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Integer valued polynomials

Integer Valued Polynomials in Q[X]

Theorem (Pélya, 1919)

For a polynomial {(X) € Q[X], we have {(Z) C Z if and only if it
can be written as a Z-linear combination of the polynomials
(X) X(X-=1)(X=2)---(X—=n+1)

— ' n=0,1,2, .
n.

n
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Replace Q with K

Definition (Ring of integer valued polynomials)

4/50



Integer valued polynomials

Replace Q with K

Definition (Ring of integer valued polynomials)
Int(0k) = {f € K[X] | {(Ok) C Ox}. J

In(K) = {leading coefficients of (X)) € Int(Jk), deg(f) =n}U{0}. ]

4/50



Integer valued polynomials

Replace Q with K

Definition (Ring of integer valued polynomials)
Int(0k) = {f € K[X] | {(Ok) C Ox}. J

In(K) = {leading coefficients of (X)) € Int(Jk), deg(f) =n}U{0}. ]

Proposition
Int(Ok) ~ B, Jn(K) (as Ok-module). J
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Regular basis

Int(0k) is a free Ok-module

Definition

If Int(Ok) has an Ok basis with exactly one member from each
degree, we say that Int(0k) has a regular basis.
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Regular basis

Int(0k) is a free Ok-module

Definition

If Int(0xk) has an Ok basis with exactly one member from each
degree, we say that Int(0k) has a regular basis.

Example

By Pélya’s result, {()If) tn>o is a regular basis for Int(Z).

5/50



Regular basis

Existence of a regular basis

Theorem (Pélya, 1919)
Int(Ok) has a regular basis iff all the ideals J,(K)’s are principal.J
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Existence of a regular basis

Theorem (Pélya, 1919)
Int(Ok) has a regular basis iff all the ideals J,(K)’s are principal. J

Proposition (Bhargava, 1997)

nlg, = Jn(K) ™t
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SIS IEITInal Regular basis

Ostrowski Ideals

Theorem(Ostrowski, 1919)
Int (Ok) has a regular basis if and only if all the ideals

are principal.

Convention

If pf is not the norm of any maximal ideal of Oy, put I1,:(K) = Ok.
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Poélya fields

Definition (Zantema, 1982)

A number field K is called a Pdlya field, if the following equivalent
conditions hold:

« Int(Ok) has a regular basis;

« All the characteristic ideals J,(K)’s are principal;

o All the Ostrowski ideals Iy (K)’s are principal;

o All the Bhargava factorial ideals of K are principal.
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Poélya fields

Some Families of Pélya Fields

Example
The following number fields are Polya fields:

@ Class number one number fields (Obviously, but not
conversely!);

@ Cyclotomic fields (Zantema, 1982);

@ Abelian number fields with only one ramified prime
(Zantema, 1982);

@ Hilbert class field of a number field (Leriche, 2014).
@ Genus field of an abelian number field (Leriche, 2014).
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Poélya groups

measure of the obstruction for K to be Polya

Definition(Cahen-Chabert, 1997)

The Pélya group of K is the subgroup Po(K) of the class group
CI(K) generated by the classes of the ideals IT,¢(K):

Po(K) =< [npf(K)} peP,feN>.
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Poélya groups

measure of the obstruction for K to be Polya

Definition(Cahen-Chabert, 1997)

The Pélya group of K is the subgroup Po(K) of the class group
CI(K) generated by the classes of the ideals IT,¢(K):

Po(K) =< [npf(K)} peP,feN>.

Remark (Ostrowski)
For a Galois extension K/Q,

Po(K) =< [pr(K)] : p is a ramified prime in K, fe N> .
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Ambiguous Ideals

Galois action on ideal class group

Proposition(Brumer-Rosen, 1963)

For a Galois extension K/Q, Z0(K) and the group of strongly
ambiguous ideal classes in K, coincide.

Example(Hilbert, 1897)

Let K be a quadratic field and denote the number of ramifid
primes in K/Q by sg. Then

[ 25«72 K is real and Ny /(0% ) = {1}
|Zo(K)| = { 2%~1 : Otherwise
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ISISTATIToa Al Zantema’s exact sequence

Ramification is very restricted

Proposition (Zantema, 1982)

Let K/Q be a Galois extension with Galois group G. Then the
following sequence is exact:

{0} = HY(G,Ux) = P Z/e(p)Z — Zo(K) — {0}

p prime

where e(p) denotes the ramification index of p in K/Q.

Corollary

For a Galois extension K/Q, if ged(hy, [K: Q]) = 1 then K is
Polya; but not converesely.

» Max ramification in Sg-extensions » Improving Ishida’s result



Relative Pélya Group

Relative Polya group

Definition (-, A. Rajaei, 2020 & Chabert, 2019)

For a finite extension K/P of number fields, relative Pélya group
Po(K/P), is defined as follows:

Po(K/P) =< Hmf(K/P): H M| :Pis aprime of P,feN>.
mEMaX(ﬁK)
N p (00)=p"

In particular, Po(K/Q) = Po(K) and Po(K/K) = CI(K).
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ISIEIMCNEIIVENE NI A generalization of Zantema’s exact sequence

Theorem (-, A. Rajaei, J. Number Theory, 2020)

Let K/P be a finite Galois extension of number fields with Galois group G.
Then we have an exact sequence as follows:

Po(K/P)

{0} = Ker(egp) > H'(G,Uk) » @ ZfepZ— & (CI(P))

PBa prime of P

— {0},

where ek /p : [a] € CI(P) — [a0k] € CI(K) denotes the transfer of ideal classes,
and ey denotes the ramification index of P in K/P.

Corollary

For a finite Galois extension K/P, if ged(hy, [K : P]) = 1, then
Po(K/P) = ek p(CI(P)).
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RIS ERSACSIGNEMEI VIl Tower of extensions

Lemma (-, A. Rajaei, J. Number Theory, 2020)
Let P C K CL be a tower of finite extensions of number fields.
(i) If K/P and L/P are Galois extensions, then
£1c (Po(IS/P)) C Po(L/P).
(ii) If L/K is a Galois extension, then Po(L/P) C Po(L/K).

15 /50



a odd prime dihedral exte

Pélya odd prime dihedral extensions of Q

7N Gal(L./Q) ~ Dy, ¢ an odd prime J

16 / 50



Pélya odd prime dihedral extensions of Q Decomposition forms of ramified primes

Lemma (-, A. Rajaei, J. Number Theory, 2020)

Let K be a Dy-field with Galois closure L, and denote by E the unique
quadratic subfield of L. For each ramified prime p in L/Q:

Q if pOyL, = (n%...%)?, then pOk = [31/322[3@2%1, and

IT, (L) is principal < IT,(E)is principal

» proof for maximum ramification
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Lemma (-, A. Rajaei, J. Number Theory, 2020)

Let K be a Dy-field with Galois closure L, and denote by E the unique
quadratic subfield of L. For each ramified prime p in L/Q:

Q ifpOL=(n%...1)?, then pOk = Blﬁgﬁ%%l, and
IT, (L) is principal < IT,(E)is principal

Q If poL, =V or pOL, = (n7)", then pOk = B, and

IT,(L)is principal < I, (K)is principal

@ If poy, =9, then p=1/, (O = B’ and

ITy(L)is principal < ITy(K) and ITy(E) are principal

» proof for maximum ramification
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Pélya odd prime dihedral extensions of Q Main Theorem

Theorem (-, A. Rajaei, J. Number Theory, 2020)

Let K be a Dy-field with Galois closure L, and denote by E the
unique quadratic subfield of L. Then we have an exact sequence
as follows:

eL/E A KoM

{0} — L@o(E?a]H—W?LIQO(L) — Z0(K).

Moreover, (Z0o(L)), ~ Z0(E) and (Zo(L)), = Zo(K).
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Pélya odd prime dihedral extensions of Q [EEYESTORMNTYIECIe

(Po(L))y ~ Zo(E) and (Lo(L)), = Po(K)

Example
Let K=Q(0), where 0 is a root of

f(X) = X° = 2X4 4 7X3 — 11X? +5X + 1.

Then
« Kis a Ds-field;
o disc(K) = 13672
L] hK = 4'
« E=Q(v/—1367) is the unique quadratic subfield of Galois
closure L of K.

19 /50



Pélya odd prime dihedral extensions of Q [EEYESTORMNTYIECIe

(Po(L))y ~ Zo(E) and (Lo(L)), = Po(K)

Example
Let K=Q(0), where 0 is a root of

f(X) = X° = 2X4 4 7X3 — 11X? +5X + 1.

Then
« Kis a Ds-field;
o disc(K) = 13672
L] hK = 4'
« E=Q(v/—1367) is the unique quadratic subfield of Galois
closure L of K.
E is Pélya and 5thg = L is a Pdlya Ds-extension of Q.
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Pélya odd prime dihedral extensior O A Taste of Class Field Theory

{0} — Po(E) — Po(L) — Po(K).

Corollary (-, A. Rajaei, J. Number Theory, 2020)

Let K be a Dy-field with Galois closure L, and denote the unique
quadratic subfield of L by E. If either
o ({hk;

o or L/E is unramified,

then Po(L) ~ Po(E).
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Pélya odd prime dihedral extensions of Q [EEANMETSANCI M G)EYINTC) Is I N T-Tey o

{0} — Po(E) — Po(L) — Po(K).

Corollary (-, A. Rajaei, J. Number Theory, 2020)

Let K be a Dy-field with Galois closure L, and denote the unique
quadratic subfield of L by E. If either
o ({hk;

o or L/E is unramified,

then Po(L) ~ Po(E).

Corollary (-, A. Rajaei, J. Number Theory, 2020)

With the above notations, if L is the splitting field of an
irreducible polynomial

f(X) = X! + agX‘Z*Q + a3X€’3 +---t4ay_1X+ay, a€Z

over Q. If ged(ag,as,...,ap_1,f.a7) =1, then Po(E) ~ Po(L).
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Theorem (A. Leriche, J. Number Theory, 2013)

Let M/Q be a Pdlya Galois extension of degree n, and denote the
number of ramified primes in M/Q by syr. Then

1 1 1
SMSZH(5+§+"'+W)+%(H)
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Maximum Ramification

Theorem (A. Leriche, J. Number Theory, 2013)

Let M/Q be a Pdlya Galois extension of degree n, and denote the
number of ramified primes in M/Q by syr. Then

< (1+1—|— + ! )+ vp(n)
R prem /TP

Example
For [M: Q] =2¢ (¢ an odd prime), sy < £+ 4.
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Pélya odd prime dihedral extensions of Q [ENVESSHIIEseRSF:ReebisTerNATe3e]

Maximum ramification in Pdlya Ss-extensions of Q

Theorem (-, A. Rajaei, Proc. Roy. Soc. Edinburgh Sect. A, 2019)

Let K be a non-Galois cubic field with Galois closure L and
E = Q(y/disc(K)). Denote by sy, the number of ramified primes in L/Q.
If L is Polya,

22 /50



Pélya odd prime dihedral extensions of Q [EVESSH It eNEsFReebisterNaTereY

Maximum ramification in Pdlya Ss-extensions of Q

Theorem (-, A. Rajaei, Proc. Roy. Soc. Edinburgh Sect. A, 2019)

Let K be a non-Galois cubic field with Galois closure L and
E = Q(y/disc(K)). Denote by sy, the number of ramified primes in L/Q.
If L is Polya,

© for L real, s, <4 and this is sharp. Moreover, if eg € Normy,/5(UL)
where € is the fundamental unit of E, then sp, < 3.
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Maximum ramification in Pdlya Ss-extensions of Q

Theorem (-, A. Rajaei, Proc. Roy. Soc. Edinburgh Sect. A, 2019)

Let K be a non-Galois cubic field with Galois closure L and

E = Q(y/disc(K)). Denote by sy, the number of ramified primes in L/Q.

If L is Polya,

Q for L real, s;, <4 and this is sharp. Moreover, if &g € Normy, /5 (UL)

where € is the fundamental unit of E, then sp, < 3.

© for L imaginary:
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Maximum ramification in Pdlya Ss-extensions of Q

Theorem (-, A. Rajaei, Proc. Roy. Soc. Edinburgh Sect. A, 2019)

Let K be a non-Galois cubic field with Galois closure L and

E = Q(y/disc(K)). Denote by sy, the number of ramified primes in L/Q.

If L is Polya,

Q for L real, s;, <4 and this is sharp. Moreover, if &g € Normy, /5 (UL)

where € is the fundamental unit of E, then sp, < 3.
@ for L imaginary:

@ for non-pure K, s;, < 2 and this is sharp;
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Maximum ramification in Pdlya Ss-extensions of Q

Theorem (-, A. Rajaei, Proc. Roy. Soc. Edinburgh Sect. A, 2019)

Let K be a non-Galois cubic field with Galois closure L and
E = Q(y/disc(K)). Denote by sy, the number of ramified primes in L/Q.
If L is Polya,

Q for L real, s;, <4 and this is sharp. Moreover, if &g € Normy, /5 (UL)
where € is the fundamental unit of E, then sp, < 3.

@ for L imaginary:
@ for non-pure K, sy, < 2 and this is sharp;
® for pure K, sy, <3 and this is sharp. Moreover, if
3 € Normy, /5 (Ur,) where {3 is a primitive third root of unity,
then s, < 2.

v
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Maximum Ramification

Using we find

#H'(G,UL) = [ elp); G=Gal(L/Q)
p|disc(L)
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Maximum Ramification

Proof.

Using we find

#HY(G,UL) = [ ep):  G=Gal(L/Q)
pldisc(L)

For Gg = Gal(L/K) and Gz = Gal(L/E)
res : H (G, U,) = HY(Go, Up),

and
res : H'(G,Up) — H(G3,Up),

are injective on the 2-primary and 3-primary part of
H'(G,Uy,), respectively.
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res : H (G, U,) = HY(G,, Up),

and
res : H'(G,Up) — H(G3,Up),

are injective on the 2-primary and 3-primary part of
H'(G,Uy,), respectively.
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Proof.

Using Herbrand quotient for the cyclic extensions L/K and L/E,
we have:
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Maximum Ramification

Pélya odd prime dihedral exte

Proof.

Using Herbrand quotient for the cyclic extensions L/K and L/E,
we have:

#A9(Go, Up) % : L is real,
Q(Ge,U) = #H1(Go,Up) { 1 :L is imaginary,
#10(G3,U) 1
Q(GS,UL) N #Hl(Gg,UL) N g

24 /50



Pélya odd prime dihedral exte [0) Maximum Ramification

Proof.

Using Herbrand quotient for the cyclic extensions L/K and L/E,
we have:

Q(Gz,Up) = zgiggiﬁig - { % i 12 fr(ilaal’ginary,
QAU = ey =5
where
AY(Go,Up) = ﬁ/};(m < g—g < { %g%@é E 1: ]irrila;ginary
A°%(Gs,Up) Norm[Lj;EE(UL) < g—g < 3%

24 /50



Pélya odd prime dihedral extensior OB Maximum Ramification

Proof.

- 1 2432 :L is real
= H e(p) =#H"(G,Up) | { 22.32 :L is imaginary
p|disc(L)
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Proof.

. 1 2432 :L is real
= H e(p) = #H (G, Up) | { 22.32 L is imaginary
p|disc(L)

Since L is Pdlya, by E is also Polya.

25 /50



Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Proof.

. 1 2432 :L is real
= H e(p) = #H (G, Up) | { 22.32 L is imaginary
p|disc(L)

Since L is Pélya, by E is also Polya.
By at most two primes ramify in E/Q.
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Maximum Ramification

Pélya odd prime dihedral extensions of Q

Proof.

2432 . L isreal

ol
= H e(p) = #H (G, Up) | { 22.32 L is imaginary

p|disc(L)
Since L is Pélya, by E is also Polya.
By at most two primes ramify in E/Q.
For each ramified prime p in E/Q, by 2 | e(p).
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Maximum Ramification

Pélya odd prime dihedral extensions of Q

Proof.

2432 . L isreal

ol
= H e(p) = #H (G, Up) | { 22.32 L is imaginary

p|disc(L)
Since L is Pélya, by E is also Polya.
By at most two primes ramify in E/Q.
For each ramified prime p in E/Q, by 2 | e(p).

= I e)=#2'(C.UL) |

{ 2232 . L is real
pl|disc(L)

21,32 :L is imaginary
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Proof.

Q for L real and &g € Normy, /5 (Uy),

e(p) =#H'(G,Ur) | 2°.3";
p|disc(L)
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Pélya odd prime dihedral exte (O Maximum Ramification

Proof.

Q for L real and &g € Normy, /5 (Uy),

e(p) =#H'(G,Ur) | 2°.3";
p|disc(L)

O for L real and &g ¢ Normy, /5 (Uy),

e(p) =#H'(G,Uyp) | 22.3%,
p|disc(L)

26 / 50



Pélya odd prime dihedral extensior OB Maximum Ramification

Proof.

© for L imaginary and K non-pure,

e(p) = #H}(G, Up) | 21 31,
p|disc(L)

27 /50



Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Proof.

O for L imaginary and K non-pure,

e(p) =#H'(G,Up) | 2138,
p|disc(L)

@ for L imaginary and K pure,
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Maximum Ramification

Pélya odd prime dihedral extensions of Q

Proof.

O for L imaginary and K non-pure,

e(p) =#H'(G,Up) [2".3",
p|disc(L)

@ for L imaginary and K pure,
0 if {3 € Normy, /g (UL), then

e(p) = #H'(G,Up) | 21.3%;
p|disc(L)
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Maximum Ramification

Pélya odd prime dihedral extensions of Q

Proof.

O for L imaginary and K non-pure,

e(p) =#H'(G,Uy) | 2".3",
p|disc(L)

@ for L imaginary and K pure,
0 if {3 € Normy, /g (UL), then

e(p) =#H'(G,Up) | 2*.3%,
p|disc(L)

@ if {3 ¢ Normy, /5 (UL), then

e(p) =#H'(G,Up) | 2132
p|disc(L)
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Pélya odd prime dihedral exte ons Q Maximum Ramification

L is real

Example
K =Q(0); 8 is a root of f(X) = X3 — 20X — 30;
disc(K) =22 x 52 x 7 x 11;
L=K(V77) and E = Q(v77);
hx =1 and E is Polya;
= L is a real Pdolya Sz-extension of QQ with sy, = 4.

28 / 50



Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

L is imaginary and K is pure

Example
Q(V/10);
dlSC( ) = —3x22x 5%
L=K(V&) and E=Q(v/G);

hx =1 and E is Podlya;
= L is an imaginary Pdélya Ss-extension of Q with s, = 3;
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Pélya odd prime dihedral exte ons Q Maximum Ramification

L is imaginary and K is not pure

Example
Q(0) where 8 is a root of f(X) = X3 +5X +5;
dlsc( ) = —52 x 4T;
L = K(v/—47) and E = Q(v/—47); K is not pure;
hx =1 and E is Polya;
= L is an imaginary Pdélya Ss-extension of Q with s;, = 2;
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Pélya odd prime dihedral extensions of Q [EVERSIeeIiNe N EResbistezRntelel

Maximum ramification in Polya D/-extensions of Q for a prime ¢ > 3

Theorem (-, A. Rajaei, J. Number Theory, 2020)

Let K be Dy-field with Galois closure of L, for £ > 3 an odd prime,
and E be the unique quadratic subfield of L. Denote by s, the
number of ramified primes in L/Q. If L is Pélya, then:
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Pélya odd prime dihedral extensior Il Maximum Ramification

Maximum ramification in Polya D/-extensions of Q for a prime ¢ > 3

Theorem (-, A. Rajaei, J. Number Theory, 2020)

Let K be Dy-field with Galois closure of L, for £ > 3 an odd prime,
and E be the unique quadratic subfield of L. Denote by s, the
number of ramified primes in L/Q. If L is Pélya, then:
(i) For L real, if &g € Normy, /g (UyL) (resp. &g ¢ Normy, /g (Up))
then sy, <3 (resp. sp, < 4), where &g is the fundamental unit
of E.
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Maximum ramification in Polya D/-extensions of Q for a prime ¢ > 3

Theorem (-, A. Rajaei, J. Number Theory, 2020)

Let K be Dy-field with Galois closure of L, for £ > 3 an odd prime,
and E be the unique quadratic subfield of L. Denote by s, the
number of ramified primes in L/Q. If L is Pélya, then:
(i) For L real, if &g € Normy, /g (UyL) (resp. &g ¢ Normy, /g (Up))
then sy, <3 (resp. sp, < 4), where &g is the fundamental unit
of E.

(ii) For L imaginary, sy, < 2.

31/50



Pélya odd prime dihedral extensions of Q [EVERSTsNie M SEPeebTster-Rntelol

Maximum ramification in Polya D/-extensions of Q for a prime ¢ > 3

Theorem (-, A. Rajaei, J. Number Theory, 2020)

Let K be Dy-field with Galois closure of L, for £ > 3 an odd prime,
and E be the unique quadratic subfield of L. Denote by s, the
number of ramified primes in L/Q. If L is Pélya, then:
(i) For L real, if &g € Normy, /g (UyL) (resp. &g ¢ Normy, /g (Up))
then sy, <3 (resp. sp, < 4), where &g is the fundamental unit
of E.

(ii) For L imaginary, sy, < 2.

Remark

For ¢ > 3 and E imaginary, gcd(#UE,#g—g) = 1= Ug = Normp, /i (UL).

v
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Pélya odd prime dihedral extensior Ol Improvement of an Ishida’s Result

Theorem(Ishida, J. Number Theory, 1969)

For K/Q a non-pure extension of degree n, if
#{primes ramify totally in K} > rankz(0y),

then n | hyg.
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Improvement of an Ishida’s Result

Theorem(Ishida, J. Number Theory, 1969)

For K/Q a non-pure extension of degree n, if
#{primes ramify totally in K} > rankz(0y),

then n | hyg.

Example
For a Dy-field K (¢ an odd prime), we have

Signature of K = {

= for disc(K) > 0 (resp. disc(K) < 0) if at least £ (resp.
primes ramify totally in K, then ¢|hk.




Improvement of an Ishida’s Result

Pélya odd prime dihedral extensions of Q

Corollary (-, A. Rajaei, J. Number Theory, 2020)
Let K be a Dy-field, where £ is an odd prime. Denote the number
of totally ramified primes in K by tgk.
(i) If ¢=3:
(i—1) for disc(K) > 0 or K pure, if tx > 3 then 3 | hk;
(i—2) for disc(K) < 0 and K non-pure, if tx > 2 then 3 | hxk.
(ii) If £>3:
(ii—1) for disc(K) >0, if tx > 3 then ¢ | hk.
(ii—2) for disc(K) <0, if tx > 2 then /| hk.
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Proof.

For instance, assume that K is a Dy-field (¢ > 3 prime) with
disc(K) > 0 and denote its Galois closure by L.
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Proof.

For instance, assume that K is a Dy-field (¢ > 3 prime) with
disc(K) > 0 and denote its Galois closure by L.

If at least three distinct primes ramify totally in K/Q, then

1T e = #H!(Gal(L/Q),Uy) . #Z20(L).
p|disc(L)
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Pélya odd prime dihedral exte (Ol Improvement of an Ishida’s Result

Proof.

For instance, assume that K is a Dy-field (¢ > 3 prime) with
disc(K) > 0 and denote its Galois closure by L.

If at least three distinct primes ramify totally in K/Q, then

1T e = #H!(Gal(L/Q),Uy) . #Z20(L).
p|disc(L)

#H!(Gal(L/Q),Ur) | 22.0%2 (0 € N) = £ | #P0(L).

34 /50



| 216) R1Z- WY Ko I o3 530S Y06 b1 s Tte bV ISR AT EO MO [ mprovement of an Ishida’s Result

Proof.

For instance, assume that K is a Dy-field (¢ > 3 prime) with
disc(K) > 0 and denote its Galois closure by L.

If at least three distinct primes ramify totally in K/Q, then

1T e = #H!(Gal(L/Q),Uy) . #Z20(L).
p|disc(L)

#H!(Gal(L/Q),Ur) | 22.0%2 (0 € N) = £ | #P0(L).

< (QO(L))K rancy @O(K) Chabert—}glberstadt CI(K)

z
177
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non-Galois extensions of Q
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pre-Pélya Group

Definition (Chabert-Halberstadt, J. Number Theory, 2020)

For a number field K, the subgroups Po(K)y, (pre-Pélya group)
and Po(K),1 of Po(K) are defined as follows:

Po(K)p, =< [pr(K)] : fe N, pis a non-ramified prime inK/Q >,
Po(K) 1 =< [IT,1(K)] : p is a non-ramified prime inK/Q > .
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< Polya group

Theorem (Chabert-Halberstadt, J. Number Theory, 2020)
For a Dy-field K with n an odd integer, we have:

Po(K)ur1 = Po(K)p = Po(K) = CI(K).
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pre-Pélya Group

Definition (Chabert-Halberstadt, J. Number Theory, 2020)

For a number field K, the subgroups Po(K)y, (pre-Pélya group)
and Po(K),1 of Po(K) are defined as follows:

Po(K)p, =< [pr(K)] : fe N, pis a non-ramified prime inK/Q >,
Po(K) 1 =< [IT,1(K)] : p is a non-ramified prime inK/Q > .

< Polya group

Theorem (Chabert-Halberstadt, J. Number Theory, 2020)
For a Dy-field K with n an odd integer, we have:

Po(K)ur1 = Po(K)p = Po(K) = CI(K).

Motivation
We take K to be a Dy-field with n > 4 an even integer.
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

Lemma (-, Int. J. Math, 2021)

Assume that n > 4 is an even integer, K is a Dy-field with the
unique subfield I of degree 5 over Q. Then the norm map
Ak r - CI(K) — CI(F) is surjective. In particular, hp|hk.

Proof.

Zantema proved K/F is not unramified. Hence KNH(F) =F.
Surjectiveness of the norm map Ay : CI(K) — CI(F) is a well
known result in Class Field Theory. [

4

» proof of main theorem » Corollary
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non-Galois extensions of Q Even Dihedral Extensions of Q

Theorem (-, Int. J. Math, 2021)

Let K be a Dy-field, for n > 4 an even integer, and denote the
unique subfield of K of degree § (over Q) by F. Then
Po(K)n1 = Po(K)ur = &g /r (CI(F)).
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Even Dihedral Extensions of Q

Theorem (-, Int. J. Math, 2021)

Let K be a Dy-field, for n > 4 an even integer, and denote the
unique subfield of K of degree § (over Q) by F. Then
Po(K)n1 = Po(K)ur = &g /r (CI(F)).

Proof. Let Ny be the Galois closure of H(K) (over Q) and:

+ G = Gal(Ni/Q)
H = Gal(Ng/K);
Hy = Gal (Ny/H(K));
J = Gal(Ny/F);
J1 = Gal(Ng/H(F)).

= H/H, ~ CI(K),
J/J1 ~ CI(F).




TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

Let Q={Hs :s € G}; = #Q=[K: Q] =n.
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G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

Let Q={Hs :s € G}; = #Q=[K: Q] =n.
G acts transitively on Q, as (Hs)& — Hsg™!, Vg,s € G.

By Sq ~ Sy, g«— 71 ... m, where m;’s are disjoint cycles of orders fj,
and f; =1 for fixed points.
Let Hs; € Q belongs to the orbit of m;, i.e. Hs; is permuted by ;.

For a non-ramified prime p in K/Q, a prime 9 of Ny above p and
g = (B,Ny/Q), the Frobenius element of P in Ny/Q, we have

I ¢(K) )
P )= H sigfisi_lmodHl,
<HGQ/K filfi=n)

h Do) i the Artin symbol of IT¢(K

where ( gy | is the Artin symbol o ot (K)-
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G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

Let Q={Hs :s € G}; = #Q=[K: Q] =n.
G acts transitively on Q, as (Hs)& — Hsg™!, Vg,s € G.

By Sq ~ Sy, g¢— ... m, where m;’s are disjoint cycles of orders fj,
and f; =1 for fixed points.

Let Hs; € Q belongs to the orbit of m;, i.e. Hs; is permuted by ;.

CI(K) ~ Gal(H(K)/K) ~ H/H,;

pot<h, = ([1,50]) = ( (k) ) 5= < 11 SigfisilmodH1>-

{ilfi=1}

v
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

Let Q={Hs :s € G}; = #Q=[K: Q] =n.
G acts transitively on Q, as (Hs)& — Hsg™!, Vg,s € G.

By Sq ~ Sy, g¢— ... m, where m;’s are disjoint cycles of orders fj,
and f; =1 for fixed points.

Let Hs; € Q belongs to the orbit of m;, i.e. Hs; is permuted by ;.

CI(K) ~ H/H,

Po(K)pr S o = < H sigf‘sflmodHl : g has the orbit structure 1,1,2,...,!
{ilfi=t}

v
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

g has the orbit structure 1,1,2,...,2 <= pOx = (B1.82) (Bs...Bt).
S——

M (K) T (K)
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G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

g has the orbit structure 1,1,2,...,2 <= pOx = (B1.82) (Bs...Bt).
S——

M (K) T (K)

Po(K)nr S = <slgs1152gs§1 modH; : g € H has the orbit structure 1,1.,2,...,2>;
= Po(K)pny =Po(K)pnr1-
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(J:H:>):2 J={seG |sgs_1 € H, for all g € H with the orbit structure 1,1,2,...,2},
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G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

g has the orbit structure 1,1,2,...,2 <= pOx = (B1.82) (Bs...Bt).
S——

M (K) T (K)

Po(K)nr S = <slgs1152gs§1 modH; : g € H has the orbit structure 1,1.,2,...,2>;
= Po(K)pny =Po(K)pnr1-

(J:H:>):2 J={seG |sgs_1 € H, for all g € H with the orbit structure 1,1,2,...,2},

s1 zl,s:geJ\H

Po(K)nr o = <gsg571 modH; : g € H has the orbit structure 1,1,2,...,2 and s E4J(}I7>50



TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

G = Gal(Ng/Q), H = Gal(Ny/K), Hy = Gal(Ng/H(K)), J = Gal(Ng/F), J; = Gal(Ng/H(F))

= Po(K)ny ~ Ver (i(H/Hy)),
where i:H/H; — J/Jjinduced by the inclusion map is surjective by EEEEIN]
and Ver:J/J; — H/H;is the transfer map.
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

G = Gal(Ny/Q), H = Gal(Ny/K), H; = Gal(Ng/H(K)), J = Gal(Ng/F), J1 = Gal(Ny /H(F))

= Po(K)ny ~ Ver (i(H/Hy)),
where i:H/H; — J/Jjinduced by the inclusion map is surjective by
and Ver:J/J; — H/H;is the transfer map.

Using the following commutative diagram

EK/F

CI(F) — CI(K)

i Ver

J/Ji —H/H;

we have Po(K)y, > Ver(J/J1) ~ ek /r(CI(F)), where the vertical arrows are
isomorphisms induced by the Artin map.
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Even Dihedral Extensions of Q

Corollary (-, Int. J. Math, 2021)

Let K be a Dy-field, for n > 4 an even integer, and denote the
unique subfield of K of degree § (over Q) by F. If hi is odd, then

Po(K)pr1 = Po(K)yy = Po(K) = Po(K/F) ~ CI(F).

Proof.
< eorem < Corollar:
e (CUF) T po(K), CPo(K) C Po(K/F) T e (CI(F))

by Lemma h(F) is odd. Hence A poeg p : & € CI(F) — a* € CI(F)

is injective, and so is &g /p. L]

v
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

Example

Proposition (C. J. Parry, 1975)

For a prime p = 3(mod8), the pure quartic fields Q(/2p) and Q(+/2p2) have
odd class numbers.
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

Example

Proposition (C. J. Parry, 1975)

For a prime p = 3(mod8), the pure quartic fields Q(/2p) and Q(+/2p2) have
odd class numbers.

v

= for p = 3(mod8) prime:

Po(Q(3/2p))nr1 = Po(Q(/2p))nr = Po(Q( /2p)) = Po(Q( /2p)/Q(v/2p)) ~ CI(Q(+/2p));
2p2))nr1 = Po(Q(/2p2))nr = Po(Q(V/2p2)) = Po(Q( 1/2p?)/Q(v2)) ~ CI(Q(V2)) = {1}.

4
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TS BN G ENS I ENGHOM Even Dihedral Extensions of Q

Example

Proposition (C. J. Parry, 1975)

For a prime p = 3(mod8), the pure quartic fields Q(/2p) and Q(+/2p2) have
odd class numbers.

v

= for p = 3(mod8) prime:

Po(Q(3/2p))nr1 = Po(Q(/2p))nr = Po(Q( /2p)) = Po(Q( /2p)/Q(v/2p)) ~ CI(Q(+/2p));
Q(V/2P%))nr1 = Po(Q( ¥/2p2))nr = Po(Q( 1/2p?)) = Po(Q( ¥/2p2)/Q(v2)) ~ CI(Q(vV2)) = {1}.

For instance Q(v/2.(59)?) is a Pélya field with class number five. J
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BTSN G ENSITHEIENGHOM Maximum Ramification

Maximum ramification in Polya Dy-fields

Proposition (Zantema, 1982)

Let K be a Polya Dy-field. Then at most five primes are ramified
in K/Q.
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Maximum Ramification

Maximum ramification in Polya Dy-fields

Proposition (Zantema, 1982)

Let K be a Polya Dy-field. Then at most five primes are ramified
in K/Q.

Example (Chabert-Halberstadt, 2020)
Let K=Q(o), where a is a root of

f(X) = X* —17X% + 31.

We have disc(K) = 24.32.52.112.31, hg = 2 and K is a Pélya
Dy-field.
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BT B G ENSITHSIENGHOM Maximum Ramification in Pélya Dy-fields

Lemma (-, Int. J. Math, 2021)

Let K be a Polya Dy-field with the unique quadratic subfield F.
Then

Po(K/F) = ([y] € CI(K) : (yNZ) Or = P1B2, and Bi’s ramify in K).
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Maximum Ramification in Pélya Dy4-fields

Lemma (-, Int. J. Math, 2021)

Let K be a Polya Dy-field with the unique quadratic subfield F.
Then

Po(K/F) = ([y] € CI(K) : (yNZ) Or = P1B2, and Bi’s ramify in K).

» Maximum ramification

Proof.

By @D, Po(K)ny = ek /p(CI(F)) is trivial. Since K is Pélya,
I1,+(K/F) might not be principal only in the case that

(pNZ) O = B1 B2, and Bi’s ramify in K. O

v
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BT B G ENSITHSIENGHOM Maximum Ramification in Pélya Dy-fields

Notation

For M/N a finite extension of number fields, we denote the number of

ramified and totally ramified primes of N in M by ry/n, ta/n, respectively.

v

Lemma (-, Int. J. Math, 2021)
Let K be a Pélya Dy-field with the unique quadratic subfield F. Then

rk/Q = TK/F T TR/ — (tk/Q + 1),

where u=#{p € Z prime : pOp = B1 B2, B/s ramify in K}.
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Notation

For M/N a finite extension of number fields, we denote the number of

ramified and totally ramified primes of N in M by ry/n, ta/n, respectively.

v

Lemma (-, Int. J. Math, 2021)
Let K be a Pélya Dy-field with the unique quadratic subfield F. Then

rk/Q = TK/F T TR/ — (tk/Q + 1),

where u=#{p € Z prime : pOp = B1 B2, B/s ramify in K}.

Proof.

There exist rk/p —u primes of Q which are ramified in K/F (note that here
we count the number of totally ramified primes in K/Q). On the other hand,
for a totally ramified prime p in K/Qp also ramifies in F/Q. L]

v
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non-Galois extensions of Q

Theorem (-, Int. J. Math, 2021)

Maximum Ramification in Pélya Dy4-fields

Let K be a Polya Dy-field with the unique quadratic subfield F. Denote by
tx /@ and pk/q the number of totally and partially ramified primes in K /Q.

(i) For F imaginary:

2tk /o +PK/Q =

W N WN

[asry

and —1¢€ NK/F(UK)
and —1¢ Nk /p(Uk)
and\/jle NK/F(UK)
\/T andel%NK/F(UK)

esiieslieslies|
([ NS
0000

appD

(ii) For F real, denote the fundamental unit of F by €, and denote the

number of infinite places of F ramified in K by s. Then:

2tk /@ +PK/Q <

[
NENEN)

N W ks Gt
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Maximum Ramification in Pélya Dy4-fields

Proof.

Since ek p(CI(F)) is trivial, by for G = Gal(K/F) we have

hp. [Ip|dise(x /F) €p

#Po(K/F) = FIL(G. U
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Proof.
Since ek p(CI(F)) is trivial, by for G = Gal(K/F) we have
he. T Ipaise(x/F) ©p
#Po(K/F) =
o(K/F) #H1(G, Ug)
By , Po(K/F) is an elementary abelian 2-group of rank at

most u, where

u:=#{p € Z prime : pOf = B1 o, Bs ramify in K/F}
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Proof.
Since ek p(CI(F)) is trivial, by for G = Gal(K/F) we have
he. T Ipaise(x/F) ©p
#Po(K/F) =
o(K/F) #H1(G, Ug)
By , Po(K/F) is an elementary abelian 2-group of rank at

most u, where

u:=#{p € Z prime : pOf = B1 o, Bs ramify in K/F}

hp.2'K/F

— | 2",
— ¥(G. U
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Maximum Ramification in Pélya Dy4-fields

2 K/FHF/Q*
#H1(G,Ugk

For F imaginary, 277/~ hp =

2%,
Using Herbrand quotient we find

#H'(G, Uk) = 2. (Up : Nk r(Uk)) | 2%

Hence
2: F£Q(v—1)and — 1€ NK/F(UK)
e 3: F#Q(H/— 1)and—1¢NK/F(UK)
K/F T1F/Q — ] 2: F=Q(v—-1)andy/—-1€ NK/F(UK)
3: F=Q(V-1)andv—1¢ Ng/p(Uxk)
:>2tK/Q+pK/Q:rK/Q+tK/Q = rK/F+TF/Q_U.
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