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RIEMANN ZETA-FUNCTION

C(s):zziS for Rs>1

» ((s) has an analytic continuation to C except a simple pole at
s=1.

» It has symmetries : one with respect to the real axis so that
¢(3) = ((s); one with respect to the so-called critical line
Rs = % which is a result of its functional equation:

w*%r(g)g(s) - wf?r(l 5 5)g(1 —9).
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ZEROS OF THE RIEMANN ZETA-FUNCTION

The zeros in the critical strip {s € C: 0 < Rs < 1} are called
nontrivial zeros. A generic one is denoted by p = 3 + i, its
multiplicity is denoted by m(p).
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ZEROS OF THE RIEMANN ZETA-FUNCTION

The zeros in the critical strip {s € C: 0 < Rs < 1} are called
nontrivial zeros. A generic one is denoted by p = 3 + i, its
multiplicity is denoted by m(p).
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e Riemann Hypothesis (RH): Re(p) = 8 = 1 for all p.



SOME CONJECTURES ON THE ZEROS



SOME CONJECTURES ON THE ZEROS

» Montgomery’s Pair Correlation Conjecture

e I

2ra 273
log T Sy=v's log T




SOME CONJECTURES ON THE ZEROS

» Montgomery’s Pair Correlation Conjecture

e I

2ra 273
log T Sy=v's log T

» Zero-Spacing Hypothesis (Assuming RH)
Let 0 < oo < 1 be fixed.
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SOME CONJECTURES ON THE ZEROS

» Montgomery’s Pair Correlation Conjecture

2ra 273
log T Sy=v's log T

» Zero-Spacing Hypothesis (Assuming RH)
Let 0 < oo < 1 be fixed.

T—oo

uniformly for 0 < ¢ < 1.

» Simplicity Conjecture
All zeros are simple, i.e. m(p) =1 for all p.

5()) dx

) 1 c
|'m5UPN(T)#{O<’Yn§ T:0< Y11= < IogT} < c“
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Riemann-von Mangoldt formula:

N(T) = %|og2i+3argg( +iT) +g+ o(%)

Define 1
S(t) = —arg(( —l-lt)
This is defined via continuous variation over the union of line

segments one from 2 to 2 + jt, and the other from 2 + it to % + it
unless t is the ordinate of a nontrivial zero.
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CENTRAL LIMIT THEOREM

Let X1, X5,... be a sequence of bounded random variables with
respective means EX7,[EX>, ..., and variances
Var(Xl),Var(Xz), ceen

If 7 4 Var(X;) — 0o as n — oo, then

X1 —EXy + -+ X, — EX, 1 b
lim ]P( L Lt € [a, b]) = / e /2 dx..
n—voo \ y/Var(X1) + -+ + Var(X,) 2r Ja

e The value on the left-hand side is the value over [a, b] of the
distribution function of the standard Gaussian random variable.
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THEOREM (SELBERG, 1946)
For k € Z+,

" s( de = -2 T(10glog T)* + O, (T(loglog T)<?
/0 (1) = Kl (2m)* (loglog T)* + Ok (T(loglog T) )-

» Moments of a random variable Z that has Gaussian
distribution of mean 0 and variance %Iog log T are given as

(2k)! . B
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THEOREM (SELBERG, 1946)

For k € Z+,

/T S(t)* dt = I T(loglog T)* + Ok (T (loglog T)k_l/Z).
0 k! (27T)2k

» Moments of a random variable Z that has Gaussian
distribution of mean 0 and variance %Iog log T are given as

(2k)! . B
E[ZK] = W(Iog log T) K:even and K = 2k,
0 K:odd.

» Distribution is completely determined by moments in the case
of Gaussian distribution.
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SELBERG’S CENTRAL LIMIT THEOREM

THEOREM (FrROM TSANG’S THESIS, 1984)

log|¢(5 + it)|
—ue0<t< T:———=—= € [a,b]
T { \/%IoglogT }
_ 1 /be—x2/2 dX+O((IoglogIog T)2>
V2 Ja Vioglog T
1 arg((3 +it)
7M{O<t< T: e[a,b]}

\/% loglog T
log log log T>

R
—_ = —X /2d O
ks /a ¢ X+ ( Vl0oglog T



SELBERG’S CENTRAL LIMIT THEOREM

THEOREM
Let R C C be a rectangle with sides parallel to the coordinate axes.

log {(3 + it)
Vioglog T < R}

1 (22 (log log log T)?
- )2 g dy +0( =25 "/
o Jx € xay+ ( Jloglog T

%u{0<t<T:
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Results prior to Selberg’s central limit theorem:

» S(t) = O(logt) (von Mangoldt, 1908)
log t
> S(t)=0 °8 on RH (Littlewood, 1924)
log log t

Here, f(t) = O(g(t)) as t — oo means that for some constant
C > 0, we have |f(t)|< Cl|g(t)| for all sufficiently large t.



Pointwise bounds succeeding Selberg’s theorem:



Pointwise bounds succeeding Selberg’s theorem:

(log t)'/3

> S(t) =Q4 <(Iog|ogt)1/3’> unconditionally (Tsang, 1986)

> S(t) =Qx

Jiog t
< o8 >on RH (Montgomery, 1971)

vloglogt



Pointwise bounds succeeding Selberg’s theorem:

(log t)*/3 "
> S(t) = Qx4 (loglog 1)173 unconditionally (Tsang, 1986)
og log
> S(t) =Qx <\/I|olit> on RH (Montgomery, 1971)
oglog
» On RH,
V/log t/log log log t>
S(t)=Q
(t) = ( Vl0oglogt
‘C(l n t)‘ of ex (1+O(1))\/Iogt\/logloglogt
)| =
2 P Vl0oglogt

(Bondarenko and Seip, 2018)
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MAXIMUM OF log ¢ (% + it)
Lete >0becloseto0and 0 <t < T.

5(t) > €4/ % loglog T

with probability of almost

/ fx2/2
Ve

so almost half of the time. Similar result holds for

S5(t) < —ey/ % loglog T.

Thus, almost all the time

1S(8)[> q/%log jog T
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Conjecture (Gonek, Farmer, Hughes, 2007)

max S(t) = (mlﬁ + o(1)> V/log T+/loglog T

and

max Iog‘(( +/t)‘ :< 1 + o(1)

om2 \ﬁ )\/Iog T\/Iog log T



CONJECTURES ON THE MAXIMUM

Conjecture (Gonek, Farmer, Hughes, 2007)

max S(t) = (mlﬁ + o(l)) V/log T+/loglog T

and

max_ log ‘C( + /t)‘ = (i + 0(1)) \/Iog T\/Ioglog T

o<t< \@
Conjecture (By 7, in ?)
log T
t)=(C 1) ————
orgntangS( )= (o ))Iog log T

and 1 log T
max_ log ’C(E + It)’ = (C+o(1))

0<t< loglog T



Remarks about the proof of Selberg's central limit theorem
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METHOD OF MOMENTS
STEP 1. Approximate S(t) by the imaginary part of a short polynomial

1 1
—Im > pl/2+it
p<X?

STEP 2. Compute the moments

[ (s i)

p<X? p

e iy (L (5, el (3 )

p<X? P p<X? p

NOTE. It can be shown that these moments approximate moments of

5(t).



Let s = o + it. Start with the logarithmic derivative of ((s).
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Let s = o + it. Start with the logarithmic derivative of ((s).

¢y N~ An)
Z(S)_ ; pe for o> 1.
Define
A(n) n <X,
A =
x(m) {/\(n) X X <n< X2

For convenience, we assume RH.
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APPROXIMATE FORMULA

Let s = o + it be other than 1,p, —2n and X < t2.
Selberg:

g/ AX Xp s X2p s
Z(S) - Z ns IogXZ

n<X?

1 > x—2n—s _ X2(—2n—s) X2(1—s) _ X1-s

)

_l’_

log X £ (2n + s)? * (1—5)?log X
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Let s = o + it be other than 1,p, —2n and X < t2.
Selberg:
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1 > x—2n—s _ X2(—2n—s) X2(1—s) _ X1-s
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This follows from a Perron type formula for c = max{2,1+ o}
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APPROXIMATE FORMULA

Let s = o + it be other than 1,p, —2n and X < t2.
Selberg:

g/ B AX Xp s X2p s)
Z(S) - Z ns IogX Z

n<X?
1 > x—2n—s _ X2(—2n—s) X2(1—s) _ X1-s
* log X £ (2n + s)? * (1—5)?log X

This follows from a Perron type formula for c = max{2,1+ o}

c+ico 1 w—s _ ,2(w—s)
1 Sy
2mi c—ioco g (W - 5)2

(Compare this with 37 An) — L petioo &) x=2 gy, )

ns — 27 Jc—ico ¢ w—s




For s #1,p,—2n,

-5 () ot




For s # 1, p, —2n,




For s # 1, p, —2n,

(0=2 (.

+ ;) + O(log t).

S—=p
For o > 01 :%—i- |og1x'
CI Ax(n)
== =5
n<X?2
1
_ 01— 5 _
—|—CX1/2 o 2 +0 X1/2 o
D R L
By comparing these two formulas at ¢ = 071,
1
01— 5% /\X(n) >
- o<\ + O(log t)
Z (01 — %)2 + (t — )2 n§2 noitit

Y



The sum over the zeros is decreasing in o — % For o > o1,



The sum over the zeros is decreasing in o —

! Ax(n
ImCC(s):—Im Z Ax(n)

B
n<X?2
3 Ax(n)
na’1+it
n< X2

+ O<X1/2—0'

1

2

For o > o1,



The sum over the zeros is decreasing in 0 — 5. For o > 01,

¢ Ax(n)
m Z(S) =—1Im éxz );75
1/2—c Ax(n) 1/2—c
+0( X ) | ) T o(X log t)

n< X2
When % <o < 01, use

oG-S0}

1 1
:|m§:<al+it_p—0+it_p> + O(log 1)
_ (t=N{(o1 = 3>~ (0 — 3)*}
_Z((

N (e D[ T D Rt

~
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Now integrate:

S(t):—//2 g(a—wt)d

:1/00| 2(0+/t)d0;<01;) |m§(01+it)

7T
+i/1:|m{i(al+/t)—(o—i-/t)}d



Now integrate:

S(t):—//2 g(a—wt)d

:1/00| 2(0+/t)d0;<01;) Img(01+it)

T 1
+i/1:|m{i(al+/t)—(o—i-/t)}d

Substitute all the expressions we previously obtained:

1 Ax(n) log t
0=t 5 22 0[] 5 20 o
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APPROXIMATION BY A SUM OVER PRIMES

. 1 Ax(n)
S(t) = - Im <ZX2 nl/2+it Iogn <|ng) 22 noitit

) rolieex)



APPROXIMATION BY A SUM OVER PRIMES

. 1 Ax(n) 1 Ax(n)
5(t) = T Im Z nl/2+it Iogn+o<|0gX} Z noi+it
n<X?2 X2
Taking a step further, we can prove that

1 1
p<X?

with a small error.




NOTE.1

Selberg avoids the assumption of RH by using

/\(n) n S X7
Ax(n) = { N(n)PECELBIE0C  x < < X2,
A(n) e X0/m) X2<n< X3,

2log® X



NOTE.1

Selberg avoids the assumption of RH by using

og2(X3/n)—2log2(X2/n
Ax(n) = { A(n)EX /2)|°g22IXg (X?/n)
log?(X*/n)
2log?® X

—~
S
~

n<X,
X < n<X?
X2 < n< X3

! n pP—s(1 _ XP—5)2
S(S):_Z/\x()Jr 1 ZX (1— XP*)

s 2 3
¢ S g X (p—s)
1 0o X—2n75(1 _ X72nfs)2 Xl—s(l - X175)2
log? X nz; (2n + s)3 (1—s)%log? X

[ ! w—s _ w—s)2
by considering o [/ Sy, i €. i Ly W

c—ico ¢ (w—s)3 log? X



NOTE.2



NOTE.2
Selberg avoids the assumption of RH by using

1 n 3 3 1 2
= = — max - —
TL= Xt =5 p=PB+iv 2 log X )’

where v of p satisfies

This ensures that o1 + it lies sufficiently away from any zero p.
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[ (im S ) a

p<X? P

2k T 2k
a2 (1) [ (S ) (5 )

pxz P pxz P
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MOMENTS OF THE POLYNOMIAL

[ (im S ) a

p§X2p

1 §:<2k>/7<z 1\ > —1 2k
(02K ; 12+it)< 12+it) t
(202 = \J /) Jo pgxzp/ pgxzp/

Here the jth term includes

1 T g1 Gok_i\it
Z / <Q1 G2k J) dt |
VPL- - Pjq1---Q2k—j Jo pP1-..pj

pi,qi<X?

The primes need to 'pair up’ for the maximum contribution. This
happens at the middle term j = k and when p; = g; with the p; all
distinct.



This diagonal term gives

1 1\ k 1\ k-1
Yo () re((2)7)
pi<X?, p<X? p<X?
pidistinct

~ (loglog X)* ~ (loglog T)*.



This diagonal term gives

1 1\ k 1\ k-1
S oo (2 re((2)7)
pé_SXZ, p<X? p<X?
pidistinct

~ (loglog X)* ~ (loglog T)*.
The coefficients
(2k)!
22k k1
result from counting the primes p1,...,pj,q1,...,q2k—; that pair
up. The (2k)th moment of a standard Gaussian random variable is

(2k)!
2kl



Remarks, Analogues and An Application
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HoOw SHARP IS SELBERG’S CL'T?

THEOREM

1 log|¢(5 + it)|

—ue 0 <t < T:—==—X € [a,b]

T { \/%Iog log T }

b 2
_ 1 / o—2/2 dx+O<(|Og|0g log T) )
Vo Ja Vioglog T

g3+ it)

?u{0<t< T: e[a,b]}

w/%loglogT

1 b, logloglog T
_1 [P e M)
= e dx+0

\/277/3 < loglog T



Let (6p), denote a collection of i.i.d. random variables that are
uniformly distributed over the unit interval.

e2mifp

P(0) =
pgz VP



Let (6p), denote a collection of i.i.d. random variables that are
uniformly distributed over the unit interval.
27i6
e P
O=2 "5
p<X?

Note that as a sum of random variables, ImP(0) satisfies

1 1 1
Var(ImP(8)) = 5 Z T log log X.
p<X?

This tends to oo as X — oo.



Let (6p), denote a collection of i.i.d. random variables that are
uniformly distributed over the unit interval.

e2mifp

P(0) =
p§2 VP

Note that as a sum of random variables, ImP(0) satisfies

Var(ImP(8)) = %

This tends to oo as X — oo.

THEOREM (CENTRAL LIMIT THEOREM)

Im(P(9)) _ L [P 1
ogoss = 0 [ 00 rx)



CENTRAL LIMIT THEOREM

Let X1, X5,... be a sequence of bounded random variables with
respective means EX7,EX5, ..., and variances

Var(Xi), Var(Xz),....

If Y7 Var(Xi) — oo as n — oo, then

— - _ b
l P(Xl BX 4 X ZBXo [a, b]) = 1/ e/ dx..
V/Var(Xy) + - + Var(X,) V271 Ja

m
n—o00



CENTRAL LIMIT THEOREM

Let X1, X5,... be a sequence of bounded random variables with
respective means EX7,EX5, ..., and variances

Var(Xi), Var(Xz),....

If Y7 Var(Xi) — oo as n — oo, then

— - _ b
lim P(Xl BXit X B [, b]) = 1/ e %12 gy .
n—00 V/Var(Xy) + - + Var(X,) 27 Ja

e We thus have no central limit theorem for

627ric9p 1
when o > —.
p° 2

p<X?



BoHr & JESSEN
For % < 0 <1 fixed and R a rectangle in C with sides parallel to
the coordinate axes, as T — oo

%M{T< t <27 :log((o + it) eﬂ%} — F,(z€R)

for a probability distribution function F,.



Other central limit theorems
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Example. Let x be a primitive Dirichlet character modulo g and

ZX(S for Re(s) >
n

We have

Iog|L( + it, x)| c s b]}

1/%Iog|ogT

b 2
22 g1 0 (logloglog T) '
¢ X ( Vi0oglog T

1
<T
T {O<t

v



Example. Let x be a primitive Dirichlet character modulo g and

s X):ix,(,?) for Re(s) > 1
n=1

We have

Iog|L( + it, x)| c s b]}

1/%Iog|ogT

_ 1 /be_xz/2dx+o<(|ogloglog T)2>'
V2r J, Vl0oglog T

Selberg. Then 2020, Hsu and Wong: A linear combination of
type

1
<T
T {O<t

allog’ ( + it, Xl)“*‘ —i—anlog‘L( + it, Xn)

has an approximate Gaussian distribution with mean 0 and
variance (a4 -+ + a2) loglog T.
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Let x be a primitive Dirichlet character modulo g and

L(s,x) = i X’(:) for Re(s) > 1.
n=1

Define . .
t = — L= it .
S(t,x) = —arg <2+I,x>



A g-ANALOGUE OF SELBERG’S THEOREM

Let x be a primitive Dirichlet character modulo g and

L(s,x) = i X’(:) for Re(s) > 1.
n=1

Define . .
t = — L= it .
S(t,x) = —arg <2+I,x>

Selberg: For |t|< q%*e,

S 5600 = kg ) oE oz @)+ 0 (4(a)og og 0)* )

x (mod q)
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A CLT OVER ARITHMETIC PROGRESSIONS

Let @« > 0 and g € R.
Consider the arithmetic progression {an + 5} as n € Z.




A CLT OVER ARITHMETIC PROGRESSIONS

Let @« > 0 and g € R.
Consider the arithmetic progression {an + 5} as n € Z.

Li & Radziwit, 2012

On the Riemann hypothesis (RH), the asymptotic behavior of
arg ((3 + i(an+ B)) over n € (T,2T] can be described by a
central limit theorem as T — oc.
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Define a real-valued function Z(t) from
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Gram points are of the form % + it for t satisfying
0(t) =0 (mod ).
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Gram points are of the form % + it for t satisfying
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A CLT OVER SHIFTED GRAM POINTS
Define a real-valued function Z(t) from

C(L +it) = Z(t)e 0.

Gram points are of the form % + it for t satisfying
0(t) =0 (mod ).
% + igp is a shifted Gram point if for —m < ¢ < T,

0(gn) = —¢ (mod 7) or 0O(gn) =nm—¢ for some n.

Lester, 2013
On the assumption of a zero-spacing hypothesis,

log|¢(5 + ign)| cls b]}

1
lim 7#{T<gn§27_.
\/%IoglogT

T—oo Ng( T)
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A CLT OVER NONTRIVIAL ZEROS

C., 2020
Assume RH. Let z = u + iv be nonzero with 0 < v <K

lv|< Iong' Then

#{0<7§ T:argC(erz)e[a,b]}

,/%IoglogT

1 b, log loglog T
_ 22 g 1 o \08log log >
\/271/3 ¢ X+ <\/IoglogT

1
log T and

N(T)



C., 2020
Assume RH and Montgomery's Pair Correlation Conjecture. Let
z = u+ iv be nonzero with 0 < v < bg% and |v|< %. Then

og|l(p+2)| — M(p, z) ela. b]}

1
#{0<’y§ T:
N(T) /Lloglog T
o224 (logloglog T) )
\/ﬂ/ +O< Vlioglog T ’

where

M(p, z) = m(p + iv)(log (eulzg T) B u|o4g T)‘



C., 2020

Assume RH and Montgomery's Pair Correlation Conjecture. Let
z = u+ iv be nonzero with 0 < v < bg% and |v|< %. Then

1 log|Clp +2)| — M(p,2) _
N(T)#{0<fy§ T: ﬁloglogT €| ,b]}
212 (logloglog T)
m/ o FEEET).

where

M(p, z) = m(p + iv)(log (eulzg T) B u|o4g T)‘

This is uniform in u. Can take v =0 and let v — 0.



COROLLARY (C., 2020)

Assume that all the zeros p are simple. Under RH and
Montgomery's Pair Correlation Conjecture,

log (I¢'(p)]/log T) s b]}

\/%IoglogT

_ 1 /b a2 4y 10 (log log log T)?
V27 J, Vioglog T ’

N(T)

#{0<7§T



COROLLARY (C., 2020)

Assume that all the zeros p are simple. Under RH and
Montgomery's Pair Correlation Conjecture,

#o<n 7 oalEOlaT) )

\/%Iog log T
b 2
_ 1 / o—X%/2 dX+O((|oglog|og T) >
V2m Ja Vi0oglog T

» Montgomery’s Pair Correlation Conjecture can be replaced
with the weaker zero-spacing hypothesis.
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COROLLARY (C., 2020)

Assume that all the zeros p are simple. Under RH and
Montgomery's Pair Correlation Conjecture,

1 log (I¢'(p)]/log T)
N(T)#{0<7§ T: E[a,b]}

\/%Iog log T
b 2
_ 1 / o—X%/2 dX+O((|oglog|og T) >
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COROLLARY (C., 2020)

Assume that all the zeros p are simple. Under RH and
Montgomery's Pair Correlation Conjecture,

log (1¢'(p) /g T)

1
#{0<7§ T e [a,b]}
N(T) \/%IoglogT
b 2
_ 1 / e_X2/2dX+O<(|ogIog|ogT) >
V2m Ja Vi0oglog T

» Montgomery’s Pair Correlation Conjecture can be replaced
with the weaker zero-spacing hypothesis.

> Result of Hejhal. (1989)
» About arg ('(p). (Stopple, 2020)
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FIGURE 2. log |Z'(p)|-

FIGURE 3. arg({/(p))-

Both histograms use the ~y, with 5-10° < n < 107.



THEOREM (C., 2021)
Let a1,a2,...,a, € R and

L(p) = a1 log|L(p, x1)|+ -+ + anlog|L(p, xn)|

Here x1,...,xn are distinct primitive Dirichlet characters with
conductors bounded by T. Assume the generalized RH and that
L(p, x;j) is never O for each j. Further, suppose that for each

1 <j < n, Hypothesis 7., ; is true for some o € (0,1]. For

A < B, we have

£(p)

\/(é PRy aj2> loglog T

22 4 (log log log T)2>
\/ﬂ/ +O< Vioglog T '

1
#{0<7§ T:

N(T) <l B]}
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ZEROS OF LINEAR COMBINATIONS OF DIRICHLET
L-FUNCTIONS

Consider the function
F(S) = ClL(Sv Xl) ++ CnL(57Xn)'

for primitive L-functions L(s, x1), ..., L(s, xn) with the same
conductor. Selberg's theorem also holds for these Dirichlet
L-functions. Assume ¢; € R and that each L; satisfies the same
functional equation.

> Bombieri & Hejhal, 1995 Suppose that the L; satisfy the
GRH and a zero-spacing hypothesis. Then
100% of the zeros of F are simple and are on the critical line.

» Selberg, 1998 Unconditionally, a positive proportion of the
zeros of F(s) lie on the critical line.
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F(S) = ClL(sa Xl) + o+ CnL(S7Xn)

(Montgomery)

The value distribution of F(% + it) can be studied by using the
1,
log ‘L(E—l—lt,xj)

5 loglog T

central limit theorems for the because:

1.
log |[L(5+itx;)| 1" . : C
> {w} have independent Gaussian distributions.

\/%IoglogT Jj=1

> log |L(5 +it,x;)| — log|L(3 + it,x«)| has a Gaussian
distribution with mean 0 and variance loglog T. Therefore, it
is large most of the time.



Thank you!



BEURLING-SELBERG FUNCTIONS

sgn(x) = Fa(x) + O(W),

for
Fa(x) = Im/oA (W%u+2<1 - %) (%u)>e27rixud7:’.

» Using this, one can write an approximation for

Ly () = sgn(z— a) sgn(z— b) | 53§X) L 96(x)

1
> let x=1Im Z W
p<X?2



MAJORANTS AND MINORANTS

There are nice Beurling-Selberg functions F_(x) and Fy(x) such
that

Fo(x) € 1 aa(x) < Fi ().
2005, Goldston & Gonek: On RH,

S01= (5 +00) g

Succeeding work:
» 2009, Chandee & Soundararajan: On RH,

1 log 2 log t
og|<(5 +1t)| < (537 + o) iggioge
08 |¢ 2+I - 2 +o(1) log log t

» 2013, Chandee, Carneiro & Milinovich: On RH,

Sl (5 +o(n) 2L

4 loglogt



Example. Chandee & Soundararajan: On RH,

1 log 2 log t
o8 |<(5+ )| = (557 + o) gt
o8 | 2+I -\ 2 +o(1) log log t

> Iog‘ﬁ( —|—/t)‘—logt—|-0 —fZI )2

2
> Let f(x) = log A +2X . There is an entire function ga(x) with

&n(x) having compact support and
f(x) = ga(x).
» Compute ZgA(t — ) by using an explicit formula that is

¥
applicable to nice functions.
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