Shimura varieties modulo *p* with many compact factors

Oliver Bültel

May 11th, 2021 Istanbul

Oliver Bültel Shimura varieties and moduli interpretations in characteristic p

イロト イポト イヨト イヨト

Plan I

Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures

2 Construction of $\mathfrak{M}^{\mathfrak{f}}_{n}$ and $_{\mathcal{K}^{\infty,\rho}}\mathcal{M}$

- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem

- A 🖻 🕨

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Plan

Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures

2 Construction of $\mathfrak{M}^{\mathfrak{f}}_n$ and $_{K^{\infty,p}}\mathcal{M}$

- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem

8 Related results and questions

< 回 > < 三 > < 三

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Siegel space I

Fix an auxiliary integer $n \ge 3$. By a level *n*-structure on an abelian *g*-fold *Y* we mean a group isomorphism from $(\mathbb{Z}/n\mathbb{Z})^{2g}$ to *Y*[*n*] taking the Weil pairing on *Y*[*n*] to a multiple of the standard alternating pairing on $(\mathbb{Z}/n\mathbb{Z})^{2g}$ (i.e. $x^t J_g x$). The following result is basic to the study of moduli spaces of polarized abelian *g*-folds.

Theorem (Mumford)

The functor that takes a scheme *S* to the set of isomorphism classes of principally polarized abelian schemes of relative dimension *g* with level-*n* structure is representable by a quasi-projective $\mathbb{Z}[\frac{1}{n}]$ -scheme. This scheme is smooth of relative dimension $\frac{g(g+1)}{2}$, and traditionally denoted by $\mathcal{A}_{g,n}$.

イロト イポト イヨト イヨト

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Siegel space II

Historically the knowledge of the mere set $\mathcal{A}_{g,n}(\mathbb{C})$ preceded the above result, to describe it in the modern adelic language we need a little bit of notation:

- Let $K_{\infty} \subset GSp(2g, \mathbb{R})$ be the centralizer of $\begin{pmatrix} aE_g & -bE_g \\ bE_g & aE_g \end{pmatrix}$ (Deligne torus).
- Let K[∞] be the kernel of GSp(2g, 2) → GSp(2g, Z/nZ), where 2 is the profinite completion of Z.

イロト 不得 とくほ とくほとう

 $\begin{array}{l} \textbf{Shimura Varieties}\\ \textbf{Construction of } \mathfrak{M}_n^{\mathfrak{f}} \text{ and }_{K^{\infty},p}\mathcal{M}\\ \textbf{Related results and questions} \end{array}$

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Siegel space III

 K^{∞} is a compact open subgroup of $GSp(2g, \mathbb{A}^{\infty})$, where $\mathbb{A}^{\infty} = \mathbb{Q} \otimes \hat{\mathbb{Z}}$ is the ring of finite adeles, and $K_{\infty}K^{\infty}$ is a subgroup of $GSp(2g, \mathbb{A})$, where $\mathbb{A} = \mathbb{R} \times \mathbb{A}^{\infty}$ is the ring of adeles.

Theorem (Riemann)

There exists a canonical bijection between $\mathcal{A}_{g,n}(\mathbb{C})$ and the complex orbifold $GSp(2g, \mathbb{Q}) \setminus GSp(2g, \mathbb{A})/K_{\infty}K^{\infty}$ (which has $\phi(n)$ connected components, each of which look like $\Gamma_g(n) \setminus \mathfrak{h}_g$).

The above double quotient may also be written as

 $\mathsf{GSp}(2g,\mathbb{Q}) \setminus (\mathfrak{h}_g^{\pm} \times \mathsf{GSp}(2g,\mathbb{A}^{\infty})) / \mathcal{K}^{\infty},$

where $\mathfrak{h}_g^\pm := \mathsf{GSp}(2g,\mathbb{R})/\mathcal{K}_\infty$ is the so-called double half-space.

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Plan

Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures

2 Construction of $\mathfrak{M}_n^{\mathfrak{f}}$ and $_{K^{\infty,p}}\mathcal{M}$

- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem

8 Related results and questions

▲◎ ▶ ▲ 臣 ▶ ▲ 臣

Shimura data I

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Deligne's notion of Shimura datum (G, X) axiomatizes the properties of $(GSp(2g), \mathfrak{h}_g^{\pm})$. To any such pair he attaches a canonical number field (called the reflex field) and an adelic system of complex manifolds

$$_{K^{\infty}}M(G,X):=G(\mathbb{Q})ackslash(X imes G(\mathbb{A}^{\infty}))/K^{\infty}$$

as K^{∞} runs through the set of compact open subgroups of $G(\mathbb{A}^{\infty})$. The projective limit acquires a right $G(\mathbb{A}^{\infty})$ -action and is denoted M(G, X).

ヘロン ヘアン ヘビン ヘビン

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Shimura data II

Theorem (Baily-Borel, Deligne, Milne, Borovoi)

If (G, X) and K^{∞} are as above, then $_{K^{\infty}}M(G, X) = M(G, X)/K^{\infty}$ is a quasi-projective variety possessing a canonical model over the reflex field E.

Fix a prime number *p*. The group K^{∞} might allow a factorization into a hyperspecial subgroup $K_p \subset G(\mathbb{Q}_p)$ and some other compact open $K^{\infty,p} \subset G(\mathbb{A}^{\infty,p})$. In this case *p* is unramified in *E* and one expects $_{K^{\infty}}M(G, X)$ to have "good reduction" at all divisors Spec $\mathcal{O}_E \ni \mathfrak{p} \mid p$, more specifically we have:

イロト イポト イヨト イヨト 三日

 $\begin{array}{l} \textbf{Shimura Varieties}\\ \textbf{Construction of } \mathfrak{M}_{n}^{\mathfrak{f}} \text{ and }_{K^{\infty},p} \mathcal{M}\\ \textbf{Related results and questions} \end{array}$

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

Shimura data III

Conjecture (Langlands)

Assume that G^{ad} is anisotropic and that $K^{\infty} = K_p K^{\infty,p}$ holds for some hyperspecial group K_p . Then $_{K^{\infty}}M(G,X)$ can be extended to a smooth projective scheme \mathcal{M} over the semi-local number ring $(1 + p\mathcal{O}_E)^{-1}\mathcal{O}_E$.

One says that a Shimura datum (G, X) is of Hodge type if there exists an embedding $(G, X) \hookrightarrow (GSp(2g), \mathfrak{h}_g^{\pm})$ for some g. For this class of Shimura data the conjecture is known to be true if $p \neq 2$, thanks to works of Mark Kisin and Adrian Vasiu, who proved a more specific statement, which was previously conjectured by James Milne.

イロト イポト イヨト イヨト 三日

Theorems of Riemann and Mumford Integral Models: Results and Conjectures

main theorem

Theorem (Bültel)

Let $p \neq 2$ be a prime and let (G, X) be a Shimura datum satisfying:

- G^{der} is a simply connected almost simple group of type E₇.
- G^{ad}_R possesses more than four times as many compact factors than non-compact ones.
- G^{ad}_{Qp} is quasisplit and G splits over the unramified extension K(𝔽_p) of degree f over Q_p.

Fix an embedding $\iota : K(\mathbb{F}_{p^f}) \to \mathbb{C}$. There exists a compact open subgroup $K_p \subset G(\mathbb{Q}_p)$, such that for any compact open subgroup $K^{\infty,p} \subset G(\mathbb{A}^{\infty,p})$ there exists a smooth projective $W(\mathbb{F}_{p^f})$ -scheme $_{K^{\infty,p}}\mathcal{M}$ of which the complexification (via ι) is isomorphic to $_{K_pK^{\infty,p}}\mathcal{M}(G,X)$.

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Plan

Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures

2 Construction of $\mathfrak{M}_n^{\mathfrak{f}}$ and $_{K^{\infty,p}}\mathcal{M}$

- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem

8 Related results and questions

・ 同 ト ・ 三 ト ・

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

absolute Hodge cycles I

Definition

Let *n* be an integer. A *pure Hodge structure of weight n* is a finite dimensional \mathbb{Q} -vector space *V* which is equipped with a decomposition $\mathbb{C} \otimes V = \bigoplus_{p+q=n} V^{p,q}$ such that $V^{q,p}$ is the complex conjugate of $V^{p,q}$.

If *n* is even, there exists a unique Hodge structure of weight *n* on the \mathbb{Q} -vector space $(2i\pi)^{n/2}$, which is denoted by $\mathbb{Q}(n/2)$.

Let *Y* be a smooth projective complex variety. It is known that for every non-negative integer *n*, the \mathbb{Q} -vector space $H^n(Y, \mathbb{Q})$ possesses a natural Hodge structure of weight *n*. A Hodge structure is just a direct sum of pure Hodge structures (of different weights), for example $\bigoplus_{n=0}^{2 \dim Y} H^n(Y, \mathbb{Q})$.

ヘロン ヘアン ヘビン ヘビン

э

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

absolute Hodge cycles II

Conjecture (Hodge)

Every morphism from $H^{2p}(Y, \mathbb{Q})$ to $\mathbb{Q}(-p)$ (in the category of Hodge structures) arises from a \mathbb{Q} -linear combination of *p*-dimensional subvarieties *Z* by means of $Z \rightsquigarrow (\eta \mapsto \int_{Z} \eta)$.

A strong evidence for this conjecture is the following result:

Theorem (Deligne)

Every Hodge cycle on an abelian variety Y over an algebraically closed subfield of \mathbb{C} is an absolute Hodge cycle: Automorphisms of the field of complex numbers preserve Hodgeness of p-cycles, when regarded as elements of

 $H^{2p}_{dB}(Y)(p) \times H^{2p}_{et}(Y, \hat{\mathbb{Z}}(p)).$

 $\begin{array}{l} \text{Shimura Varieties}\\ \text{Construction of }\mathfrak{M}_{n}^{\mathfrak{f}} \text{ and }_{K^{\infty},p}\mathcal{M}\\ \text{Related results and questions} \end{array}$

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

\mathcal{O}_L -linear tensor products of period lattices I

Let *L* be a CM field of finite degree over \mathbb{Q} , and suppose that \mathcal{O}_L acts on three principally polarized abelian varieties (Y_1, λ_1) , (Y_2, λ_2) and (Y_3, λ_3) , of dimension $\frac{n_1[L:\mathbb{Q}]}{2}$, $\frac{n_2[L:\mathbb{Q}]}{2}$ and $\frac{n_3[L:\mathbb{Q}]}{2}$ respectively.

The triple is called *multipliable* if for each embedding $\sigma : L \to \mathbb{C}$ at least one of the three σ -eigenspaces $\text{Lie}_{\sigma} Y_1$, $\text{Lie}_{\sigma} Y_2$ or $\text{Lie}_{\sigma} Y_3$ vanishes. In this case we obtain yet another principally polarized abelian variety

$$(\bigotimes_{i\in\{1,2,3\}}Y_i,\lambda)$$

again with \mathcal{O}_L -action by decreeing its period lattice to be:

$$H_1(\bigotimes_{i\in\{1,2,3\}}Y_i,\mathbb{Z})=H_1(Y_1,\mathbb{Z})\otimes_{\mathcal{O}_L}H_1(Y_2,\mathbb{Z})\otimes_{\mathcal{O}_L}H_1(Y_3,\mathbb{Z})(-1).$$

 $\begin{array}{l} \text{Shimura Varieties}\\ \text{Construction of }\mathfrak{M}_{n}^{\mathfrak{f}} \text{ and }_{K^{\infty},p}\mathcal{M}\\ \text{Related results and questions} \end{array}$

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

\mathcal{O}_L -linear tensor products of period lattices II

This formula can be expressed by saying that a certain element in

$$H^4(Y_1 \times Y_2 \times Y_3 \times \bigotimes_{i \in \{1,2,3\}} Y_i, \mathbb{Z}(2))$$

is a Hodge cycle, and therefore absolutely Hodge! In the algebraic context the assignment

$$(Y_1, Y_2, Y_3) \mapsto \bigotimes_{i \in \{1,2,3\}} Y_i$$

remains meaningful, provided that the characteristic of the ground field is odd and unramified in *L*.

ヘロト ヘワト ヘビト ヘビト

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Properties of \mathcal{O}_L -linear tensor products

Recall the ℓ -adic Tate module $T_{\ell}(Y) := \lim_{n \to \infty} Y[\ell^n]$ for any abelian variety *Y* over some fixed field $k \supset \mathbb{F}_{p^f}$ and prime $\ell \neq p$.

Proposition

 $\mathsf{End}_{\mathcal{O}_L}(Y_1) \otimes_{\mathcal{O}_L} \mathsf{End}_{\mathcal{O}_L}(Y_2) \otimes_{\mathcal{O}_L} \mathsf{End}_{\mathcal{O}_L}(Y_3) \subset \mathsf{End}_{\mathcal{O}_L}(\bigotimes_{i \in \{1,2,3\}}^{i} Y_i)$

holds for every multipliable triple (Y_1, Y_2, Y_3) , respecting:

$$T_{\ell}(Y_1) \otimes_{\mathcal{O}_L} T_{\ell}(Y_2) \otimes_{\mathcal{O}_L} T_{\ell}(Y_3)(1) \cong T_{\ell}(\bigotimes_{i \in \{1,2,3\}} Y_i)$$
$$\mathbb{D}(Y_1) \otimes_{\mathcal{O}_L} \mathbb{D}(Y_2) \otimes_{\mathcal{O}_L} \mathbb{D}(Y_3)(1) \cong \mathbb{D}(\bigotimes_{i \in \{1,2,3\}} Y_i)$$

ヘロマ ヘロマ ヘロマ

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Plan

Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures

2 Construction of $\mathfrak{M}_n^{\mathfrak{f}}$ and $_{K^{\infty,p}}\mathcal{M}$

- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem

8 Related results and questions

< 🗇 🕨

- < ⊒ > <

 $\begin{array}{l} \text{Shimura Varieties}\\ \text{Construction of }\mathfrak{M}_{n}^{\mathfrak{f}} \text{ and }_{K^{\infty},p}\mathcal{M}\\ \text{Related results and questions} \end{array}$

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Poly-unitary Shimura data I

- a hyperspecial subgroup U_p ⊂ G₀(K(𝔽_{p^f})), where G₀ is such that G = Res_{L⁺/Q} G₀
- a totally imaginary quadratic extension L of L⁺ which is unramified at p
- a triple of homomorphisms ρ_i : G₀ → GU(V_i/L, Ψ_i) rendering each Ψ_i a skew-Hermitian polarization on V_i and such that G₀ is the intersection of the stabilizers of

$$\operatorname{End}_{G_0}(V_1 \otimes_L V_2 \otimes_L V_3),$$

and $\operatorname{End}_{G_0}(V_i)$ for every $i \in \{1, 2, 3\}$.

- U_p -invariant, self-dual \mathcal{O}_L -lattices $\mathfrak{V}_i \subset V_i$
- an ideal $\mathfrak{f} \subset (1 + p\mathcal{O}_{L^+})^{-1}\mathcal{O}_{L^+}$ and a non-negative integer n which is coprime to p

 $\begin{array}{l} \text{Shimura Varieties}\\ \text{Construction of }\mathfrak{M}_{n}^{\mathfrak{f}} \text{ and }_{K^{\infty},p}\mathcal{M}\\ \text{Related results and questions} \end{array}$

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Poly-unitary Shimura data II

Let the $W(\mathbb{F}_{p^f})$ -scheme $\mathfrak{M}_n^{\mathfrak{f}}$ be defined by the moduli problem that assigns to given $S/W(\mathbb{F}_{p^f})$ the following set of data:

- a multipliable triple of principally polarized abelian S-schemes (Y_i, λ_i)_{1≤i≤3} with O_L-operation
- Rosati-invariant and \mathcal{O}_L -linear homomorphisms

$$\iota_{\{1,2,3\}}: \mathcal{O}_L + \mathfrak{f} \operatorname{End}_{G_0}(\mathfrak{V}_1 \otimes_{\mathcal{O}_L} \mathfrak{V}_2 \otimes_{\mathcal{O}_L} \mathfrak{V}_3) \to \operatorname{End}_{\mathcal{O}_L}(\bigotimes_{i \in \{1,2,3\}}^{\cdot} Y_i)$$

and $\iota_i : \mathcal{O}_L + \mathfrak{f} \operatorname{End}_{G_0}(\mathfrak{V}_i) \to \operatorname{End}_{\mathcal{O}_L}(Y_i)$ for every $i \in \{1, 2, 3\}$

• level *n*-structures $\eta_i : \mathfrak{V}_i/n\mathfrak{V}_i \xrightarrow{\cong} Y_i[n]$, compatible with $\iota_{\{1,2,3\}}$ and ι_i for every $i \in \{1,2,3\}$ N.B.: End_{G₀}($\mathfrak{V}_1 \otimes_{\mathcal{O}_L} \mathfrak{V}_2 \otimes_{\mathcal{O}_L} \mathfrak{V}_3$) (resp. End_{G₀}(\mathfrak{V}_i)) acts on $(\bigotimes_{i \in \{1,2,3\}} Y_i)[n]$ (resp. $Y_i[n]$).

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Plan

Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures

2 Construction of $\mathfrak{M}_n^{\mathfrak{f}}$ and $_{K^{\infty,p}}\mathcal{M}$

- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem

8 Related results and questions

・ 同 ト ・ 三 ト ・

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

A commutative diagram I

Fix a reductive group scheme \mathcal{G} over \mathbb{Z}_p and let μ be a cocharacter of $\mathcal{G}_{W(\mathbb{F}_{p^f})}$ all of whose weights in Lie \mathcal{G} are contained in the set $\{-1, 0, 1\}$. To this data one associates a canonical fpqc stack $\mathcal{B}(\mathcal{G},\mu)$ over $W(\mathbb{F}_{p^f})$. Its points over an algebraically closed field $k \supset \mathbb{F}_{p^f}$ are given by the quotient $\mathcal{G}(W(k))\mu(p)\mathcal{G}(W(k))/\sim$ where $b_2 \sim b_1$ if and only if $b_2 = g^{-1} b_1^F g$ for some $g \in \mathcal{G}(W(k))$ (Bültel, Hedayatzadeh, Lau, Pappas). The integral models of a Shimura variety $_{K^{\infty}}M(G,X)$ are expected to allow a morphism to $\mathcal{B}(\mathcal{G},\mu_X)$, where μ_X arises from the Shimura datum (G, X) and G is the reductive \mathbb{Z}_p -model of *G* whose \mathbb{Z}_p -points $\mathcal{G}(\mathbb{Z}_p)$ yield the hyperspecial factor K_p of the level $K^{\infty} = K_p K^{\infty,p}$.

ヘロア 人間 アメヨア 人口 ア

 $\begin{array}{l} \text{Shimura Varieties}\\ \text{Construction of }\mathfrak{M}_{n}^{\mathfrak{f}} \text{ and }_{K^{\infty},p}\mathcal{M}\\ \text{Related results and questions} \end{array}$

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

A commutative diagram II

Let $\mathfrak{B}^{\mathfrak{f}}$ be the *p*-divisible group version of the moduli problem $\mathfrak{M}_n^{\mathfrak{f}}$. Spurred by the aforementioned expectation, one constructs a commutative diagram

with horizontal arrows being formally étale and $_{K^{\infty,p}}\overline{\mathcal{M}} \to \mathfrak{M}_n^{\dagger}$ being radicial and universally closed.

ヘロン 人間 とくほ とくほ とう

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

A commutative diagram III

Theorem

The \mathbb{F}_{p^f} -variety $_{K^{\infty,p}}\overline{\mathcal{M}}$ is smooth and it possesses a lift $_{K^{\infty,p}}\mathcal{M}$, of which the generic fiber is a finite union of quotients of X by congruence subgroups.

The lift is exhibited by requiring that the map to $\mathcal{B}(\mathcal{G}, \mu_X)$ extends to $_{K^{\infty,\rho}}\mathcal{M}$. The characterization of the universal covering space follows works of Varshavsky (e.g. in: J. of Differential Geom. 49(1998), p.75-113). The congruence subgroups are obtained from applying a theorem of Prasad and Rapinchuk in: Inst. Hautes Études Sci. Publ. Math. 84(1996), p.91-187.

ヘロト ヘワト ヘビト ヘビト

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Definition of Flex^T I

Recall that an *F*-crystal over an algebraically closed field *k* of characteristic *p* is a pair (*M*, *F*), where *M* is a finitely generated torsion free W(k)-module and $F : M \to M$ is a Frobenius-linear injective map.

Lemma

Consider some $\mathbb{Z}/r\mathbb{Z}$ -grading $\bigoplus_{i=0}^{r-1} M_i$ on some F-crystal (M, F), satisfying $F(M_i) = M_{i+1}$ for $i \in \{1, \ldots, r-1\}$ and $p^w M_1 \subset F(M_0) \subset M_1$ for some $w \leq r$. Then $M'_i := F^i M_0 + p^{\max\{w-i,0\}} M_i$ for $i \in \{0, \ldots, r-1\}$ defines a $\mathbb{Z}/r\mathbb{Z}$ -graded Dieudonné module over k with $p^{w-1}M \subset M' \subset M$, *i.e.* $pM' \subset F(M') \subset M' = \bigoplus_{i=0}^{r-1} M'_i$.

イロト イポト イヨト イヨト

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Definition of Flex^T II

Notice that giving a $\mathbb{Z}/r\mathbb{Z}$ -gradation on an *F*-crystal over *k* is equivalent to giving a action of $W(\mathbb{F}_{p^r})$ thereon, this is due to $W(\mathbb{F}_{p^r}) \otimes_{\mathbb{Z}_p} W(k) \cong W(k)^r$.

Corollary

Suppose that three $\mathbb{Z}/r\mathbb{Z}$ -graded F-crystals K, L and M satisfy the assumptions of the previous lemma, but in addition assume that $3w \leq r$ holds. Moreover, let M' be the Dieudonné lattice as in the previous lemma, but in addition consider $L'_i := F^i L_0 + p^{\max\{2w-i,0\}} L_i$ and $K'_i := F^i K_0 + p^{\max\{3w-i,0\}} K_i$ for $i \in \{0, ..., r-1\}$. Then all of $K' \subset K$, $L' \subset L$, $M' \subset M$ and $K' \otimes_{W(\mathbb{F}_{p^r})} L' \otimes_{W(\mathbb{F}_{p^r})} M' \subset K \otimes_{W(\mathbb{F}_{p^r})} L \otimes_{W(\mathbb{F}_{p^r})} M$ are $\mathbb{Z}/r\mathbb{Z}$ -graded Dieudonné lattices.

イロト イ理ト イヨト イヨト

э

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Definition of Flex^T III

From now on:

- Assume that G(ℝ) has only one single non-compact factor, in particular G₀ is simple.
- Assume that *p* is inert in *L*⁺ but splits in *L*, so that Z_p ⊗ *O*_{L⁺} ≅ *W*(𝔽_{p^r}) and ℤ_p ⊗ *O*_L ≅ *W*(𝔽_{p^r}) ⊕ *W*(𝔽_{p^r}).

 Observe that this induces a splitting ρ_i ≅ ρ_i ⊕ ğ_i for some representation ρ_i of *G*_{0,*W*(𝔽_{p^r})}
- Assume that the μ-weights of *ρ_i* are contained in the set {0,..., w}

ヘロン 人間 とくほ とくほ とう

Hodge cycles Poly-unitary moduli problems Proof of the main theorem

Definition of Flex^T IV

Sketch

- Take some $b \in \mathcal{G}(W(k))\mu(p)\mathcal{G}(W(k))/\sim$
- 2 Using ϱ_1 , ϱ_2 and ϱ_3 yields $\mathbb{Z}/r\mathbb{Z}$ -graded *F*-crystals *K*, *L* and *M* over *k*, moreover $\operatorname{End}_{G_0}(\mathfrak{V}_1 \otimes_{\mathcal{O}_L} \mathfrak{V}_2 \otimes_{\mathcal{O}_L} \mathfrak{V}_3)$ (resp. $\operatorname{End}_{G_0}(\mathfrak{V}_i)$) acts on $K \otimes_{W(\mathbb{F}_{p^r})} L \otimes_{W(\mathbb{F}_{p^r})} M$ (resp. *K*, *L* and *M*).
- Solution Applying the corollary yields Z/rZ-graded Dieudonné lattices K', L' and M', moreover p^{3w-1} End_{G0}(𝔅₁ ⊗_{CL} 𝔅₂ ⊗_{CL} 𝔅₃) (resp. p^w End_{G0}(𝔅_i)) acts on K' ⊗_{W(Fpr)} L' ⊗_{W(Fpr)} M' (resp. on K', L' and M').

Take $f = p^{3w-1}$. The triple K', L' and M' together with these four actions gives rise to: $\operatorname{Flex}^{\mathsf{T}}(b) \in \mathfrak{B}^{\mathfrak{f}}(k)$

イロト イポト イヨト イヨト

ъ

p-adic Hodge theory

- Can one use *p*-adic Hodge theory to describe _{K_pK∞,p}M(G, X) in terms of _{K∞,p}M as K_p varies?
- **2** Is the level structure K_p occuring in theorem 5 hyperspecial?
- Are the adelic representations coming from the local systems on _{K_pK^{∞,p}}M(G, X) crystalline? (They are deRham according to a theorem of Ruochuan Liu and Xinwen Zhu, Inv. Math. 207)

ヘロト ヘアト ヘビト ヘビト

Rational Tate cycles

- Can one use Deligne's theory of absolute Hodge cycles in positive characteristic ("Rational Tate cycles" in the sense of J. Milne)?
- Could this give a less roundabout way to prove that End_{O_L}(Y₁) ⊗_{O_L} End_{O_L}(Y₂) ⊗_{O_L} End_{O_L}(Y₃) is contained in End_{O_L}(⊗_{i∈{1,2,3}}Y_i)?

ヘロン 人間 とくほ とくほ とう

-