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Modular Forms for SLy(Z)

Definition
Let H be the upper half plane. A modular form of weight k € Z>q (for

SL2(Z)) is a holomorphic function f : H — C satisfying the following
properties:

() F(y-2) = () = (cz+ d)F(z), v=(25) €SLa(Z), z€H

(ii) Set q:= e?™2. The g-expansion of f is of the form

f(z) = Z anq", apeC.
n=0

Furthermore, f is called a cusp form if agp = 0.
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Examples of modular forms

Example

Let k > 2 and consider the Z-lattice A, := zZ + Z for any z € H. The Eisenstein

series Gy (A;) is defined by

G(h) = Y ﬁ

m,n€Z
(m,n)#(0,0)

It is a modular form of weight k when k is even and identically zero if k is odd.

One can normalize G(A;) and denote it by Gk(A;) so that its g-expansion is
given by

G(Az) =1— —Zak 1(n)g”

where

O— 1(!7 de L

d>1
dln

and By is the k-th Bernoulli number.
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False Eisenstein series

Example

Consider the discriminant function A : H — C defined by

A(2) = oz (Ga(A2)? — Go(AF).

It is a non-vanishing function on H which is also a cusp form of weight 12.

@ Define the false Eisenstein series G, : H — C given by

1 1 d

G(z) == 2 A dz (2).

@ The g-expansion of G is

Go(z) =1-24) o1(n)q".
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False Eisenstein series, quasi-periods and transcendence

@ G is a quasi-modular form and indeed we have

6:(Z15) = (et d)((c+ )Gala) + 25). 7= (25) € SL(@).

Theorem (Deligne, Katz)

Let z € H and let 1 and 1, be quasi-periods of the elliptic curve corresponding to
the Z-lattice N\, satisfying the Legendre’s relation 1y — zn, = 2mwi. Then we have

3
GQ(Z) = —Png.

Theorem (Chang, 2012)

Let z € H be a CM point satisfying Gy(z) # 0. Then Gy(z) is transcendental
over Q.
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Introduction to Drinfeld A-modules and Tate algebras

p := a prime number
F, := finite field with g = p elements for some m € Z>;
Z~A:=TFq[0]
N ~ A, := the set of monic polynomials in A
Q ~ K :=F4(0) = rational functions in the variable 6 over F,
|| := a fixed absolute value corresponding to the place at co so that
0] =q
R ~ Ky :=F4((1/0)) = the completion of K with respect to
the absolute value |-|

C ~ C := completion of an algebraic closure of K
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The Tate Algebra

o Consider t as an independent variable over C,. Define the Tate
algebra T by the set

o0
T::{Zc,-t" | ¢ € Co, |c,-|—>Oasi—>oo}.
i=0

@ T is indeed the set of holomorphic functions, in the rigid analytic
sense, on the closed unit disk ® := {c € C| |c| <1}.

@ The Gauss norm || - ||, on T is defined by setting for
g=2 >¢Ct €T,

lgllo = max{[ci[ : 7 € Z>0}-

e T is complete with respect to || -|| .
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e Forany g = Zizo cit' € T and j € Z, we set the j-fold twist of g by

g(j) = Zcf’jti eT.
i=0

o Let (—)Y(9=1) be a fixed (g — 1)-st root of —f. The
Anderson-Thakur element w(t) is defined by

w(t) = (— 1/<q1)H<1__) c T*.

@ The element 7@ € CZ is defined by

o) N
7= —w@ (1) mp = 0(—0) DT (1 - 629
i=1
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A-lattices

Definition

@ An A-module M C C, is strongly discrete if the intersection of M with any
ball of finite radius is finite.

@ An A-module M C C is called an A-lattice if it is free, finitely generated
and strongly discrete.

@ Two A-lattices A and A’ are isogenous if there exists an element ¢ € CX
such that ¢cA C A’ where the quotient A’/cA is a finite A-module.

@ We call ¢ an isogeny between A and N'.
@ If cA =N, we say that A and A\’ are isomorphic.

@ The set of A-lattices of rank r € Z>; forms a category whose morphisms are
given by isogenies between A-lattices.
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Drinfeld A-modules
@ We define the power series ring Coo[[7]] subject to the condition
Tc=c7, c€Cqy,
and C[7] € C[[7]] to be the ring of polynomials in 7.

Definition

Let r € Z>1. A Drinfeld A-module ¢ of rank r is an F4-algebra homomorphism
¢ A— Cuol7]

uniquely defined by

G0 = 9(0) = 0+ PoaT + -+ o7, Pos # 0.

@ The Carlitz module C is a Drinfeld A-module of rank 1 defined by
Co=0+r.

@ ¢ gives an A-module structure on C., defined as

eg(a)r
a-z:=¢u(z) =az+ ¢a1294--- + an,,zng acA zeC.,.

i
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More on Drinfeld A-modules

Definition

@ The set of Drinfeld A-modules forms a category such that any
morphism u : ¢ — 1) between Drinfeld A-modules is given by a
non-zero u € C[7] satisfying ugg = gu in Co[7].

o If ue CX, then we say ¢ is isomorphic to .

o Define End(¢) := {v € Co[7] | vpo = ¢pgv}. Drinfeld showed that it
is a commutative ring and free and finitely generated A-module whose
rank is less than or equal to r. Moreover, End(¢) ®4 K is a field
extension of K of finite degree.

o We say that ¢ has complex multiplication (CM) if the dimension of
End(¢) ®a K over K is r and furthermore we call ¢ a CM Drinfeld
A-module.
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The exponential function exp,,
Definition

For a Drinfeld A-module ¢, the exponential series for ¢ is given by

expy = Za;ri € Coo[[7]]s

i=0

subject to the conditions ap = 1 and exp, 6 = ¢g exp,.

@ The exponential function exp, of ¢ is the FF4-linear function

expy : Coo = Co,

o0 .
defined by exp,(z) = >_ a;z? for all z € C converging everywhere in C.
i=0
@ Each element in the kernel Ker(exp,) of exp, is called a period of ¢.
Moreover Ker(exp,) is an A-module whose A-module structure is given by

a-z=az, acA, zecKer(exp,).
It is an A-lattice of rank r. We call Ker(exp,) the period lattice of ¢.
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Correspondence between A-lattices and Drinfeld A-modules

@ (Drinfeld) There is an equivalence of categories between the category of
Drinfeld A-modules of rank r and the category of A-lattices of rank r. This
will be described as follows:

@ Let A be a an A-lattice of rank r. Then there exists a unique Drinfeld
A-module ¢ up to isomorphism so that its exponential function
expy : Coo = Co is given by

exp¢ —ZH(I——) Z Jz Coo-

AEN
A#£0

Observe that A = Ker(exp,). We call ¢ the Drinfeld A-module
corresponding to A.

Example

The Carlitz module C given by Cy = 6 + 7 is the Drinfeld A-module
corresponding to the A-lattice of rank one generated by

N —1
7 = 0(—0) /DX, (1 . al—q’) eCy.
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¢-biderivations

Definition
Let ¢ be a Drinfeld A-module of rank r defined by

P9 = ¢(9) = 0+¢9717+---+¢9,r7r (< (COO[T].

A ¢-biderivation n is a map 71 : A — 7Cy[7] satisfying the following
properties:

(i) nis an Fg-linear map.

(i1) map = anp + 12 where we set 1. := n(c) for any c € A.

Example

(i) The Fg-linear map dg : A = 7C[7] defined by dg : a— a— ¢, is a
¢-biderivation.

(ii) Foreach 1 <j<r—1, the Fg-linear map ¢; : A — 7Cy[7] defined
by 6; : 0 7 is also a ¢-biderivation.

v
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Quasi-Periodic Functions

Definition
Let 1 be a ¢-biderivation. There exists a unique function F, : Co, — Cy
satisfying

Fy(0z) — 0F,(z) = ne(expy(2)), z € Coo.

We call F;, the quasi-periodic function corresponding to 7. It is an
[Fg-linear function and moreover F,(z) converges in C, for any value of
z € Cq.

Example

The quasi periodic function Fs; : Co, — C., corresponding to the
¢-biderivation dg is defined by Fs,(z) = z — exp,(2).
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Anderson generating functions and quasi-periodic functions
Definition

Let ¢ be a Drinfeld A-module of rank r and set expy(z) =, - anz9" for any
z € C. We define the Anderson generating function s,(z; t) by the infinite sum

o) = (o] @ an

. 0 E n __ n

5¢(Z, t) = exp¢ <W> t = 90 _ ¢t € T.
n=0 n=0

Proposition (Pellarin)

Foreach 1 <j<r—1,let Fs : Coc — Cu be the quasi-periodic function
corresponding to the ¢-biderivation §;. Then for any A € Ker(exp,), we have

oo ¢
i A
F5;,(\) = sg)()\; t)|e=6 = Zexp¢ <W) 0".
n=0

Definition

For any \ € Ker(exp,) and each 1 < j < r—1, we call Fs5;(\) a quasi-period of ¢.
v
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The Drinfeld upper half plane

@ From now on, we let r > 2.

@ The Drinfeld upper half plane 2" is defined by

Q" =P (Cy) \ {Ku-rational hyperplanes}.

@ |t is a connected rigid analytic space.

@ Q" will be identified as the set of elements z := (z1, ...,z )" € C._ whose
entries are K,-linearly independent elements and z, := 1.

@ Foragivenz = (z,...,2)% € Q", we also set 7 := (z,...,z )" € QL.

@ For any c € CX, let czA (cZA respectively) be the A-lattice generated by
the entries of cz (cZ respectively).

@ Let ¢? ( ¢™ respectively) be the Drinfeld A-module corresponding to zA
(72 A respectively).

® Set u(z) := expys:(Tz1) "
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Weak modular forms
@ Let v = (aj) € GL,(A). We define the action of GL,(A) on Q" by

. (31121 + -+ anz a(r—1)121 + -+ a(r—1)r2r

v-z e
anz1 + -+ apz anzr+ -+ anz

® Set j(’}/,z) ‘=anz1+ - +apz € (Céo

@ We call a holomorphic function f : Q" — C., a weak modular form of
weight k € Z and type m € Z/(q — 1)Z (for GL,(A)) if it satisfies

f(v-2z) =j(y,2)"det(y)"™f(z), v€GL(A), z€Q".

@ Basson, Breuer and Pink showed that for any weak modular form
f: Q" — C, there exists a uniquely defined holomorphic function
f,: Q1 — C for each n € Z such that the series

> f@u(z)"

converges to f(z) on some “neighborhood A/ C Q" of infinity”. Such an

expansion is called the u-expansion of f. When r =2, f, € C..
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Drinfeld modular forms

Definition

(i) A weak modular form f : Q" — C, of weight k and type m is called a
Drinfeld modular form of weight k and type m (for GL,(A)) if f has a
u-expansion of the form

(i) Furthermore we say that f is a Drinfeld cusp form if fo : Q"= — C is
identically zero.

@ Drinfeld modular forms were firstly defined by David Goss in his Ph.D. thesis
for the rank 2 case.

@ Using the work of Haberli, Kapranov and Pink, later on Basson, Breuer and
Pink were able to define Drinfeld modular forms of higher rank both
algebraically and analytically.
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Examples of Drinfeld modular forms of type 0

o Let k€ Z>yand z=(z1,...,2)" € Q. We define the Eisenstein series
Eisk(z) by
Eis(z) : E 1
k = )
A (a1z1 + - + a,z,)k

(a1,-..,a,)#(0,...,0)
It is a Drinfeld modular form of weight k and type 0.

@ Set
=0+g(2)T+ -+ g 1(2)T T+ A(2)7".
Foreach1<i<r—1, g :9Q — Cy defined by z— g;(z) is a Drinfeld
modular form of weight ¢’ — 1 and type 0.

@ The discriminant function A, : Q" — C., defined by z — A,(z), is a
non-vanishing holomorphic function on Q" which is also a Drinfeld cusp form
of weight ¢" — 1 and type 0.
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The h-function of Gekeler

@ Let S be a set of representatives of the quotient space ((A/0A)"\ {0})/Fy
given by

S:=07(0,...,0,1),(0,...,0,1,%),...,(0,1,%,...,%), (1, %,...,%)}.

o Lletz=(z,...,2)" €Q". Forany pp = (p1,..., ) €S, we define

1
Eis,(z) := .
w(2) Z (a1 + 1)z + -+ (ar + pr)ze
ai,...,ar€EA

@ We define the h-function of Gekeler h, : " — C, for rank r given by

he(z) = —(=0)" D ] Eis,(2).

HES

@ It is a non-vanishing Drinfeld cusp form of weight gﬁ and type 1.
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A close look at rank 2 case and a motivation for main
results

@ Identify Q2 with C., \ K. Note the analogy between Q% and H = C \ R.

@ Let z € C, \ Kw and ¢* be the Drinfeld A-module of rank 2 corresponding
to the A-lattice zA + A.

Definition

A Drinfeld modular form of weight k € Z>o and type m € Z/(q — 1)Z is a
holomorphic function f : Co \ Koo — Co satisfying the following properties:

() F(Z£) = (cz+ d)* det(7)F(2), 7= (25) € CLa(A), 2 € Coo\ Kox.

(i) Recall that u:= u(z) = exp(#z)~!. The u-expansion of f is of the form

o0

f(z) = Z cp”, ¢, € Cop.

n=0
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False Eisenstein series and Gekeler's work

e Consider the discriminant function Ay : Co \ Koo — Co and define
the Gekeler's false Eisenstein series E; : Coo \ Koo — Coo given by

Ex(z) = %A;( )%Ag( 2).

o Define u,(z) := u(az) = v’ = (1 + higher degree terms in u) for any

a € A;. Then E; has the u-expansion given by

Ex(z) = ) aua(2).

acAL
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e For any v = (25) € GLp(A), we have the functional equation

Ez(ZIZ) = (2 + d)det(1) (2 + D)Ea(2) - £ ).

Theorem (Gekeler, 1989)

Consider the quasi-period 05 := Fs,(1) where Fs, is the quasi-periodic
function corresponding to the ¢?-biderivation 61 : A — 7Cu[T] mapping
0 — 7. We have

Ex(z) = 7 Y 9hy(2)n5.
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The function E,

@ We go back to the rank r > 2 case and let z = (z,...,2) € Q" and
z2=1(2,...,2,) € Q! be as before.

@ Consider the discriminant function A, : Q" — C4, and define
E, : Q" — C given by

1 0

N ) a—qA,(z).

E.(z) :=

N =

o For each a € A, set u,(z) := expysz(aiiz1) 1. One can expand u,(z)
as an infinite series in u(z) = exp¢ﬁ(7"rzl)_1 whose coefficients are
weak modular forms on Q"1

@ Using Basson's product formula for A,, we obtain

E(z) =) aua(z).

acAL
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The first main result

Theorem (Chen-G., 2021)

Letz=(z,...,2)" be an element in Q". We have

Fs,(z2) ... Fs5_,(2)
E.(z) = # 1Hat 40 (2) det :

Fo(z) ... Fs .(2)
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The sketch of the proof of Theorem

@ Foreachz=(z,...,2)" € Q" and k € Z>1, we consider the Eisenstein
series Ex(z, t) € Mat,«1(T) of weight k given by

tr
L ’ ai(t) 1 ar(t)
E(k,t) = (Zahu-,a,eA Gt baz )7 Dana €A Gamt 45z ) -

@ Let ¢* be the Drinfeld A-module of rank r corresponding to the A-lattice
zA. Define

spz(z1;t) ... sgz_l)(zl;t)

F(z,t) = : : € Mat,(T).

sd,z('z,;t) sgz_l).(z,;t)
@ For each |tg| < 1 we obtain

757 h(2)

gz(l,to)tr = —(Cll(to),...,crl(to)) (41)

w(tp)

where, for 1 < j <'r, Cji(to) is the (j, 1)-cofactor of F(z, t) evaluated at
t = to.
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@ When r = 2, the identity (4.1) is obtained by Pellarin.
@ We introduce the function E, : Q" x {£ € C| [¢] < g} — C given by

Fat 4 (2)

Er(Z,g) == w(l)(f) Cll(g)
fatta 7 (2) s (2it) =g oo sUr D (2it) me
== _T(f) det

s (zit)eme o sbe D (z0it) e
@ We have the following u-expansion

E.(z,¢) = Z ajg—cUa(2). (4.2)

acA,

@ Since Fj5,(z) = sg;)(zk; t)je—o for 1 < k < rand # = —w)(6), (4.2) implies

F(;l(Zz) F‘sr—l(ZZ)
E,.(z,0) = Z auy(z) = E(z) = #1199 p (2) det ;
acA, Fsy(z0) oo Fs,_y(2)
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The functional equation of E,

@ For 2 <j < r—1, let us consider the function E,U] Q" — Co
defined by
~ r—1
o,y R h(z)
Eri(z) = w(l)(e) C/l(e)

where Cj1(0) is the (j, 1)-cofactor of F(z, t) evaluated at t = 6.

Theorem (Chen-G., 2021)
For any v € GL,(A) and z = (z1,...,2)" € Q", we have

E/(v-2)
= det(y)” m,z)( (z)(cn—zlclr>+E[](zxcu—zzcl,)

E[r 1](2)(C1(r 1) z"_lciyr) +7’%_1Ciyr>

where for each 1 < j < r, ¢} is the (1, j)-cofactor of 7.

v
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Recovering the functional equation of E»(z)

o Let v = (25) € GLy(A). Then we obtain ¢} = d and ¢, = —c.
The functional equation implies that

Eax(v - 2) = det(y)j(7,2) (Ex(2)(cz1 + d) — 7 Fe)

which was firstly discovered by Gekeler.
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The relation between E, and ErU]

@ Foreach2<j<r—1, set

vt= € GL,(A)

‘1
where the only non-zero terms in the first column appear in the first and the
J-th entry.
® Wehave ¢jy =+ =¢(; ;) =¢(j;;)=¢) =0and ¢f = ¢} =1. The
functional equation implies that

E/(y; - 2) = det(7) (7, 2) (E/(2) + EP\(2)) = E/(2) + EP)(2).
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Transcendence of special values of E,

@ Recall that a Drinfeld A-module ¢ has complex multiplication (CM) if
the dimension of End(¢) ®4 K over K is r and furthermore we call ¢
a CM Drinfeld A-module.

Definition
We say that an element z € Q" is a CM point if the Drinfeld A-module ¢*
corresponding to the A-lattice zA is a CM Drinfeld A-module.

Theorem (Chen-G.,2021)

Let z € Q" be a CM point and K be the ilgebraic closure of K in Co. If
E,(z) # 0, then it is transcendental over K.

@ When r = 2, Chang proved the theorem for a more general class of
holomorphic functions, namely a certain subset of Drinfeld
quasi-modular forms, including E;.

@ The proof uses our first result giving the relation between E, and
quasi-periods as well as Chang and Papanikolas’ transcendence theory.
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THANK YOU !
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