Periods of 1-motives and their polynomial relations

Cristiana Bertolin

Univ. of Padova

the FGC-HRI-IPM seminar May 17, 2023

Elliptic curves

 \mathcal{E}/\mathbb{C} elliptic curve, i.e. plane curve whose points are solutions of the equation

$$y^2 = x^3 + ax + b$$
 $a, b \in \mathbb{C}$

The Weierstrass p-function

$$\wp(z) := rac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \Big(rac{1}{(z-\lambda)^2} - rac{1}{\lambda^2} \Big)$$

(meromorphic function on \mathbb{C} having a double pole with residue zero at each point of $\Lambda \cong H_1(\mathcal{E}(\mathbb{C}), \mathbb{Z})$ and no other poles)

The exponential map

$$\begin{split} \exp_{\mathcal{E}} : \mathbb{C} &\longrightarrow \mathcal{E}(\mathbb{C}) \subseteq \mathbb{P}^{2}(\mathbb{C}) \\ z &\longmapsto \exp_{\mathcal{E}}(z) = [\wp(z), \wp(z)', 1] \end{split}$$

In particular $\mathcal{E}(\mathbb{C}) \cong \mathbb{C}/\Lambda$.

The Weierstrass $\sigma\text{-function}$

$$\sigma(z) := z \prod_{\lambda \in \Lambda \setminus \{0\}} \left(1 - rac{z}{\lambda}
ight) e^{z/\lambda + rac{1}{2}(z/\lambda)^2} \, .$$

(holomorphic function on all of \mathbb{C})

The Weierstrass ζ -function

$$\zeta(z) := rac{1}{z} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(rac{1}{z-\lambda} + rac{1}{\lambda} + rac{z}{\lambda^2}
ight).$$

(meromorphic function on $\mathbb C$ with simple poles at each point of Λ and no other poles)

$$\frac{d}{dz}\zeta(z)=-\wp(z)$$

The kind of a differential

A meromorphic differential 1-form is

- of the $\underline{\text{first kind}}$ (I) if it is holomorphic everywhere,
- of the second kind (II) if the residue at any pole vanishes, and
- $\bullet\,$ of the third kind (III) in general.

We have $(I) \subset (II) \subset (III)$.

On the elliptic curve $\boldsymbol{\mathcal{E}}$ we have the following differential 1-forms:

- the first kind $\omega = \frac{dx}{y}$ and $\exp_{\mathcal{E}}^*(\omega) = dz$.
- 3 the second kind $\eta = \frac{xdx}{y}$ and $\exp^*_{\mathcal{E}}(\eta) = \wp(z)dz$
- the third kind

$$\xi_Q = \frac{1}{2} \frac{y - y(Q)}{x - x(Q)} \frac{dx}{y}$$

for any point Q of $\mathcal{E}(\mathbb{C}), Q \neq 0$.

J.-P. Serre introduced the function

$$f_q(z) = rac{\sigma(z+q)}{\sigma(z)\sigma(q)} \; e^{-\zeta(q)z} \qquad ext{with } q \in \mathbb{C} \setminus \Lambda$$

whose logarithmic differential is

$$\frac{f_q'(z)}{f_q(z)}dz = \frac{1}{2}\frac{\wp'(z) - \wp'(q)}{\wp(z) - \wp(q)}dz = \exp^*_{\mathcal{E}}(\xi_Q)$$

where $q \in \mathbb{C}$ is an elliptic logarithm of the point Q (that is $\exp_{\mathcal{E}}(q) = Q$).

Let γ_1, γ_2 be a basis for $H_1(\mathcal{E}(\mathbb{C}), \mathbb{Z})$. Remark that

● the elliptic integrals of the first kind ∫_{γi} ω = ω_i (i = 1, 2) are the periods of the Weierstrass ℘-function:

$$\wp(z+\omega_i)=\wp(z)$$
 for $i=1,2$.

② the elliptic integrals of the second kind $\int_{\gamma_i} \eta = \eta_i$ (i = 1, 2) are the quasi-periods of the Weierstrass ζ -function:

$$\zeta(z+\omega_i)=\zeta(z)+\eta_i$$
 for $i=1,2$.

the exponentials of the elliptic integrals of the third kind ∫_{γi} ξ_Q = η_iq − ω_iζ(q) (i = 1, 2) are the quasi-quasi periods of the function f_q(z):

$$f_q(z + \omega_i) = f_q(z) e^{\eta_i q - \omega_i \zeta(q)}$$
 for $i = 1, 2$.

Definition

- A 1-motive $M = [u : \mathbb{Z} \to G]$ over $\overline{\mathbb{Q}}$ consists of
 - an extension $0 \to \mathbb{G}_m \to G \to \mathcal{E} \to 0$ defined over $\overline{\mathbb{Q}}$

• a morphism
$$u:\mathbb{Z} o G, u(1)=R\in G(\overline{\mathbb{Q}}).$$

Via the isomorphism $\mathcal{E}^* \cong \underline{\operatorname{Ext}}^1(\mathcal{E}, \mathbb{G}_m)$, to have an extension G of \mathcal{E} by \mathbb{G}_m defined over $\overline{\mathbb{Q}}$ is equivalent to have a point Q of $\mathcal{E}^*(\overline{\mathbb{Q}})$.

•
$$M = [0: 0 \rightarrow \mathcal{E}] = \mathcal{E}$$

• $M = [0: 0 \rightarrow \mathbb{G}_m] = \mathbb{G}_m$
• $M = [u: \mathbb{Z} \rightarrow \mathcal{E}], u(1) = P \in \mathcal{E}$
• $M = [u: \mathbb{Z} \rightarrow \mathbb{G}_m], u(1) = S \in \mathbb{G}_m$

In order to define a 1-motive $M = [u : \mathbb{Z} \to G]$, I need

- an elliptic curve \mathcal{E} ,
- a point $Q \in \mathcal{E}^*$ which gives the extension G of \mathcal{E} by \mathbb{G}_m , i.e. $0 \to \mathbb{G}_m \to G \to \mathcal{E} \to 0$ is exact,
- a point $P \in \mathcal{E}$,
- a lifting $R \in G$ of the point P via $G \rightarrow P$.

Differential forms and paths on 1-motives

Consider the 1-motive $M = [u : \mathbb{Z} \to G]$.

Differential forms on M

Basis for the de Rham realization $H_{dR}(M)$ of M is

$$\left\{ df, \ \omega = \frac{dx}{y}, \ \eta = \frac{xdx}{y}, \ \xi_Q = \frac{1}{2} \frac{y - y(Q)}{x - x(Q)} \frac{dx}{y} \right\}$$

where df is an exact form on G such that f(R) - f(O) = 1.

Paths on M

Basis for the Hodge realization $T_{\rm H}(M)$ of M is

$$\left\{ \beta_{R}, \ \tilde{\gamma}_{1}, \ \tilde{\gamma}_{2}, \ \delta_{Q} \right\}$$

where β_R is a path from O to R on G, $\tilde{\gamma}_1, \tilde{\gamma}_2$ lift the basis γ_1, γ_2 , δ_Q is a closed path in \mathbb{G}_m such that $\int_{\delta_Q} \xi_Q^G = 2i\pi$,

Periods of 1-motives

Deligne showed that the integration of differentials forms gives a canonical isomorphism

$$\mathrm{H}_{\mathrm{dR}}(M)\otimes_{\overline{\mathbb{Q}}}\mathbb{C}\longrightarrow\mathrm{Hom}(\mathcal{T}_{\mathrm{H}}(M),\mathbb{Q})\otimes_{\mathbb{Q}}\mathbb{C}$$
 $\omega\longmapsto [\gamma\mapsto\int_{\gamma}\omega]$

Periods of M

The periods of M are the coefficients of a matrix which represents this isomorphism with respect to $\overline{\mathbb{Q}}$ -bases.

Matrix of periods of M is

$$\left(egin{array}{cccc} \int_{eta_R} \xi_Q & \int_{eta_R} \omega & \int_{eta_R} \eta & \int_{eta_R} df \\ \int_{ ilde\gamma_1} \xi_Q & \int_{\gamma_1} \omega & \int_{\gamma_1} \eta & 0 \\ \int_{ ilde\gamma_2} \xi_Q & \int_{\gamma_2} \omega & \int_{\gamma_2} \eta & 0 \\ \int_{\delta_Q} \xi_Q & 0 & 0 & 0 \end{array}
ight)$$

Matrix of periods of M becomes

$$\begin{pmatrix} \log f_q(p) - l & p & \zeta(p) & 1\\ \eta_1 q - \omega_1 \zeta(q) & \omega_1 & \eta_1 & 0\\ \eta_2 q - \omega_2 \zeta(q) & \omega_2 & \eta_2 & 0\\ 2i\pi & 0 & 0 & 0 \end{pmatrix}$$

where $\exp_{\mathcal{E}}(p) = P$ is the projection of R via $G \to \mathcal{E}$ and $\exp_{G}(I, p) = R$.

According to Grothendieck, any polynomial relation with rational coefficients between the periods of an abelian variety A should have a geometrical origin,

that is the existence of algebraic cycles on A and on the products of A with itself, should affect the transcendence degree of the field generated by the periods of A.

Grothendieck's conjecture of periods

Let *M* be a motive defined over $\overline{\mathbb{Q}}$, then

 $\operatorname{transc.deg.}_{\mathbb{Q}} \overline{\mathbb{Q}}(\operatorname{periods}(M)) = \dim \operatorname{MT}(M)$

where $MT(M) \subseteq GL(4, \mathbb{Q})$ is the Mumford-Tate group of M.

This conjecture is an hard conjecture which is still wide open.

Only one case has been proved:

Chudnovsky Theorem

 \mathcal{E} is an elliptic curve defined over $\overline{\mathbb{Q}}$ with complex multiplication, i.e. $\operatorname{End}(\mathcal{E}) \supset \mathbb{Z}$ P = 0, Q = 0, R = 0, The Conjecture of Periods applied to this 1-motive $M = [0: 0 \rightarrow \mathcal{E}]$ is the Chudnovsky Theorem:

tran.deg_Q
$$\overline{\mathbb{Q}}(\omega_1, \omega_2, \eta_1, \eta_2) = 2 = \dim \mathrm{MT}(\mathcal{E}).$$

We have the exact sequence

$$0 \longrightarrow \mathrm{UR}(M) \longrightarrow \mathrm{MT}(M) \longrightarrow \mathrm{MT}(\mathcal{E}) \longrightarrow 0$$

where $\operatorname{UR}(M)$ is the unipotent radical of $\operatorname{MT}(M)$ and the Mumford-Tate group $\operatorname{MT}(\mathcal{E}) \subseteq \operatorname{GL}(2, \mathbb{Q})$ of \mathcal{E} is its largest reductive quotient.

In particular dim $MT(M) = \dim MT(\mathcal{E}) + \dim UR(M)$

We have

$$\dim \mathrm{MT}(\mathcal{E}) = \begin{cases} 2 & \text{if } \mathcal{E} \mathrm{CM} \text{ (i.e. } \mathrm{End}(\mathcal{E}) \supset \mathbb{Z}) \\ 4 & \text{if } \mathcal{E} \mathrm{ not } \mathrm{CM} \text{ (i.e. } \mathrm{End}(\mathcal{E}) = \mathbb{Z}) \end{cases}$$

We have

$$\dim \mathrm{UR}(M) = 2 \dim B + \dim T$$

B ⊆ E × E* is the smallest abelian subgroup containing the point (P, Q) (modulo isogenies). If k = End(E) ⊗ Q

$$\dim B = \dim_k kp + kq/(k\omega_1 + k\omega_1)$$

2 $T \subseteq \mathbb{G}_m$ is generated by the image [B, B] of the Lie bracket $[,]: B \times B \to \mathbb{G}_m$ constructed using the Weil pairing $(\mathcal{E} \otimes \mathcal{E}^* \to \mathbb{G}_m)$ and I(recall that $\exp_G(I, p) = R$)

Remark : $[B, B] = 0 \Leftrightarrow \begin{cases} \text{if } Q = \phi(P) \text{ with } \phi \in k \text{ antisymmetric, or} \\ \text{if } P \text{ and/or } Q \text{ are torsion.} \end{cases}$

	dim $UR(MT(M))$	$\dim \mathrm{MT}(M)$	$\dim \mathrm{MT}(M)$
		8 CM	E not CM
P,Q <i>k</i> -L.I.	5=4+1	7	9
P,Q <i>k</i> -L.D.	3= 2+1	5	7
with Φ sym.			
P,Q <i>k</i> -L.D.	3=2+1	5	7
with Φ antisym.	2=2+0	4	6
Q torsion	3= 2+1	5	7
(P and R not torsion)			
R torsion	2= 2+0	4	6
$(\Rightarrow P \text{ torsion})$			
P,Q torsion	1=0+1	3	5
(R not torsion)			
Q, R torsion	0	2	4
$(\Rightarrow P \text{ torsion})$			

Let ${\mathcal I}$ be the ideal generated by all polynomial relations between periods of M. By Grothendieck's conjecture

Numbers of periods of *M* - Rank of $\mathcal{I} = \dim MT(M)$

that is a decrease in the dimension of MT(M) is equivalent to an increase of the rank of the ideal \mathcal{I} .

Relation between polynomials and endomophisms

an increase in the numbers of endomorphisms \Leftrightarrow

an decrease in the dimension of $MT(M) \Leftrightarrow$

an decrease in the transcendental degree of $\overline{\mathbb{Q}}(\operatorname{periods}(M))\Leftrightarrow$

an increase in the numbers of polynomial relations between periods of M.

Elliptic case

Periods of \mathcal{E} are $\omega_1, \omega_2, \eta_1, \eta_2$

- " Numbers of periods of $\mathcal E$ Rank of $\mathfrak I=\dim\mathrm{MT}(\mathcal E)$ ", that is
- " 4 dim $MT(\mathcal{E}) = Rank$ of \mathcal{I} "

Not CM case

- dim MT(*E*) = 4
- Rank of $\mathcal{I} = 0$. No polynomials relations between periods
- a transcendence base of the field generated by periods is $\omega_1, \omega_2, \eta_1, \eta_2$

CM case - Chudnovsky Theorem

- dim MT(𝔅) = 2
- Rank of $\mathfrak{I} = 2$. Generators are $\omega_2 \tau \omega_1 = 0$, $\overline{\tau} \eta_1 \eta_2 \frac{\kappa}{\tau} \omega_1 = 0$
- ullet a transcendence base of the field generated by periods is ω_1,η_1

But I have Legendre relation !!

Legendre relation : $\omega_1\eta_2 - \omega_2\eta_1 = 2i\pi$

Legendre relation is not a polynomial relation between the 1-periods $\omega_1, \omega_2, \eta_1, \eta_2$ of \mathcal{E} , since $2i\pi$ is a **2-period** of \mathcal{E} !

0-,1-,2-periods 0-periods of $\mathcal{E} = 1$ 1-periods of $\mathcal{E} = \omega_1, \omega_2, \eta_1, \eta_2$ 2-periods of $\mathcal{E} = 2i\pi$

Legendre relation expresses the 2-period $2i\pi$ as the value of a degree 2 polynomial

$$X_1Y_2 - X_2Y_1$$

evaluated in 1-periods !

When $2i\pi$ is a 1-period ?

Periods of $\mathbb{G}_m \times \mathcal{E}$ are $\omega_1, \omega_2, \eta_1, \eta_2, 2i\pi$

"Numbers of periods of $\mathbb{G}_m \times \mathcal{E}$ - Rank of $\mathcal{I} = \dim \mathrm{MT}(\mathbb{G}_m \times \mathcal{E})$ ", that is

" 5 - dim $MT(\mathbb{G}_m \times \mathcal{E}) = Rank$ of \mathcal{I} "

Observe that dim $MT(\mathbb{G}_m \times \mathcal{E}) = \dim MT(\mathcal{E})$

Not CM case

• dim
$$MT(\mathbb{G}_m \times \mathcal{E}) = 4$$

- Rank of $\mathcal{I} = 1$. Generator is $\omega_1 \eta_2 \omega_2 \eta_1 2i\pi = 0$
- a transcendence base of the field generated by periods is $\omega_1, \omega_2, \eta_1, \eta_2$

CM case

- dim $MT(\mathcal{E}) = 2$
- Rank of $\mathfrak{I} = \mathfrak{Z} : \omega_2 \tau \omega_1 = \mathfrak{0}, \quad \overline{\tau}\eta_1 \eta_2 \frac{\kappa}{\tau}\omega_1 = \mathfrak{0}, \quad \omega_1\eta_2 \omega_2\eta_1 2\mathrm{i}\pi = \mathfrak{0}$
- a transcendence base of the field generated by periods is ω_1,η_1

Case with R (and so P) and Q torsion

$$\left(egin{array}{cccc} \log f_q(p)-\ell & p & \zeta(p) & 1\ \eta_1 q - \omega_1 \zeta(q) & \omega_1 & \eta_1 & 0\ \eta_2 q - \omega_2 \zeta(q) & \omega_2 & \eta_2 & 0\ 2\mathrm{i}\pi & 0 & 0 & 0 \end{array}
ight)$$

" Numbers of periods of M - Rank of $\mathcal{I} = \dim MT(M)$ ", that is " 10 - dim MT(M) = Rank of \mathcal{I} "

Observe that dim $MT(M) = \dim MT(\mathcal{E})$

CM case

- dim $MT(\mathcal{E}) = 2$
- Rank of $\mathcal{I} = 8$

 \bullet a transcendence base of the field generated by periods is ω_1,η_1

$$\begin{bmatrix} \omega_{2} - \tau \omega_{1} = 0, \\ \bar{\tau}\eta_{1} - \eta_{2} - \frac{\kappa}{\tau}\omega_{1} = 0, \\ \omega_{1}\eta_{2} - \omega_{2}\eta_{1} - 2i\pi = 0, \\ p - \alpha_{1}\omega_{1} - \alpha_{2}\omega_{2} = 0, \\ \zeta(p) - \alpha_{1}\eta_{1} - \alpha_{2}\eta_{2} \in \overline{\mathbb{Q}}, \\ -\omega_{2}(\eta_{1}q - \omega_{1}\zeta(q)) + \omega_{1}(\eta_{2}q - \omega_{2}\zeta(q)) - 2i\pi(\beta_{1}\omega_{1} + \beta_{2}\omega_{2}) = 0, \\ -\eta_{2}(\eta_{1}q - \omega_{1}\zeta(q)) + \eta_{1}(\eta_{2}q - \omega_{2}\zeta(q)) - 2i\pi(\beta_{1}\eta_{1} + \beta_{2}\eta_{2}) \in \overline{\mathbb{Q}}, \\ \log f_{q}(p) - \ell - 2i\pi\gamma = 0. \end{bmatrix}$$

Thanks!