Abelian Arboreal representations FGC-HRI-IPM 2023

Carlo Pagano
Concordia University/MPIM (guest)

May 31, 2023

Two themes today

Arboreal Galois groups are believed to be large and complicated over number fields.

Here two simple questions where we have still limited understanding.

Two themes today

Arboreal Galois groups are believed to be large and complicated over number fields.

Here two simple questions where we have still limited understanding.

- How quickly do arboreal degrees grow?

Two themes today

Arboreal Galois groups are believed to be large and complicated over number fields.

Here two simple questions where we have still limited understanding.

- How quickly do arboreal degrees grow?
- When is an arboreal Galois group abelian?

What is an Arboreal Galois group?

Let K be a field, $f \in K(x), \alpha \in K$, suppose $\operatorname{deg}(f)=: d \geq 2$.

What is an Arboreal Galois group?

Let K be a field, $f \in K(x), \alpha \in K$, suppose $\operatorname{deg}(f)=: d \geq 2$.

- In the typical case

$$
T_{\infty}(f, \alpha):=\cup_{N \geq 1} f^{-N}(\alpha)
$$

is an infinite rooted degree d tree.

What is an Arboreal Galois group?

Let K be a field, $f \in K(x), \alpha \in K$, suppose $\operatorname{deg}(f)=: d \geq 2$.

- In the typical case

$$
T_{\infty}(f, \alpha):=\cup_{N \geq 1} f^{-N}(\alpha)
$$

is an infinite rooted degree d tree.

- Tree: connect β to $f(\beta)$.

What is an Arboreal Galois group?

Let K be a field, $f \in K(x), \alpha \in K$, suppose $\operatorname{deg}(f)=: d \geq 2$.

- In the typical case

$$
T_{\infty}(f, \alpha):=\cup_{N \geq 1} f^{-N}(\alpha)
$$

is an infinite rooted degree d tree.

- Tree: connect β to $f(\beta)$.
- The labels are respected by $\operatorname{Gal}\left(K^{\text {sep }} / K\right)=: G_{K}$.

What is an Arboreal Galois group?

Let K be a field, $f \in K(x), \alpha \in K$, suppose $\operatorname{deg}(f)=: d \geq 2$.

- In the typical case

$$
T_{\infty}(f, \alpha):=\cup_{N \geq 1} f^{-N}(\alpha)
$$

is an infinite rooted degree d tree.

- Tree: connect β to $f(\beta)$.
- The labels are respected by $\operatorname{Gal}\left(K^{\text {sep }} / K\right)=: G_{K}$.
- This gives a representation

$$
G_{K} \rightarrow \operatorname{Aut}_{\mathrm{graph}}\left(T_{\infty}(f, \alpha)\right)
$$

What is an Arboreal Galois group?

Let K be a field, $f \in K(x), \alpha \in K$, suppose $\operatorname{deg}(f)=: d \geq 2$.

- In the typical case

$$
T_{\infty}(f, \alpha):=\cup_{N \geq 1} f^{-N}(\alpha)
$$

is an infinite rooted degree d tree.

- Tree: connect β to $f(\beta)$.
- The labels are respected by $\operatorname{Gal}\left(K^{\text {sep }} / K\right)=: G_{K}$.
- This gives a representation

$$
G_{K} \rightarrow \operatorname{Aut}_{\mathrm{graph}}\left(T_{\infty}(f, \alpha)\right)
$$

- It is a non-linear analogue of an l-adic representation.

Arboreal Galois groups over number fields

Have been intensively studied!

Arboreal Galois groups over number fields

Have been intensively studied!
The general expectation: arboreal images "should be typically large".

Arboreal Galois groups over number fields

Have been intensively studied!
The general expectation: arboreal images "should be typically large".

- Large: (Topology) They should be open in the full automorphism group unless the map f is "special".

Arboreal Galois groups over number fields

Have been intensively studied!
The general expectation: arboreal images "should be typically large".

- Large: (Topology) They should be open in the full automorphism group unless the map f is "special".
- Example: Jones conjectured that (in the typical case) for $f=x^{2}+c$ the image is open as soon as the orbit of 0 is infinite.

Arboreal Galois groups over number fields

Have been intensively studied!
The general expectation: arboreal images "should be typically large".

- Large: (Topology) They should be open in the full automorphism group unless the map f is "special".
- Example: Jones conjectured that (in the typical case) for $f=x^{2}+c$ the image is open as soon as the orbit of 0 is infinite.
- This conjectured is inspired by Serre's open image theorem.

Arboreal Galois groups over number fields

Have been intensively studied!
The general expectation: arboreal images "should be typically large".

- Large: (Topology) They should be open in the full automorphism group unless the map f is "special".
- Example: Jones conjectured that (in the typical case) for $f=x^{2}+c$ the image is open as soon as the orbit of 0 is infinite.
- This conjectured is inspired by Serre's open image theorem.
- Large: (Size) What about the actual size? How big is

$$
\operatorname{Gal}\left(K\left(f^{-N}(\alpha)\right) / K\right)
$$

as N goes to ∞ ?

How big are arboreal Galois groups?

Let K be a number field, $f \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(f^{-N}(\alpha)\right) / K$.

How big are arboreal Galois groups?

Let K be a number field, $f \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(f^{-N}(\alpha)\right) / K$.

- The degrees $\left[K\left(f^{-N}(\alpha)\right): K\right]$ should grow double-exponentially in N, unless the map f is PCF (the orbits of its critical points are all finite).

How big are arboreal Galois groups?

Let K be a number field, $f \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(f^{-N}(\alpha)\right) / K$.

- The degrees $\left[K\left(f^{-N}(\alpha)\right): K\right]$ should grow double-exponentially in N, unless the map f is PCF (the orbits of its critical points are all finite).
- At least exponentially, unless $\left\{f^{-N}(\alpha)\right\}_{N \geq 1}$ is finite.

How big are arboreal Galois groups?

Let K be a number field, $f \in K(x)$ a map of degree at least 2 and α in K and focus on the fields $K\left(f^{-N}(\alpha)\right) / K$.

- The degrees $\left[K\left(f^{-N}(\alpha)\right): K\right]$ should grow double-exponentially in N, unless the map f is PCF (the orbits of its critical points are all finite).
- At least exponentially, unless $\left\{f^{-N}(\alpha)\right\}_{N \geq 1}$ is finite.

Any of this is: wide open in general!

How complicated are arboreal Galois groups?

For instance: can they ever be abelian?

How complicated are arboreal Galois groups?

For instance: can they ever be abelian?
Aside: the ramified part of local class field theory is an arboreal Galois group! (Lubin-Tate).

How complicated are arboreal Galois groups?

For instance: can they ever be abelian?
Aside: the ramified part of local class field theory is an arboreal Galois group! (Lubin-Tate).

- Jones' conjecture predicts over number fields this should only happen in the PCF case.

How complicated are arboreal Galois groups?

For instance: can they ever be abelian?
Aside: the ramified part of local class field theory is an arboreal Galois group! (Lubin-Tate).

- Jones' conjecture predicts over number fields this should only happen in the PCF case.
Even then, the only known examples are Chebichev, power polynomials and their conjugates.

How complicated are arboreal Galois groups?

For instance: can they ever be abelian?
Aside: the ramified part of local class field theory is an arboreal Galois group! (Lubin-Tate).

- Jones' conjecture predicts over number fields this should only happen in the PCF case.
Even then, the only known examples are Chebichev, power polynomials and their conjugates.
- Examples: $\left(x^{d}, \zeta\right)$ or $\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right), \zeta=$ a root of unity.

How complicated are arboreal Galois groups?

For instance: can they ever be abelian?
Aside: the ramified part of local class field theory is an arboreal Galois group! (Lubin-Tate).

- Jones' conjecture predicts over number fields this should only happen in the PCF case.
Even then, the only known examples are Chebichev, power polynomials and their conjugates.
- Examples: $\left(x^{d}, \zeta\right)$ or $\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right), \zeta=$ a root of unity.
- Conjecture, Andrews-Petsche, 2020: For every number field these are the only abelian examples, up to conjugation.

Two questions

- How quickly arboreal degrees grow?
- Expectation: At least double-exponentially in the non-PCF case and at least exponentially in the PCF case.
- What are abelian arboreal Galois groups?
- Expectation: Only for pairs conjugate to (x^{d}, ζ) or $\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right)$.

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.
Theorem 1, P., 2021
Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.
Theorem 1, P., 2021
Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 1, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
- Previous literature: Exploits infinite critical orbits, giving one bit of new ramification at each step (under Vojta's conjecture).

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 1, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
- Previous literature: Exploits infinite critical orbits, giving one bit of new ramification at each step (under Vojta's conjecture).
- What to do if the orbits are finite?

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 1, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
- Previous literature: Exploits infinite critical orbits, giving one bit of new ramification at each step (under Vojta's conjecture).
- What to do if the orbits are finite?

Rough Idea: To arrange ramification only at finitely many places the polynomial has to "pay" the price of offering us an explosion of ramification therein!

Exponential lower bounds: PCF polynomials

Let K be a number field. We have the following.

Theorem 1, P., 2021

Assume GRH. Suppose that f is a PCF polynomials of degree $d \geq 2$. Let α be outside the critical orbits of f. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- For PCF this is essentially sharp: $\left(x^{2}, \alpha\right),\left(x^{2}-2,0\right)$.
- Previous literature: Exploits infinite critical orbits, giving one bit of new ramification at each step (under Vojta's conjecture).
- What to do if the orbits are finite?

Rough Idea: To arrange ramification only at finitely many places the polynomial has to "pay" the price of offering us an explosion of ramification therein!
Let us see how this works out exactly.

Overview of the proof

- If f is PCF this forces $\operatorname{Disc}\left(f^{N}-\alpha\right)$ to be supported at a finite set S of primes, independent of N.

Overview of the proof

- If f is PCF this forces $\operatorname{Disc}\left(f^{N}-\alpha\right)$ to be supported at a finite set S of primes, independent of N.
- This means that at every prime \mathfrak{p} outside of S all the roots must be distinct modulo \mathfrak{p}.

Overview of the proof

- If f is PCF this forces $\operatorname{Disc}\left(f^{N}-\alpha\right)$ to be supported at a finite set S of primes, independent of N.
- This means that at every prime \mathfrak{p} outside of S all the roots must be distinct modulo \mathfrak{p}.
- But then the smallest splitting prime outside of S in $K\left(f^{-N}(\alpha)\right) / K$ must have norm of size at least d^{N}.

Overview of the proof

- If f is PCF this forces $\operatorname{Disc}\left(f^{N}-\alpha\right)$ to be supported at a finite set S of primes, independent of N.
- This means that at every prime \mathfrak{p} outside of S all the roots must be distinct modulo \mathfrak{p}.
- But then the smallest splitting prime outside of S in $K\left(f^{-N}(\alpha)\right) / K$ must have norm of size at least d^{N}.
- GRH gives a splitting prime of size about $\log \left(d_{K(f-N(\alpha))}\right)^{\frac{1}{2}-\epsilon}$. Hence this quantity grows exponentially in N.

Overview of the proof

- If f is PCF this forces $\operatorname{Disc}\left(f^{N}-\alpha\right)$ to be supported at a finite set S of primes, independent of N.
- This means that at every prime \mathfrak{p} outside of S all the roots must be distinct modulo \mathfrak{p}.
- But then the smallest splitting prime outside of S in $K\left(f^{-N}(\alpha)\right) / K$ must have norm of size at least d^{N}.
- GRH gives a splitting prime of size about $\log \left(d_{K(f-N(\alpha))}\right)^{\frac{1}{2}-\epsilon}$. Hence this quantity grows exponentially in N.
- The discriminant is supported only at S and its log grows exponentially. The only possibility: degree grows exponentially!

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 2, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 2, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- Main idea: use the magic of PCF polynomials with periodic critical orbit.

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 2, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- Main idea: use the magic of PCF polynomials with periodic critical orbit.
- The magic: For all γ on the tree, $-\gamma$ becomes a d^{N}-th power in $K\left(f^{-N \cdot n_{0}}(\gamma)\right)$ where n_{0} is the period.

Exponential lower bounds: unicritical polynomials

Let K be a number field. We have the following.
Theorem 2, P., 2021
Suppose that $f:=x^{d}+c$ is not a PCF polynomials of degree $d \geq 2$. Then there is $c(f, \alpha)>0$ such that

$$
\left[K\left(f^{-N}(\alpha)\right): K\right] \geq \exp (c(f, \alpha) \cdot N)
$$

- Main idea: use the magic of PCF polynomials with periodic critical orbit.
- The magic: For all γ on the tree, $-\gamma$ becomes a d^{N}-th power in $K\left(f^{-N \cdot n_{0}}(\gamma)\right)$ where n_{0} is the period.
- Apply the magic modulo a suitably chosen prime.

Example of the magic: $x^{2}-1$

Here $n_{0}=$ period $=2$.

Example of the magic: $x^{2}-1$

Here $n_{0}=$ period $=2$.

- Suppose that $\beta^{2}-1=\alpha$.

Example of the magic: $x^{2}-1$

Here $n_{0}=$ period $=2$.

- Suppose that $\beta^{2}-1=\alpha$.
- Take $\gamma_{1}^{2}-1=\beta$ and $\gamma_{2}^{2}-1=-\beta$.

Example of the magic: $x^{2}-1$

Here $n_{0}=$ period $=2$.

- Suppose that $\beta^{2}-1=\alpha$.
- Take $\gamma_{1}^{2}-1=\beta$ and $\gamma_{2}^{2}-1=-\beta$.
- Now
$\left(\gamma_{1} \gamma_{2}\right)^{2}=\left(\gamma_{1}^{2}-1+1\right)\left(\gamma_{2}^{2}-1+1\right)=(\beta+1)(-\beta+1)=1-\beta^{2}=-\alpha$.

Example of the magic: $x^{2}-1$

Here $n_{0}=$ period $=2$.

- Suppose that $\beta^{2}-1=\alpha$.
- Take $\gamma_{1}^{2}-1=\beta$ and $\gamma_{2}^{2}-1=-\beta$.
- Now
$\left(\gamma_{1} \gamma_{2}\right)^{2}=\left(\gamma_{1}^{2}-1+1\right)\left(\gamma_{2}^{2}-1+1\right)=(\beta+1)(-\beta+1)=1-\beta^{2}=-\alpha$.
- Now iterate!

Recap

- Arboreal Galois groups are expected to be large and complicated.

Recap

- Arboreal Galois groups are expected to be large and complicated.
- In particular their size is expected to grow at least exponentially.

Recap

- Arboreal Galois groups are expected to be large and complicated.
- In particular their size is expected to grow at least exponentially.
- They are expected to give almost never abelian groups, except in the two obvious cases (power and Chebichev polynomials).

Recap

- Arboreal Galois groups are expected to be large and complicated.
- In particular their size is expected to grow at least exponentially.
- They are expected to give almost never abelian groups, except in the two obvious cases (power and Chebichev polynomials).
- We have exponential lower bounds for PCF (under GRH) and for unicritical (unconditionally).

Recap

- Arboreal Galois groups are expected to be large and complicated.
- In particular their size is expected to grow at least exponentially.
- They are expected to give almost never abelian groups, except in the two obvious cases (power and Chebichev polynomials).
- We have exponential lower bounds for PCF (under GRH) and for unicritical (unconditionally).
- The latter follows exploiting the magic of PCF that are critically periodic.

Recap

- Arboreal Galois groups are expected to be large and complicated.
- In particular their size is expected to grow at least exponentially.
- They are expected to give almost never abelian groups, except in the two obvious cases (power and Chebichev polynomials).
- We have exponential lower bounds for PCF (under GRH) and for unicritical (unconditionally).
- The latter follows exploiting the magic of PCF that are critically periodic.
- The magic will come back!

Progress on Andrews-Petsche: reduction to the PCF case

Theorem 3, Ferraguti-P., 2023
If a unicritical polynomial $x^{d}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

Progress on Andrews-Petsche: reduction to the PCF case

Theorem 3, Ferraguti-P., 2023
If a unicritical polynomial $x^{d}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

Progress on Andrews-Petsche: reduction to the PCF case

Theorem 3, Ferraguti-P., 2023
If a unicritical polynomial $x^{d}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- It is based on the unidimensionality principle.

Progress on Andrews-Petsche: reduction to the PCF case

Theorem 3, Ferraguti-P., 2023
If a unicritical polynomial $x^{d}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- It is based on the unidimensionality principle.
- This is a certain necessary condition for automorphisms of a binary tree to commute.

Progress on Andrews-Petsche: reduction to the PCF case

Theorem 3, Ferraguti-P., 2023
If a unicritical polynomial $x^{d}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- It is based on the unidimensionality principle.
- This is a certain necessary condition for automorphisms of a binary tree to commute.
- The condition (essentially) translates into making the group

$$
\left\langle\left\{f^{N}(0)-\alpha\right\}_{N \geq 1}\right\rangle
$$

modulo d-th powers, cyclic.

Progress on Andrews-Petsche: reduction to the PCF case

Theorem 3, Ferraguti-P., 2023
If a unicritical polynomial $x^{d}+c$ over any number field K, gives abelian arboreal Galois group for some α, then the orbit of 0 is preperiodic.

The proof uses Faltings' theorem as follows:

- It is based on the unidimensionality principle.
- This is a certain necessary condition for automorphisms of a binary tree to commute.
- The condition (essentially) translates into making the group

$$
\left\langle\left\{f^{N}(0)-\alpha\right\}_{N \geq 1}\right\rangle
$$

modulo d-th powers, cyclic.

- If the orbit were infinite one would get curves of very high genus having infinitely many rational points.

The unidimensionality principle

For simplicity assume $d=2$. Let
$\Omega_{\infty}(2)=\{$ Automorphisms of a binary infinite rooted tree\}

The unidimensionality principle

For simplicity assume $d=2$. Let

$$
\Omega_{\infty}(2)=\{\text { Automorphisms of a binary infinite rooted tree }\}
$$

Then there is a character $\phi_{0}: \Omega_{\infty}(2) \rightarrow \mathbb{F}_{2}$ with the following property.

The unidimensionality principle

For simplicity assume $d=2$. Let

$$
\Omega_{\infty}(2)=\{\text { Automorphisms of a binary infinite rooted tree }\}
$$

Then there is a character $\phi_{0}: \Omega_{\infty}(2) \rightarrow \mathbb{F}_{2}$ with the following property.
If $\phi_{0}(\sigma) \neq 0$ then the centralizer of σ is linearly dependent from σ in

$$
\Omega_{\infty}(2)^{\mathrm{ab}} \simeq \mathbb{F}_{2}^{\mathbb{Z} \geq 0}
$$

The unidimensionality principle

For simplicity assume $d=2$. Let

$$
\Omega_{\infty}(2)=\{\text { Automorphisms of a binary infinite rooted tree }\}
$$

Then there is a character $\phi_{0}: \Omega_{\infty}(2) \rightarrow \mathbb{F}_{2}$ with the following property.
If $\phi_{0}(\sigma) \neq 0$ then the centralizer of σ is linearly dependent from σ in

$$
\Omega_{\infty}(2)^{\mathrm{ab}} \simeq \mathbb{F}_{2}^{\mathbb{Z} \geq 0}
$$

The coordinate projections ϕ_{i} are basically $f^{i}(0)-\alpha$ modulo squares. This gives you the curves!

Intermezzo: a rigidity theorem

- This principle played a key role in a previous work.

Theorem, Casazza-Ferraguti-P, 2019
The list of maximal subgroups of $\Omega_{\infty}(2)$ along with $\Omega_{\infty}(2)$ consists of pairwise distinct isomorphism classes of profinite groups.

Intermezzo: a rigidity theorem

- This principle played a key role in a previous work.

Theorem, Casazza-Ferraguti-P, 2019
The list of maximal subgroups of $\Omega_{\infty}(2)$ along with $\Omega_{\infty}(2)$ consists of pairwise distinct isomorphism classes of profinite groups.

These groups are in bijection with non-zero vectors \underline{a} in $\mathbb{F}_{2}^{\left(\mathbb{Z}_{\geq 0}\right)}$.

Intermezzo: a rigidity theorem

- This principle played a key role in a previous work.

Theorem, Casazza-Ferraguti-P, 2019
The list of maximal subgroups of $\Omega_{\infty}(2)$ along with $\Omega_{\infty}(2)$ consists of pairwise distinct isomorphism classes of profinite groups.

These groups are in bijection with non-zero vectors \underline{a} in $\mathbb{F}_{2}^{\left(\mathbb{Z}_{\geq 0}\right)}$.
We reconstruct the vector \underline{a} from the isomorphism classes as follows:

Intermezzo: a rigidity theorem

- This principle played a key role in a previous work.

Theorem, Casazza-Ferraguti-P, 2019

The list of maximal subgroups of $\Omega_{\infty}(2)$ along with $\Omega_{\infty}(2)$ consists of pairwise distinct isomorphism classes of profinite groups.

These groups are in bijection with non-zero vectors \underline{a} in $\mathbb{F}_{2}^{\left(\mathbb{Z}_{\geq 0}\right)}$.
We reconstruct the vector \underline{a} from the isomorphism classes as follows:

- For all but finitely many i, the largest number of connected components in the graphs of commutativity of $\Omega_{\infty}(2)^{(i-\mathrm{Fr} .)}$ is equal to 1 iff $\underline{a}=0$ and otherwise equals 2^{N+1}, where N is the largest non-zero coordinate.

Intermezzo: a rigidity theorem

- This principle played a key role in a previous work.

Theorem, Casazza-Ferraguti-P, 2019

The list of maximal subgroups of $\Omega_{\infty}(2)$ along with $\Omega_{\infty}(2)$ consists of pairwise distinct isomorphism classes of profinite groups.

These groups are in bijection with non-zero vectors \underline{a} in $\mathbb{F}_{2}^{\left(\mathbb{Z}_{\geq 0}\right)}$.
We reconstruct the vector \underline{a} from the isomorphism classes as follows:

- For all but finitely many i, the largest number of connected components in the graphs of commutativity of $\Omega_{\infty}(2)^{(i-\mathrm{Fr} .)}$ is equal to 1 iff $\underline{a}=0$ and otherwise equals 2^{N+1}, where N is the largest non-zero coordinate.
- This is essentially a consequence of the unidimensionality principle!

Intermezzo: a rigidity theorem

- This principle played a key role in a previous work.

Theorem, Casazza-Ferraguti-P, 2019

The list of maximal subgroups of $\Omega_{\infty}(2)$ along with $\Omega_{\infty}(2)$ consists of pairwise distinct isomorphism classes of profinite groups.

These groups are in bijection with non-zero vectors \underline{a} in $\mathbb{F}_{2}^{\left(\mathbb{Z}_{\geq 0}\right)}$.
We reconstruct the vector \underline{a} from the isomorphism classes as follows:

- For all but finitely many i, the largest number of connected components in the graphs of commutativity of $\Omega_{\infty}(2)^{(i-\mathrm{Fr} .)}$ is equal to 1 iff $\underline{a}=0$ and otherwise equals 2^{N+1}, where N is the largest non-zero coordinate.
- This is essentially a consequence of the unidimensionality principle!
- It reconstructs the largest 1 . The previous 1 's are detected by looking which terms of the series $\Omega_{\infty}(2)^{i-\mathrm{Fr}}$. are topologically generated by involutions.

Intermezzo: part II

- The graph of commutativity of a set of topological generators S is the set of topological generators, pairwise linked if and only if they do not commute.

Intermezzo: part II

- The graph of commutativity of a set of topological generators S is the set of topological generators, pairwise linked if and only if they do not commute.
- The largest number of connected components is considered among the set of generators not containing the identity.

Intermezzo: part II

- The graph of commutativity of a set of topological generators S is the set of topological generators, pairwise linked if and only if they do not commute.
- The largest number of connected components is considered among the set of generators not containing the identity.
- We are currently generalizing to p odd: it turns out one iterates the ($p-1$)-th piece of the lower central series!

Intermezzo: part II

- The graph of commutativity of a set of topological generators S is the set of topological generators, pairwise linked if and only if they do not commute.
- The largest number of connected components is considered among the set of generators not containing the identity.
- We are currently generalizing to p odd: it turns out one iterates the ($p-1$)-th piece of the lower central series!
- For general p one has that isomorphic groups occur iff the vectors have same support, which happens iff the two subgroups are Aut ${ }_{\text {top.gr. }}\left(\Omega_{\infty}(p)\right)$-conjugate.

Recap

- Andrews-Petsche conjectured that only $\left(x^{d}, \zeta\right),\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right)$ yield abelian Galois groups (up to conjugation).

Recap

- Andrews-Petsche conjectured that only $\left(x^{d}, \zeta\right),\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right)$ yield abelian Galois groups (up to conjugation).
- Jones' conjecture predicts at least that one should be able to restrict to the PCF-case.

Recap

- Andrews-Petsche conjectured that only $\left(x^{d}, \zeta\right),\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right)$ yield abelian Galois groups (up to conjugation).
- Jones' conjecture predicts at least that one should be able to restrict to the PCF-case.
- In the result above we have achieved exactly this reduction for unicritical polynomials.

Recap

- Andrews-Petsche conjectured that only $\left(x^{d}, \zeta\right),\left(\pm T_{d}(x), \zeta+\zeta^{-1}\right)$ yield abelian Galois groups (up to conjugation).
- Jones' conjecture predicts at least that one should be able to restrict to the PCF-case.
- In the result above we have achieved exactly this reduction for unicritical polynomials.
So we can now focus entirely on the PCF case.

Progress on Andrews-Petsche: the periodic case

Among the PCF we settle all of the periodic ones:
Theorem 4, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

Progress on Andrews-Petsche: the periodic case

Among the PCF we settle all of the periodic ones:
Theorem 4, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

This follows from the magic of period critical orbit.

Progress on Andrews-Petsche: the periodic case

Among the PCF we settle all of the periodic ones:
Theorem 4, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

This follows from the magic of period critical orbit.

- Indeed that allows to construct d^{N}-th roots of each point of $T_{\infty}(f, \alpha)$, for all $N \geq 1$.

Progress on Andrews-Petsche: the periodic case

Among the PCF we settle all of the periodic ones:
Theorem 4, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

This follows from the magic of period critical orbit.

- Indeed that allows to construct d^{N}-th roots of each point of $T_{\infty}(f, \alpha)$, for all $N \geq 1$.
- By Amoroso-Zannier that forces the entire $T_{\infty}(f, \alpha)$ to be of roots of unity!

Progress on Andrews-Petsche: the periodic case

Among the PCF we settle all of the periodic ones:
Theorem 4, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

This follows from the magic of period critical orbit.

- Indeed that allows to construct d^{N}-th roots of each point of $T_{\infty}(f, \alpha)$, for all $N \geq 1$.
- By Amoroso-Zannier that forces the entire $T_{\infty}(f, \alpha)$ to be of roots of unity!
- From there one shows that f preserves the unit circle.

Progress on Andrews-Petsche: the periodic case

Among the PCF we settle all of the periodic ones:
Theorem 4, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all PCF unicritical polynomials with periodic critical orbit.

This follows from the magic of period critical orbit.

- Indeed that allows to construct d^{N}-th roots of each point of $T_{\infty}(f, \alpha)$, for all $N \geq 1$.
- By Amoroso-Zannier that forces the entire $T_{\infty}(f, \alpha)$ to be of roots of unity!
- From there one shows that f preserves the unit circle.
- But $x^{d}+c$ preserves the unit circle only when $c=0$!

Progress on Andrews-Petsche: \mathbb{Q} and quadratic number fields

We have the following:
Theorem 5, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all monic unicritical polynomial over \mathbb{Q} and over quadratic number fields.

Progress on Andrews-Petsche: \mathbb{Q} and quadratic number fields

We have the following:
Theorem 5, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all monic unicritical polynomial over \mathbb{Q} and over quadratic number fields.

- Previously known cases:

Progress on Andrews-Petsche: \mathbb{Q} and quadratic number

 fieldsWe have the following:
Theorem 5, Ferraguti-P., 2023
Andrews-Petsche conjecture holds for all monic unicritical polynomial over \mathbb{Q} and over quadratic number fields.

- Previously known cases:
- For \mathbb{Q} and for stable quadratic polynomials (Andrews-Petsche (2020), using Arakelov theory).

Progress on Andrews-Petsche: \mathbb{Q} and quadratic number fields

We have the following:

Theorem 5, Ferraguti-P., 2023

Andrews-Petsche conjecture holds for all monic unicritical polynomial over \mathbb{Q} and over quadratic number fields.

- Previously known cases:
- For \mathbb{Q} and for stable quadratic polynomials (Andrews-Petsche (2020), using Arakelov theory).
- For \mathbb{Q} and for all quadratic polynomials (Ferraguti-P. (2020), using the unidimensionality principle and local class field theory).

Progress on Andrews-Petsche: \mathbb{Q} and quadratic number fields

We have the following:

Theorem 5, Ferraguti-P., 2023

Andrews-Petsche conjecture holds for all monic unicritical polynomial over \mathbb{Q} and over quadratic number fields.

- Previously known cases:
- For \mathbb{Q} and for stable quadratic polynomials (Andrews-Petsche (2020), using Arakelov theory).
- For \mathbb{Q} and for all quadratic polynomials (Ferraguti-P. (2020), using the unidimensionality principle and local class field theory).
- For more general rational functions over \mathbb{Q} (Ferraguti-Ostafe-Zannier, 2022). More on this later.

\mathbb{Q} and quadratic number fields: ideas

- The list of PCF polynomials to look at is

$$
\left\{x^{d}, x^{2}-2, x^{2 d}-1, x^{4 d+3} \pm i, x^{6 d+4} \pm \zeta_{6}, x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}
$$

\mathbb{Q} and quadratic number fields: ideas

- The list of PCF polynomials to look at is

$$
\left\{x^{d}, x^{2}-2, x^{2 d}-1, x^{4 d+3} \pm i, x^{6 d+4} \pm \zeta_{6}, x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}
$$

The following have periodic critical orbit and hence automatically out

$$
\left\{x^{2 d}-1, x^{4 d+3} \pm i, x^{6 d+4} \pm \zeta_{6}\right\}
$$

\mathbb{Q} and quadratic number fields: ideas

- The list of PCF polynomials to look at is

$$
\left\{x^{d}, x^{2}-2, x^{2 d}-1, x^{4 d+3} \pm i, x^{6 d+4} \pm \zeta_{6}, x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}
$$

The following have periodic critical orbit and hence automatically out

$$
\left\{x^{2 d}-1, x^{4 d+3} \pm i, x^{6 d+4} \pm \zeta_{6}\right\}
$$

One is left with

$$
\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\} .
$$

The cases $\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}$

- For $x^{2} \pm i$, local arboreal results of Anderson, Hamblen, Poonen, Walton combined with local class field theory reduces to look for 2-integral base points α.

The cases $\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}$

- For $x^{2} \pm i$, local arboreal results of Anderson, Hamblen, Poonen, Walton combined with local class field theory reduces to look for 2-integral base points α.
- The unidimensionality principle reduces the problem to find 2-integral points on genus 0 curves. There is an algorithm.

The cases $\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}$

- For $x^{2} \pm i$, local arboreal results of Anderson, Hamblen, Poonen, Walton combined with local class field theory reduces to look for 2-integral base points α.
- The unidimensionality principle reduces the problem to find 2-integral points on genus 0 curves. There is an algorithm.
- For $x^{6 d}+\zeta_{3}$ the resulting curves are higher genus and the most complicated is

$$
y^{3}=x^{4}+18 x^{2}-27
$$

of which we need to find the $\mathbb{Q}\left(\zeta_{3}, i\right)$-points.

The cases $\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}$

- For $x^{2} \pm i$, local arboreal results of Anderson, Hamblen, Poonen, Walton combined with local class field theory reduces to look for 2-integral base points α.
- The unidimensionality principle reduces the problem to find 2-integral points on genus 0 curves. There is an algorithm.
- For $x^{6 d}+\zeta_{3}$ the resulting curves are higher genus and the most complicated is

$$
y^{3}=x^{4}+18 x^{2}-27
$$

of which we need to find the $\mathbb{Q}\left(\zeta_{3}, i\right)$-points.

- We use techniques from Balakrishnan-Tuitman and Siksek to apply the Chabauty method.

The cases $\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}$

- For $x^{2} \pm i$, local arboreal results of Anderson, Hamblen, Poonen, Walton combined with local class field theory reduces to look for 2-integral base points α.
- The unidimensionality principle reduces the problem to find 2-integral points on genus 0 curves. There is an algorithm.
- For $x^{6 d}+\zeta_{3}$ the resulting curves are higher genus and the most complicated is

$$
y^{3}=x^{4}+18 x^{2}-27
$$

of which we need to find the $\mathbb{Q}\left(\zeta_{3}, i\right)$-points.

- We use techniques from Balakrishnan-Tuitman and Siksek to apply the Chabauty method.
- After this one is left with the infinite family $\left(x^{6 d}+\zeta_{3}, \zeta_{3}\right)$.

The cases $\left\{x^{6 d}+\zeta_{3}, x^{2} \pm i\right\}$

- For $x^{2} \pm i$, local arboreal results of Anderson, Hamblen, Poonen, Walton combined with local class field theory reduces to look for 2-integral base points α.
- The unidimensionality principle reduces the problem to find 2-integral points on genus 0 curves. There is an algorithm.
- For $x^{6 d}+\zeta_{3}$ the resulting curves are higher genus and the most complicated is

$$
y^{3}=x^{4}+18 x^{2}-27
$$

of which we need to find the $\mathbb{Q}\left(\zeta_{3}, i\right)$-points.

- We use techniques from Balakrishnan-Tuitman and Siksek to apply the Chabauty method.
- After this one is left with the infinite family $\left(x^{6 d}+\zeta_{3}, \zeta_{3}\right)$. We use a method of Amoroso-Zannier (to lower bound heights in abelian extensions) to reduce the range to $d \leq 36$. Not directly their estimate. The remaining cases are done with Magma.

What do we know beyond quadratic fields?

- In the strictly pre-periodical case: not much!

What do we know beyond quadratic fields?

- In the strictly pre-periodical case: not much!
- We have at least the following finiteness result.

Theorem 6, Ferraguti-P., 2023

For all d there exists a finite set $U_{d} \subseteq \mathbb{Q}^{\text {sep }}$ such that for all number fields K and all u in K and not in U_{d}, there are only finitely many α in K such that $\left(u \cdot x^{d}+1, \alpha\right)$ gives abelian image.

What do we know beyond quadratic fields?

- In the strictly pre-periodical case: not much!
- We have at least the following finiteness result.

Theorem 6, Ferraguti-P., 2023

For all d there exists a finite set $U_{d} \subseteq \mathbb{Q}^{\text {sep }}$ such that for all number fields K and all u in K and not in U_{d}, there are only finitely many α in K such that $\left(u \cdot x^{d}+1, \alpha\right)$ gives abelian image.

The reduction "abelian implies PCF": we know it for every polynomial over any number field and not only for unicriticals (Ferraguti-Ostafe-Zannier, 2022).

Size and Structure

Finally: how are these problem related (aside from the techniques!)?

Size and Structure

Finally: how are these problem related (aside from the techniques!)?

- We know in advance that abelian arboreal Galois groups must give at most exponential growth!

Size and Structure

Finally: how are these problem related (aside from the techniques!)?

- We know in advance that abelian arboreal Galois groups must give at most exponential growth!
- Indeed: they must be PCF, hence finitely ramified, hence topologically finitely generated. Hence they scale by no more than 2^{r} at every level, where $r=$ number of top. generators.

Size and Structure

Finally: how are these problem related (aside from the techniques!)?

- We know in advance that abelian arboreal Galois groups must give at most exponential growth!
- Indeed: they must be PCF, hence finitely ramified, hence topologically finitely generated. Hence they scale by no more than 2^{r} at every level, where $r=$ number of top. generators.
- So: any source of super-exponential lower bounds would directly rule out polynomials!

Size and Structure

Finally: how are these problem related (aside from the techniques!)?

- We know in advance that abelian arboreal Galois groups must give at most exponential growth!
- Indeed: they must be PCF, hence finitely ramified, hence topologically finitely generated. Hence they scale by no more than 2^{r} at every level, where $r=$ number of top. generators.
- So: any source of super-exponential lower bounds would directly rule out polynomials!
- Conversely the only currently known cases with an exponential growth are precisely Chebichev and power polynomials.

Thanks for the attention!

