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Diophantus, may your soul be with Satan because of the

difficulty of the other theorems of yours, and in particular of

the present theorem. — Chortasmenos, ⇠ 1400.



Theorem (Faltings).

Let K/Q be a number field. Let C/K be a smooth projective hyperbolic
curve. Then: C(K) is finite.

I Famously ineffective, i.e. does not provide a finite-time

algorithm to find C(K) given K and C/K.



I Faltings’ starting point was Parshin’s key observation: for

all hyperbolic C/Q, there is a g � 2 and a finite-to-one map

C ! Ag, thanks to an amazing construction of Kodaira.

I But nothing forces us to use these maps. . .



I Aside: every hyperelliptic C/Q admits a diagram:

eC

C C6 A2

ét. dom.

univ. fam.

with C6 : y2 = x6 + 1.

I Trick: C6/Q is a Shimura curve, corresponding to

[G,G] ✓ G with G := �(2, 6, 6), an arithmetic triangle

group. (Quat. alg.: B6/Q, indef. of disc. 6.)



I Key point of this talk: introducing modularity into

Faltings’ technique.

I Currently, modularity is best understood for GL2. Thus we

will map to Hilbert modular varieties instead of Ag.

I Downside: unclear for which curves one can (or can’t) do

this!



Theorem (A.).

Let F/Q be a totally real field. Let o ✓ F be an order. Let K/Q be
totally real with [K : Q] odd. Let S be a finite set of places of K. Then:
there is an effectively computable ho,K,S 2 Z+ such that, for all
[F : Q]-dimensional abelian varieties A/K with good reduction
outside S and admitting o ,! EndK(A),

h(A)  ho,K,S.

I Thus all P 2 Ho(oK,S) satisfy h(P)  ho,K,S.

I K = Q and o = Z: Murty-Pasten. Independently, K = Q
and all o: von Känel.



I "Masser-Wüstholz/Bost" argument:



I Example: let’s find all E/Q of conductor N.



I Proof of the theorem, assuming modularity:

I So: done if 9 explicit finite F of odd-deg. tot. real L/K s.t.

every such ab. var. A/K is modular over some L 2 F .



I Every such A/K is potentially modular (Taylor, we use

Snowden).

I Roughly: let � s.t. ⇢ := ⇢A,� : Gal(Q/K) ! GL2(o/�) has

large image. Then there is L⇢/K tot. real of odd deg. s.t.

A/L⇢ modular.

I L⇢/K determined following Taylor’s proof. Key step:

producing a tot. real point on a certain variety using

Moret-Bailly/Rumely (— can just brute force!!).



I (⇠ Lem. of Dimitrov:) once Nm� �o,K,S 1 (explicit), ⇢ has

large image.

I Hermite-Minkowski: the possible ⇢ are explicitly

determined (⇢ gives a num. field of bdd. deg. that is

unram. outside S and Nm�).

I Thus by doing the brute force (or cleverer) for each such ⇢
we produce F , QED.



I Example: let K/Q tot. real of odd deg., a 2 K⇥
,

Ca : x6 + 4y3 = a2
.

I Hypergeom. fam. assoc. to �(3, 6, 6) (arithmetic!): let

f : Ca ! P1
via f (P) := x(P)6

a2
, and let AP be the 2-dim.’l

quot. of Jac. of (desing. of) y6 = x4(1 � x)3(1 � f (P) · x).

I Because the eq. is y6 = · · · , we see Z[⇣3] ,! EndK(⇣3)(AP).
So AP is GL2(Z[⇣3])-type over K(⇣3). Not enough. . .





I Arith. of �(3, 6, 6) means B6 ,! End
0

Q(AP), so there are

other endo.s. . . In fact (compare Frob. traces of the 2-dim’l

rep.s over K(⇣3)) AP/K is GL2-type over K.

I Easy to compute an explicit F s.t. each AP is GL2(F)-type

over K for some F 2 F , done.



Thanks!


