Effective height bounds for odd-degree totally real points on some curves.

Levent Alpöge

Diophantus, may your soul be with Satan because of the difficulty of the other theorems of yours, and in particular of the present theorem. - Chortasmenos, ~ 1400.

Book II of Aritthetion:
sole $y^{2}=x^{6}+x^{2}+1$ montrivially.
finds $x=\frac{1}{2}$.
rag PhD thesis of Wethenell: Dipphestas formed the only nontriv. solis.

Theorem (Faltings).
Let K / \mathbb{Q} be a number field. Let C / K be a smooth projective hyperbolic curve. Then: $C(K)$ is finite.

$$
f\left(x_{\mathrm{og}}\right)=0 .
$$

- Famously ineffective, ie. does not provide a finite-time algorithm to find $C(K)$ given K and C / K.

$$
\begin{aligned}
& x^{n}+y^{n}=1 \\
& x^{n}+y^{n}=z^{n} .
\end{aligned}
$$

- Faltings' starting point was Parshin's key observation: for all hyperbolic $C / \overline{\mathbb{Q}}$, there is a $g \geq 2$ and a finite-to-one map $C \rightarrow A_{g}$, thanks to an amazing construction of Kodaira.
- But nothing forces us to use these maps...

Aside: every hyperelliptic $C / \overline{\mathbb{Q}}$ admits a diagram:
Begomolou

with $C_{6}: y^{2}=x^{6}+1$.
Chenlley-Weil th. J explicit L / K at.
all K-ptes of C lift to L-ptis of C.
$\stackrel{\rightharpoonup}{C}(L) \longrightarrow C_{C}(L) \Rightarrow$ hance it surf. to deil with natl phon on C_{6}.
Trick: $C_{6} / \overline{\mathbb{Q}}$ is a Shimura curve, corresponding to $[G, G] \subseteq G$ with $G:=\Delta(2,6,6)$, an arithmetic triangle group. (Quart. alg.: B_{6} / \mathbb{Q}, indef. of disc. 6.)

- Key point of this talk: introducing modularity into Faltings' technique.
- Currently, modularity is best understood for GL_{2}. Thus we will map to Hilbert modular varieties instead of A_{g}.
- Downside: unclear for which curves one can (or can't) do ingegien; this! $F=\alpha h(\sqrt{2})$,

Flo tot. neal, $\theta \in \theta_{F}$, get H_{o}.
$\theta=\theta_{\tau}=\nabla[\sqrt{2}]$

$$
H_{0} \in \mathbb{P}^{N} \text {, dim. } H_{0}=\{F: \operatorname{la}] .
$$

$$
\operatorname{dim} . \partial H_{0}=0 .
$$

$A(k, \quad \operatorname{dic} . A=[F=Q]$,
good ved aubite S.

$\theta \subset \operatorname{End}_{\mathrm{k}}(t)$.

Let F / \mathbb{Q} be a totally real field. Let $\mathfrak{o} \subseteq F$ be an order. Let K / \mathbb{Q} be totally real with $[K: \mathbb{Q}]$ odd. Let S be a finite set of places of K. Then: there is an effectively computable $h_{\mathfrak{o}, K, S} \in \mathbb{Z}^{+}$such that, for all $[F: \mathbb{Q}]$-dimensional abelian varieties A / K with good reduction outside S and admitting $\mathfrak{o} \hookrightarrow \operatorname{End}_{K}(A)$,

$$
h(A) \leq h_{\mathfrak{v}, K, S}
$$

- Thus all $P \in \mathcal{H}_{\mathfrak{o}}\left(\mathfrak{o}_{K, S}\right)$ satisfy $h(P) \leq h_{\mathfrak{o}, K, S}$.
- $K=\mathbb{Q}$ and $\mathfrak{o}=\mathbb{Z}$: Murty-Pasten. Independently, $K=\mathbb{Q}$ and all \mathfrak{o} : von Känel.
- "Masser-Wüstholz/Bost" argument:
given B / k, went all k-iog. factorn A / k. \& BKF.
Poincervé $\Rightarrow \exists c / k$ s.t. $B \sim_{k} A \times C$.

Bat $h(A)+h(C)$
$\vec{W}(A)$ -
$\Rightarrow h(A)<\mathbb{B}_{B} 1$.

Example: let's find all E / \mathbb{Q} of conductor N.

$$
\begin{aligned}
& L(s, E) \stackrel{\text { nod. }}{=} L(s, f) \\
& \| e^{\text {slimura. }} \\
& L\left(s, A_{f}\right)
\end{aligned}
$$

Proof of the theorem, assuming modularity:

$$
\begin{aligned}
& \text { oc. Chubs, se tone. } \\
& \text { A } \\
& \left.U(s, A) \stackrel{\perp}{=} U_{(}, f\right) \\
& \begin{array}{l}
\text { (I) }<H_{\text {ida }} \\
L\left(s, A_{e}\right)
\end{array}
\end{aligned}
$$

So: done if \exists explicit finite \mathcal{F} of odd-deg. tot. real L / K s.t. every such ab. var. A / K is modular over some $L \in \mathcal{F}$.

- Every such A / K is potentially modular (Taylor, we use Snowden).
- Roughly: let λ s.t. $\bar{\rho}:=\bar{\rho}_{A, \lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / K) \rightarrow \mathrm{GL}_{2}(\mathfrak{o} / \lambda)$ has large image. Then there is $L_{\bar{\rho}} / K$ tot. real of odd deg. s.t. $A / L_{\bar{\rho}}$ modular.
$\checkmark L_{\bar{\rho}} / K$ determined following Taylor's proof. Key step: producing a tot. real point on a certain variety using Moret-Bailly/Rumely (— can just brute force!!).
- (\sim Lem. of Dimitrov:) once $\operatorname{Nm} \lambda>_{\mathfrak{o}, K, S} 1$ (explicit), $\bar{\rho}$ has large image.
- Hermite-Minkowski: the possible $\bar{\rho}$ are explicitly determined ($\bar{\rho}$ gives a num. field of bdd. deg. that is unram. outside S and $\operatorname{Nm} \lambda$).
- Thus by doing the brute force (or cleverer) for each such $\bar{\rho}$ we produce \mathcal{F}, QED.

Deines-Fuseties - Long-Swisher - Tu

- Example: let K / \mathbb{Q} tot. real of odd deg., $a \in K^{\times}$, $C_{a}: x^{6}+4 y^{3}=a^{2}$.

$$
x^{6}+4 y^{3}=1
$$

- Hypergeom. fam. assoc. to $\Delta(3,6,6)$ (arithmetic!): let $f: C_{a} \rightarrow \mathbb{P}^{1}$ via $f(P):=\frac{x(P)^{6}}{a^{2}}$, and let A_{P} be the 2-dim.'1 quot. of Jac. of (desing. of) $y^{6}=x^{4}(1-x)^{3}(1-f(P) \cdot x)$.
- Because the eq. is $y^{6}=\cdots$, we see $\mathbb{Z}\left[\zeta_{3}\right] \hookrightarrow \operatorname{End}_{K\left(\zeta_{3}\right)}\left(A_{P}\right)$. So A_{P} is $\mathrm{GL}_{2}\left(\mathbb{Z}\left[\zeta_{3}\right]\right)$-type over $K\left(\zeta_{3}\right)$. Not enough...

$$
\alpha^{6}+4 \beta^{3}=1 .
$$

$$
\begin{aligned}
& y^{6}=x^{4}(1-x)^{3}(1-f \cdot x) \\
& \operatorname{dim} \cdot A_{D}=2,
\end{aligned}
$$

$$
\begin{aligned}
& \rho \cong \rho^{\prime} \oplus \rho^{\prime \prime}, \\
& \operatorname{dim} \cdot e^{\prime}=\operatorname{sim} . C^{\prime \prime}=2 \text {. } \\
& F_{1}(t)=\eta(t) \cdot \eta\left(\frac{1-t}{4}\right)^{2} \cdot F_{2}(t), \eta \underset{\text { chan. }}{\text { ader } 6}
\end{aligned}
$$

- Arith. of $\Delta(3,6,6)$ means $B_{6} \hookrightarrow \operatorname{End}_{\overline{\mathbb{Q}}}^{0}\left(A_{P}\right)$, so there are other endo.s... In fact (compare Frob. traces of the 2-dim'l rep.s over $K\left(\zeta_{3}\right)$) A_{P} / K is GL L_{2}-type over K.
- Easy to compute an explicit \mathcal{F} s.t. each A_{P} is $\mathrm{GL}_{2}(F)$-type over K for some $F \in \mathcal{F}$, done.

Thanks!

