ρ

X ρ−s − X 2(ρ−s)

(ρ− s)2

+
1

logX

∞∑
n=1

X−2n−s − X 2(−2n−s)

(2n + s)2
+

X 2(1−s) − X 1−s

(1− s)2 logX

This follows from a Perron type formula for c = max{2, 1 + σ}

1

2πi

∫ c+i∞

c−i∞

ζ ′

ζ
(w)

xw−s − x2(w−s)

(w − s)2
dw .

(Compare this with
∑

n≤X
Λ(n)
ns = 1

2πi

∫ c+i∞
c−i∞

ζ′

ζ (w) x
w−s

w−s dw .)
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Approximation by a sum over primes
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Taking a step further, we can prove that

S(t) ≈ 1

π
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∑
p≤X 2

1

p1/2+it

with a small error.
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Note.1

Selberg avoids the assumption of RH by using

ΛX (n) =


Λ(n) n ≤ X ,

Λ(n) log2(X 3/n)−2 log2(X 2/n)

2 log2 X
X ≤ n ≤ X 2,

Λ(n) log2(X 3/n)

2 log2 X
X 2 ≤ n ≤ X 3.

This comes from

ζ ′

ζ
(s) =−

∑
n≤X 3

ΛX (n)

ns
+

1

log2 X

∑
ρ

X ρ−s(1− X ρ−s)2

(ρ− s)3

+
1

log2 X

∞∑
n=1

X−2n−s(1− X−2n−s)2

(2n + s)3
+

X 1−s(1− X 1−s)2

(1− s)3 log2 X

by considering 1
2πi

∫ c+i∞
c−i∞

ζ′

ζ (w) x
w−s(1−xw−s)2

(w−s)3 log2 X
dw .
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Note.2

Selberg avoids the assumption of RH by using

σ1 = σX ,t =
1

2
+ max
ρ=β+iγ

(
β − 1

2
,

2

logX

)
,

where γ of ρ satisfies

|γ − t|≤ X 3(β− 1
2 )

logX
.

This ensures that σ1 + it lies sufficiently away from any zero ρ.
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Moments of the polynomial

∫ T

0

(
Im
∑
p≤X 2

1

p1/2+it

)2k
dt

=
1

(2i)2k

2k∑
j=0

(
2k

j

)∫ T

0

( ∑
p≤X 2

1

p1/2+it

)j(∑
p≤X 2

−1

p1/2+it

)2k−j
dt .

Here the jth term includes

∑
pi ,qi≤X 2

1
√
p1 . . . pjq1 . . . q2k−j

∫ T

0

(q1 . . . q2k−j
p1 . . . pj

)it
dt .

The primes need to ’pair up’ for the maximum contribution. This
happens at the middle term j = k and when pi = qi with the pi all
distinct.
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This diagonal term gives∑
pi≤X 2,
pidistinct

1

p1 . . . pk
=
( ∑

p≤X 2

1

p

)k
+ Ok

(( ∑
p≤X 2

1

p

)k−1
)

≈ (log logX )k ≈ (log logT )k .

The coefficients
(2k)!

22kk!

result from counting the primes p1, . . . , pj , q1, . . . , q2k−j that pair
up. The (2k)th moment of a standard Gaussian random variable is

(2k)!

2kk!
.
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Remarks, Analogues and An Application



How sharp is Selberg’s CLT?

Theorem

1

T
µ
{

0 < t < T :
log|ζ( 1

2 + it)|√
1
2 log logT

∈ [a, b]
}

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
(log log logT )2

√
log logT

)

1

T
µ
{

0 < t < T :
arg ζ( 1

2 + it)√
1
2 log logT

∈ [a, b]
}

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
log log logT√

log logT

)
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Let (θp)p denote a collection of i.i.d. random variables that are
uniformly distributed over the unit interval.

P(θ) =
∑
p≤X 2

e2πiθp

√
p

Note that as a sum of random variables, ImP(θ) satisfies

Var(ImP(θ)) =
1

2

∑
p≤X 2

1

p
≈ 1

2
log logX .

This tends to ∞ as X →∞.

Theorem (Central limit theorem)

P
( Im(P(θ))√

1
2 log logX

∈ [a, b]
)

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
1√

log logX

)
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Central Limit Theorem
Let X1,X2, . . . be a sequence of bounded random variables with
respective means EX1,EX2, . . . , and variances
Var(X1),Var(X2), . . . .
If
∑n

i=1 Var(Xi )→∞ as n→∞, then

lim
n→∞

P
(
X1 − EX1 + · · ·+ Xn − EXn√

Var(X1) + · · ·+ Var(Xn)
∈ [a, b]

)
=

1√
2π

∫ b

a
e−x

2/2 dx .

• We thus have no central limit theorem for∑
p≤X 2

e2πiθp

pσ
when σ >

1

2
.
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Bohr & Jessen
For 1

2 < σ ≤ 1 fixed and R a rectangle in C with sides parallel to
the coordinate axes, as T →∞

1

T
µ
{
T < t ≤ 2T : log ζ(σ + it) ∈ R

}
→ Fσ(z ∈ R)

for a probability distribution function Fσ.



Other central limit theorems



Example.

Let χ be a primitive Dirichlet character modulo q and

L(s, χ) =
∞∑
n=1

χ(n)

ns
for Re(s) > 1.

We have

1

T
µ
{

0 < t < T :
log |L( 1

2 + it, χ)|√
1
2 log logT

∈ [a, b]
}

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
(log log logT )2

√
log logT

)
.

Selberg. Then 2020, Hsu and Wong: A linear combination of
type

a1 log
∣∣∣L(1

2
+ it, χ1

)∣∣∣+ · · ·+ an log
∣∣∣L(1

2
+ it, χn

)∣∣∣
has an approximate Gaussian distribution with mean 0 and
variance 1

2 (a2
1 + · · ·+ a2

n) log logT .
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Example. Let χ be a primitive Dirichlet character modulo q and

L(s, χ) =
∞∑
n=1

χ(n)

ns
for Re(s) > 1.
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T
µ
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1
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A q-analogue of Selberg’s theorem

Let χ be a primitive Dirichlet character modulo q and

L(s, χ) =
∞∑
n=1

χ(n)

ns
for Re(s) > 1.

Define

S(t, χ) =
1

π
arg L

(
1

2
+ it, χ

)
.

Selberg: For |t|≤ q
1
4
−ε,∑′

χ (mod q)

S(t, χ)2k =
(2k)!

(2π)2kk!
φ(q)(log log q)k+Ok

(
φ(q)(log log q)k−1

)
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A CLT over arithmetic progressions

Let α > 0 and β ∈ R.
Consider the arithmetic progression {αn + β} as n ∈ Z.

Li & Radziwi l l, 2012

On the Riemann hypothesis (RH), the asymptotic behavior of
arg ζ( 1

2 + i(αn + β)) over n ∈ (T , 2T ] can be described by a
central limit theorem as T →∞.
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A CLT over shifted Gram points

Define a real-valued function Z (t) from

ζ( 1
2 + it) = Z (t)e−iθ(t).

Gram points are of the form 1
2 + it for t satisfying

θ(t) ≡ 0 (mod π).
1
2 + ign is a shifted Gram point if for −π < φ ≤ π,

θ(gn) ≡ −φ (mod π) or θ(gn) = nπ − φ for some n.

Lester, 2013
On the assumption of a zero-spacing hypothesis,

lim
T→∞

1

Ng (T )
#
{
T < gn ≤ 2T :

log|ζ( 1
2 + ign)|√

1
2 log logT

∈ [a, b]
}

=
1√
2π

∫ b

a
e−x

2/2 dx
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A CLT over nontrivial zeros

C., 2020

Assume RH. Let z = u + iv be nonzero with 0 < u � 1
log T and

|v |� 1
log T . Then

1

N(T )
#

{
0 < γ ≤ T :

arg ζ(ρ+ z)√
1
2 log logT

∈ [a, b]

}

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
log log logT√

log logT

)
.
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C., 2020

Assume RH and Montgomery’s Pair Correlation Conjecture. Let
z = u + iv be nonzero with 0 < u � 1

log T and |v |� 1
log T . Then

1

N(T )
#

{
0 < γ ≤ T :

log |ζ(ρ+ z)| −M(ρ, z)√
1
2 log logT

∈ [a, b]

}

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
(log log logT )2

√
log logT

)
,

where

M(ρ, z) = m(ρ+ iv)
(

log
(
eu logT

4

)
− u logT

4

)
.

This is uniform in u. Can take v = 0 and let u → 0.
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Corollary (C., 2020)

Assume that all the zeros ρ are simple. Under RH and
Montgomery’s Pair Correlation Conjecture,

1

N(T )
#

{
0 < γ ≤ T :

log
(
|ζ ′(ρ)|/logT

)√
1
2 log logT

∈ [a, b]

}

=
1√
2π

∫ b

a
e−x

2/2 dx +O

(
(log log logT )2

√
log logT

)
.

I Montgomery’s Pair Correlation Conjecture can be replaced
with the weaker zero-spacing hypothesis.

I Result of Hejhal. (1989)

I About arg ζ ′(ρ). (Stopple, 2020)
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Stopple, Notes on the Phase Statistics of the
Riemann Zeros, [arXiv: 2007.08008]

Both histograms use the γn with 5 · 106 ≤ n ≤ 107.
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Theorem (C., 2021)

Let a1, a2, . . . , an ∈ R and

L(ρ) = a1 log|L(ρ, χ1)|+ · · ·+ an log|L(ρ, χn)|

Here χ1, . . . , χn are distinct primitive Dirichlet characters with
conductors bounded by T . Assume the generalized RH and that
L(ρ, χj) is never 0 for each j . Further, suppose that for each
1 ≤ j ≤ n, Hypothesis Hα,χj is true for some α ∈ (0, 1]. For
A < B, we have

1

N(T )
#

{
0 < γ ≤ T :

L(ρ)√(
1
2

∑n
j=1 aj

2
)

log logT

∈ [A,B]

}

=
1√
2π

∫ B

A
e−x

2/2 dx +O

(
(log log logT )2

√
log logT

)
.



Zeros of linear combinations of Dirichlet
L-functions

Consider the function

F (s) = c1L(s, χ1) + · · ·+ cnL(s, χn).

for primitive L-functions L(s, χ1), . . . , L(s, χn) with the same
conductor. Selberg’s theorem also holds for these Dirichlet
L-functions. Assume cj ∈ R and that each Lj satisfies the same
functional equation.

I Bombieri & Hejhal, 1995 Suppose that the Lj satisfy the
GRH and a zero-spacing hypothesis. Then
100% of the zeros of F are simple and are on the critical line.

I Selberg, 1998 Unconditionally, a positive proportion of the
zeros of F (s) lie on the critical line.
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F (s) = c1L(s, χ1) + · · ·+ cnL(s, χn)

(Montgomery)

The value distribution of F
(

1
2 + it

)
can be studied by using the

central limit theorems for the
log
∣∣L(1

2 +it,χj

)∣∣√
1
2 log log T

because:

I
{

log |L( 1
2 +it,χj)|√

1
2 log log T

}n

j=1
have independent Gaussian distributions.

I log
∣∣L(1

2 + it, χj

)∣∣− log
∣∣L(1

2 + it, χk

)∣∣ has a Gaussian
distribution with mean 0 and variance log logT . Therefore, it
is large most of the time.
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Thank you!



Beurling-Selberg Functions

sgn(x) = F∆(x) + O

(
sin2(π∆x)

(π∆x)2

)
,

for

F∆(x) = Im

∫ ∆

0

( 2

π∆
u + 2

(
1− u

∆

)( π
∆
u
))

e2πixu du

u
.

I Using this, one can write an approximation for

1[a,b](x) =
sgn(x − a)

2
− sgn(x − b)

2
+
δa(x)

2
+
δb(x)

2
.

I Let x = Im
∑
p≤X 2

1

p1/2+it
.



Majorants and Minorants
There are nice Beurling-Selberg functions F−(x) and F+(x) such
that

F−(x) ≤ 1[−∆,∆](x) ≤ F+(x).

2005, Goldston & Gonek: On RH,

|S(t)|≤
(1

2
+ o(1)

) log t

log log t
.

Succeeding work:

I 2009, Chandee & Soundararajan: On RH,

log
∣∣∣ζ(1

2
+ it

)∣∣∣ ≤ ( log 2

2
+ o(1)

) log t

log log t
.

I 2013, Chandee, Carneiro & Milinovich: On RH,

|S(t)|≤
(1

4
+ o(1)

) log t

log log t
.



Example. Chandee & Soundararajan: On RH,

log
∣∣∣ζ(1

2
+ it

)∣∣∣ ≤ ( log 2

2
+ o(1)

) log t

log log t
.

I log
∣∣ζ(1

2 + it
)∣∣ = log t + O(1)− 1

2

∑
γ

log
4 + (t − γ)2

(t − γ)2

I Let f (x) = log
4 + x2

x2
. There is an entire function g∆(x) with

ĝ∆(x) having compact support and

f (x) ≥ g∆(x).

I Compute
∑
γ

g∆(t − γ) by using an explicit formula that is

applicable to nice functions.
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