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Modular Forms for SL2(Z)

Definition

Let H be the upper half plane. A modular form of weight k ∈ Z≥0 (for
SL2(Z)) is a holomorphic function f : H→ C satisfying the following
properties:

(i) f (γ · z) := f
(
az+b
cz+d

)
= (cz + d)k f (z), γ =

(
a b
c d

)
∈ SL2(Z), z ∈ H.

(ii) Set q := e2πiz . The q-expansion of f is of the form

f (z) =
∞∑
n=0

anq
n, an ∈ C.

Furthermore, f is called a cusp form if a0 = 0.
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Examples of modular forms

Example

Let k > 2 and consider the Z-lattice Λz := zZ + Z for any z ∈ H. The Eisenstein
series Gk(Λz) is defined by

Gk(Λz) :=
∑

m,n∈Z
(m,n)6=(0,0)

1

(mz + n)k
.

It is a modular form of weight k when k is even and identically zero if k is odd.
One can normalize Gk(Λz) and denote it by Gk(Λz) so that its q-expansion is
given by

Gk(Λz) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where
σk−1(n) :=

∑
d≥1
d|n

dk−1,

and Bk is the k-th Bernoulli number.
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False Eisenstein series

Example

Consider the discriminant function ∆ : H→ C defined by

∆(z) =
1

1728

(
G4(Λz)3 − G6(Λz)2

)
.

It is a non-vanishing function on H which is also a cusp form of weight 12.

Define the false Eisenstein series G2 : H→ C given by

G2(z) :=
1

2πi

1

∆(z)

d

dz
∆(z).

The q-expansion of G2 is

G2(z) = 1− 24
∞∑
n=1

σ1(n)qn.
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False Eisenstein series, quasi-periods and transcendence

G2 is a quasi-modular form and indeed we have

G2

(az + b

cz + d

)
= (cz + d)

(
(cz + d)G2(z) +

6c

πi

)
, γ =

(
a b
c d

)
∈ SL2(Z).

Theorem (Deligne, Katz)

Let z ∈ H and let η1 and η2 be quasi-periods of the elliptic curve corresponding to
the Z-lattice Λz satisfying the Legendre’s relation η1 − zη2 = 2πi . Then we have

G2(z) = − 3

π2
η2.

Theorem (Chang, 2012)

Let z ∈ H be a CM point satisfying G2(z) 6= 0. Then G2(z) is transcendental
over Q.
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Introduction to Drinfeld A-modules and Tate algebras

p := a prime number

Fq := finite field with q = pm elements for some m ∈ Z≥1

Z ∼ A := Fq[θ]

N ∼ A+ := the set of monic polynomials in A

Q ∼ K := Fq(θ) = rational functions in the variable θ over Fq

|·| := a fixed absolute value corresponding to the place at ∞ so that

|θ| = q

R ∼ K∞ := Fq((1/θ)) = the completion of K with respect to

the absolute value |·|
C ∼ C∞ := completion of an algebraic closure of K∞
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The Tate Algebra

Consider t as an independent variable over C∞. Define the Tate
algebra T by the set

T :=
{ ∞∑

i=0

ci t
i | ci ∈ C∞, |ci | → 0 as i →∞

}
.

T is indeed the set of holomorphic functions, in the rigid analytic
sense, on the closed unit disk D := {c ∈ C∞| |c | ≤ 1}.
The Gauss norm ‖ · ‖∞ on T is defined by setting for
g =

∑
i≥0 ci t

i ∈ T,

‖g‖∞ := max{|ci | : i ∈ Z>0}.

T is complete with respect to ‖ · ‖∞.
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For any g =
∑

i≥0 ci t
i ∈ T and j ∈ Z, we set the j-fold twist of g by

g (j) :=
∞∑
i=0

cq
j

i t i ∈ T.

Let (−θ)1/(q−1) be a fixed (q − 1)-st root of −θ. The
Anderson-Thakur element ω(t) is defined by

ω(t) := (−θ)1/(q−1)
∞∏
i=0

(
1− t

θqi

)−1
∈ T×.

The element π̃ ∈ C×∞ is defined by

π̃ := −ω(1)(t)|t=θ = θ(−θ)1/(q−1)
∞∏
i=1

(
1− θ1−qi

)−1
.
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A-lattices

Definition

An A-module M ⊂ C∞ is strongly discrete if the intersection of M with any
ball of finite radius is finite.

An A-module M ⊂ C∞ is called an A-lattice if it is free, finitely generated
and strongly discrete.

Two A-lattices Λ and Λ′ are isogenous if there exists an element c ∈ C×∞
such that cΛ ⊂ Λ′ where the quotient Λ′/cΛ is a finite A-module.

We call c an isogeny between Λ and Λ′.

If cΛ = Λ′, we say that Λ and Λ′ are isomorphic.

The set of A-lattices of rank r ∈ Z≥1 forms a category whose morphisms are
given by isogenies between A-lattices.
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Drinfeld A-modules
We define the power series ring C∞[[τ ]] subject to the condition

τc = cqτ, c ∈ C∞,

and C∞[τ ] ⊂ C∞[[τ ]] to be the ring of polynomials in τ .

Definition
Let r ∈ Z≥1. A Drinfeld A-module φ of rank r is an Fq-algebra homomorphism

φ : A→ C∞[τ ]

uniquely defined by

φθ := φ(θ) = θ + φθ,1τ + · · ·+ φθ,rτ
r , φθ,r 6= 0.

The Carlitz module C is a Drinfeld A-module of rank 1 defined by
Cθ = θ + τ.

φ gives an A-module structure on C∞ defined as

a · z := φa(z) := az + φa,1z
q + · · ·+ φa,rz

qdeg(a)r

, a ∈ A, z ∈ C∞.
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More on Drinfeld A-modules

Definition

The set of Drinfeld A-modules forms a category such that any
morphism u : φ→ ψ between Drinfeld A-modules is given by a
non-zero u ∈ C∞[τ ] satisfying uφθ = ψθu in C∞[τ ].

If u ∈ C×∞, then we say φ is isomorphic to ψ.

Define End(φ) := {v ∈ C∞[τ ] | vφθ = φθv}. Drinfeld showed that it
is a commutative ring and free and finitely generated A-module whose
rank is less than or equal to r . Moreover, End(φ)⊗A K is a field
extension of K of finite degree.

We say that φ has complex multiplication (CM) if the dimension of
End(φ)⊗A K over K is r and furthermore we call φ a CM Drinfeld
A-module.
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The exponential function expφ
Definition
For a Drinfeld A-module φ, the exponential series for φ is given by

expφ :=
∞∑
i=0

αiτ
i ∈ C∞[[τ ]],

subject to the conditions α0 = 1 and expφ θ = φθ expφ.

The exponential function expφ of φ is the Fq-linear function

expφ : C∞ → C∞,

defined by expφ(z) =
∞∑
i=0

αiz
qi

for all z ∈ C∞ converging everywhere in C∞.

Each element in the kernel Ker(expφ) of expφ is called a period of φ.
Moreover Ker(expφ) is an A-module whose A-module structure is given by

a · z = az , a ∈ A, z ∈ Ker(expφ).

It is an A-lattice of rank r . We call Ker(expφ) the period lattice of φ.
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Correspondence between A-lattices and Drinfeld A-modules

(Drinfeld) There is an equivalence of categories between the category of
Drinfeld A-modules of rank r and the category of A-lattices of rank r . This
will be described as follows:

Let Λ be a an A-lattice of rank r . Then there exists a unique Drinfeld
A-module φ up to isomorphism so that its exponential function
expφ : C∞ → C∞ is given by

expφ(z) = z
∏
λ∈Λ
λ6=0

(
1− z

λ

)
=
∞∑
j=0

αjz
qj

, z ∈ C∞.

Observe that Λ = Ker(expφ). We call φ the Drinfeld A-module
corresponding to Λ.

Example

The Carlitz module C given by Cθ = θ + τ is the Drinfeld A-module
corresponding to the A-lattice of rank one generated by

π̃ = θ(−θ)1/(q−1)
∏∞

i=1

(
1− θ1−qi

)−1

∈ C×∞.
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φ-biderivations

Definition

Let φ be a Drinfeld A-module of rank r defined by

φθ = φ(θ) = θ + φθ,1τ + · · ·+ φθ,rτ
r ∈ C∞[τ ].

A φ-biderivation η is a map η : A→ τC∞[τ ] satisfying the following
properties:

(i) η is an Fq-linear map.

(ii) ηab = aηb + ηaφb where we set ηc := η(c) for any c ∈ A.

Example

(i) The Fq-linear map δ0 : A→ τC∞[τ ] defined by δ0 : a 7→ a− φa is a
φ-biderivation.

(ii) For each 1 ≤ j ≤ r − 1, the Fq-linear map δj : A→ τC∞[τ ] defined
by δj : θ 7→ τ j is also a φ-biderivation.

Oğuz Gezmiş Drinfeld modular forms FGC-IPM Number Theory Sem. 14 / 33



Quasi-Periodic Functions

Definition

Let η be a φ-biderivation. There exists a unique function Fη : C∞ → C∞
satisfying

Fη(θz)− θFη(z) = ηθ(expφ(z)), z ∈ C∞.

We call Fη the quasi-periodic function corresponding to η. It is an
Fq-linear function and moreover Fη(z) converges in C∞ for any value of
z ∈ C∞.

Example

The quasi periodic function Fδ0 : C∞ → C∞ corresponding to the
φ-biderivation δ0 is defined by Fδ0(z) = z − expφ(z).
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Anderson generating functions and quasi-periodic functions

Definition

Let φ be a Drinfeld A-module of rank r and set expφ(z) =
∑

n≥0 αnz
qn

for any
z ∈ C∞. We define the Anderson generating function sφ(z ; t) by the infinite sum

sφ(z ; t) :=
∞∑
n=0

expφ

(
z

θn+1

)
tn =

∞∑
n=0

αnz
qn

θqn − t
∈ T.

Proposition (Pellarin)

For each 1 ≤ j ≤ r − 1, let Fδj : C∞ → C∞ be the quasi-periodic function
corresponding to the φ-biderivation δj . Then for any λ ∈ Ker(expφ), we have

Fδj (λ) = s
(j)
φ (λ; t)|t=θ =

∞∑
n=0

expφ

(
λ

θn+1

)qj

θn.

Definition

For any λ ∈ Ker(expφ) and each 1 ≤ j ≤ r − 1, we call Fδj (λ) a quasi-period of φ.
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The Drinfeld upper half plane

From now on, we let r ≥ 2.

The Drinfeld upper half plane Ωr is defined by

Ωr := Pr−1(C∞) \ {K∞-rational hyperplanes}.

It is a connected rigid analytic space.

Ωr will be identified as the set of elements z := (z1, . . . , zr )
tr ∈ Cr

∞ whose
entries are K∞-linearly independent elements and zr := 1.

For a given z = (z1, . . . , zr )
tr ∈ Ωr , we also set z̃ := (z2, . . . , zr )

tr ∈ Ωr−1.

For any c ∈ C×∞, let czA (c z̃A respectively) be the A-lattice generated by
the entries of cz (c z̃ respectively).

Let φz ( φπ̃z̃ respectively) be the Drinfeld A-module corresponding to zA
(π̃z̃A respectively).

Set u(z) := expφπ̃z̃(π̃z1)−1.
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Weak modular forms

Let γ = (aij) ∈ GLr (A). We define the action of GLr (A) on Ωr by

γ · z :=
(a11z1 + · · ·+ a1rzr
ar1z1 + · · ·+ arrzr

, . . . ,
a(r−1)1z1 + · · ·+ a(r−1)rzr

ar1z1 + · · ·+ arrzr
, 1
)tr
∈ Ωr .

Set j(γ, z) := ar1z1 + · · ·+ arrzr ∈ C×∞.

We call a holomorphic function f : Ωr → C∞ a weak modular form of
weight k ∈ Z and type m ∈ Z/(q − 1)Z (for GLr (A)) if it satisfies

f (γ · z) = j(γ, z)k det(γ)−mf (z), γ ∈ GLr (A), z ∈ Ωr .

Basson, Breuer and Pink showed that for any weak modular form
f : Ωr → C∞, there exists a uniquely defined holomorphic function
fn : Ωr−1 → C∞ for each n ∈ Z such that the series∑

n∈Z
fn(z̃)u(z)n

converges to f (z) on some “neighborhood N ⊂ Ωr of infinity”. Such an
expansion is called the u-expansion of f . When r = 2, fn ∈ C∞.
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Drinfeld modular forms

Definition

(i) A weak modular form f : Ωr → C∞ of weight k and type m is called a
Drinfeld modular form of weight k and type m (for GLr (A)) if f has a
u-expansion of the form

f (z) =
∞∑
n=0

fn(z̃)u(z)n.

(ii) Furthermore we say that f is a Drinfeld cusp form if f0 : Ωr−1 → C∞ is
identically zero.

Drinfeld modular forms were firstly defined by David Goss in his Ph.D. thesis
for the rank 2 case.

Using the work of Häberli, Kapranov and Pink, later on Basson, Breuer and
Pink were able to define Drinfeld modular forms of higher rank both
algebraically and analytically.
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Examples of Drinfeld modular forms of type 0

Let k ∈ Z≥1 and z = (z1, . . . , zr )
tr ∈ Ωr . We define the Eisenstein series

Eisk(z) by

Eisk(z) :=
∑

a1,...,ar∈A
(a1,...,ar )6=(0,...,0)

1

(a1z1 + · · ·+ arzr )k
.

It is a Drinfeld modular form of weight k and type 0.

Set
φzθ = θ + g1(z)τ + · · ·+ gr−1(z)τ r−1 + ∆r (z)τ r .

For each 1 ≤ i ≤ r − 1, gi : Ωr → C∞ defined by z 7→ gi (z) is a Drinfeld
modular form of weight qi − 1 and type 0.

The discriminant function ∆r : Ωr → C∞ defined by z 7→ ∆r (z), is a
non-vanishing holomorphic function on Ωr which is also a Drinfeld cusp form
of weight qr − 1 and type 0.
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The h-function of Gekeler

Let S be a set of representatives of the quotient space ((A/θA)r \ {0})/F×q
given by

S := θ−1{(0, . . . , 0, 1), (0, . . . , 0, 1, ∗), . . . , (0, 1, ∗, . . . , ∗), (1, ∗, . . . , ∗)}.

Let z = (z1, . . . , zr )
tr ∈ Ωr . For any µ = (µ1, . . . , µr ) ∈ S , we define

Eisµ(z) :=
∑

a1,...,ar∈A

1

(a1 + µ1)z1 + · · ·+ (ar + µr )zr
.

We define the h-function of Gekeler hr : Ωr → C∞ for rank r given by

hr (z) := −(−θ)1/(q−1)
∏
µ∈S

Eisµ(z).

It is a non-vanishing Drinfeld cusp form of weight qr−1
q−1 and type 1.
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A close look at rank 2 case and a motivation for main
results

Identify Ω2 with C∞ \ K∞. Note the analogy between Ω2 and H = C \ R.

Let z ∈ C∞ \ K∞ and φz be the Drinfeld A-module of rank 2 corresponding
to the A-lattice zA + A.

Definition

A Drinfeld modular form of weight k ∈ Z≥0 and type m ∈ Z/(q − 1)Z is a
holomorphic function f : C∞ \ K∞ → C∞ satisfying the following properties:

(i) f
(

az+b
cz+d

)
= (cz + d)k det(γ)−mf (z), γ =

(
a b
c d

)
∈ GL2(A), z ∈ C∞ \ K∞.

(ii) Recall that u := u(z) = expC (π̃z)−1. The u-expansion of f is of the form

f (z) =
∞∑
n=0

cnu
n, cn ∈ C∞.
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False Eisenstein series and Gekeler’s work

Consider the discriminant function ∆2 : C∞ \ K∞ → C∞ and define
the Gekeler’s false Eisenstein series E2 : C∞ \ K∞ → C∞ given by

E2(z) :=
1

π̃

1

∆2(z)

d

dz
∆2(z).

Define ua(z) := u(az) = uq
deg(a)

(1 + higher degree terms in u) for any
a ∈ A+. Then E2 has the u-expansion given by

E2(z) =
∑
a∈A+

aua(z).
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For any γ =
(
a b
c d

)
∈ GL2(A), we have the functional equation

E2

(az + b

cz + d

)
= (cz + d) det(γ)−1

(
(cz + d)E2(z)− c

π̃

)
.

Theorem (Gekeler, 1989)

Consider the quasi-period ηz2 := Fδ1(1) where Fδ1 is the quasi-periodic
function corresponding to the φz -biderivation δ1 : A→ τC∞[τ ] mapping
θ 7→ τ . We have

E2(z) = π̃−1+qh2(z)ηz2 .
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The function Er

We go back to the rank r ≥ 2 case and let z = (z1, . . . , zr ) ∈ Ωr and
z̃ = (z2, . . . , zr ) ∈ Ωr−1 be as before.

Consider the discriminant function ∆r : Ωr → C∞ and define
Er : Ωr → C∞ given by

Er (z) :=
1

π̃

1

∆r (z)

∂

∂z1
∆r (z).

For each a ∈ A, set ua(z) := expφπ̃z̃(aπ̃z1)−1. One can expand ua(z)
as an infinite series in u(z) = expφπ̃z̃(π̃z1)−1 whose coefficients are
weak modular forms on Ωr−1.

Using Basson’s product formula for ∆r , we obtain

Er (z) =
∑
a∈A+

aua(z).
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The first main result

Theorem (Chen-G., 2021)

Let z = (z1, . . . , zr )tr be an element in Ωr . We have

Er (z) = π̃−1+q+···+qr−1
hr (z) det

Fδ1(z2) . . . Fδr−1(z2)
...

...
Fδ1(zr ) . . . Fδr−1(zr )

 .
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The sketch of the proof of Theorem

For each z = (z1, . . . , zr )
tr ∈ Ωr and k ∈ Z≥1, we consider the Eisenstein

series Ek(z, t) ∈ Matr×1(T) of weight k given by

Ez(k, t) :=
(∑′

a1,...,ar∈A
a1(t)

(a1z1+···+ar zr )k
, . . . ,

∑′
a1,...,ar∈A

ar (t)
(a1z1+···+ar zr )k

)tr
.

Let φz be the Drinfeld A-module of rank r corresponding to the A-lattice
zA. Define

F(z, t) :=

 sφz (z1;t) ... s
(r−1)

φz (z1;t)

...
...

sφz (zr ;t) ... s
(r−1)

φz (zr ;t)

 ∈ Matr (T).

For each |t0| ≤ 1 we obtain

Ez(1, t0)tr =
π̃

qr−1
q−1 hr (z)

ω(1)(t0)
(C11(t0), . . . ,Cr1(t0)) (4.1)

where, for 1 ≤ j ≤ r , Cj1(t0) is the (j , 1)-cofactor of F(z, t) evaluated at
t = t0.

Oğuz Gezmiş Drinfeld modular forms FGC-IPM Number Theory Sem. 27 / 33



When r = 2, the identity (4.1) is obtained by Pellarin.

We introduce the function Er : Ωr × {ξ ∈ C∞| |ξ| ≤ q} → C∞ given by

Er (z, ξ) := − π̃
q+···+qr−1

hr (z)

ω(1)(ξ)
C11(ξ)

= − π̃
q+···+qr−1

hr (z)

ω(1)(ξ)
det

 s
(1)

φz (z2;t)|t=ξ ... s
(r−1)

φz (z2;t)|t=ξ

...
...

s
(1)

φz (zr ;t)|t=ξ ... s
(r−1)

φz (zr ;t)|t=ξ

.
We have the following u-expansion

Er (z, ξ) =
∑
a∈A+

a|θ=ξua(z). (4.2)

Since Fδj (zk) = s
(j)
φz (zk ; t)|t=θ for 1 ≤ k ≤ r and π̃ = −ω(1)(θ), (4.2) implies

Er (z, θ) =
∑
a∈A+

aua(z) = Er (z) = π̃−1+q+···+qr−1

hr (z) det

 Fδ1
(z2) ... Fδr−1

(z2)

...
...

Fδ1
(zr ) ... Fδr−1

(zr )

.
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The functional equation of Er

For 2 ≤ j ≤ r − 1, let us consider the function E
[j]
r : Ωr → C∞

defined by

E
[j]
r (z) = − π̃

q+···+qr−1
hr (z)

ω(1)(θ)
Cj1(θ)

where Cj1(θ) is the (j , 1)-cofactor of F(z, t) evaluated at t = θ.

Theorem (Chen-G., 2021)

For any γ ∈ GLr (A) and z = (z1, . . . , zr )tr ∈ Ωr , we have

Er (γ · z)

= det(γ)−1j(γ, z)
(
Er (z)(cγ11 − z1c

γ
1r ) + E

[2]
r (z)(cγ12 − z2c

γ
1r )

+ · · ·+ E
[r−1]
r (z)(cγ1(r−1) − zr−1c

γ
1r ) + π̃−1cγ1r

)
where for each 1 ≤ j ≤ r , cγ1j is the (1, j)-cofactor of γ.
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Recovering the functional equation of E2(z)

Let γ =
(
a b
c d

)
∈ GL2(A). Then we obtain cγ11 = d and cγ12 = −c .

The functional equation implies that

E2(γ · z) = det(γ)−1j(γ, z)
(
E2(z)(cz1 + d)− π̃−1c

)
which was firstly discovered by Gekeler.
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The relation between Er and E
[j ]
r

For each 2 ≤ j ≤ r − 1, set

γ−1
j =


1

. . .

1
. . .

. . .
1

 ∈ GLr (A)

where the only non-zero terms in the first column appear in the first and the
j-th entry.

We have c
γj
12 = · · · = c

γj
1(j−1) = c

γj
1(j+1) = c

γj
1r = 0 and c

γj
11 = c

γj
1j = 1. The

functional equation implies that

Er (γj · z) = det(γj)
−1j(γj , z)

(
Er (z) + E [j]

r (z)
)

= Er (z) + E [j]
r (z).
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Transcendence of special values of Er

Recall that a Drinfeld A-module φ has complex multiplication (CM) if
the dimension of End(φ)⊗A K over K is r and furthermore we call φ
a CM Drinfeld A-module.

Definition

We say that an element z ∈ Ωr is a CM point if the Drinfeld A-module φz

corresponding to the A-lattice zA is a CM Drinfeld A-module.

Theorem (Chen-G.,2021)

Let z ∈ Ωr be a CM point and K be the algebraic closure of K in C∞. If
Er (z) 6= 0, then it is transcendental over K.

When r = 2, Chang proved the theorem for a more general class of
holomorphic functions, namely a certain subset of Drinfeld
quasi-modular forms, including E2.

The proof uses our first result giving the relation between Er and
quasi-periods as well as Chang and Papanikolas’ transcendence theory.
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THANK YOU !
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