Shimura varieties modulo p with many compact factors

Oliver Bültel

May 11th, 2021
Istanbul

Plan I

(1) Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures
(2) Construction of \mathfrak{M}_{n}^{f} and $K^{\infty, p} \mathcal{M}$
- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem
(3) Related results and questions

Plan

(1) Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures
(2) Construction of \mathfrak{M}_{n}^{f} and $k^{\infty, p} \mathcal{M}$
- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem
(3) Related results and questions

Siegel space I

Fix an auxiliary integer $n \geq 3$. By a level n-structure on an abelian g-fold Y we mean a group isomorphism from $(\mathbb{Z} / n \mathbb{Z})^{2 g}$ to $Y[n]$ taking the Weil pairing on $Y[n]$ to a multiple of the standard alternating pairing on $(\mathbb{Z} / n \mathbb{Z})^{2 g}$ (i.e. $\left.x^{t} J_{g} x\right)$. The following result is basic to the study of moduli spaces of polarized abelian g-folds.

Theorem (Mumford)

The functor that takes a scheme S to the set of isomorphism classes of principally polarized abelian schemes of relative dimension g with level-n structure is representable by a quasi-projective $\mathbb{Z}\left[\frac{1}{n}\right]$-scheme. This scheme is smooth of relative dimension $\frac{g(g+1)}{2}$, and traditionally denoted by $\mathcal{A}_{g, n}$.

Siegel space II

Historically the knowledge of the mere set $\mathcal{A}_{g, n}(\mathbb{C})$ preceded the above result, to describe it in the modern adelic language we need a little bit of notation:

- Let $K_{\infty} \subset G S p(2 g, \mathbb{R})$ be the centralizer of $\left(\begin{array}{cc}a E_{g} & -b E_{g} \\ b E_{g} & a E_{g}\end{array}\right)$ (Deligne torus).
- Let K^{∞} be the kernel of $\operatorname{GSp}(2 g, \hat{\mathbb{Z}}) \rightarrow \mathrm{GSp}(2 g, \mathbb{Z} / n \mathbb{Z})$, where $\hat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z}.

Siegel space III

K^{∞} is a compact open subgroup of $\operatorname{GSp}\left(2 g, \mathbb{A}^{\infty}\right)$, where $\mathbb{A}^{\infty}=\mathbb{Q} \otimes \hat{\mathbb{Z}}$ is the ring of finite adeles, and $K_{\infty} K^{\infty}$ is a subgroup of $\operatorname{GSp}(2 g, \mathbb{A})$, where $\mathbb{A}=\mathbb{R} \times \mathbb{A}^{\infty}$ is the ring of adeles.

Theorem (Riemann)

There exists a canonical bijection between $\mathcal{A}_{g, n}(\mathbb{C})$ and the complex orbifold $\mathrm{GSp}(2 g, \mathbb{Q}) \backslash \mathrm{GSp}(2 g, \mathbb{A}) / K_{\infty} K^{\infty}$ (which has $\phi(n)$ connected components, each of which look like $\left.\Gamma_{g}(n) \backslash \mathfrak{h}_{g}\right)$.

The above double quotient may also be written as

$$
\operatorname{GSp}(2 g, \mathbb{Q}) \backslash\left(\mathfrak{h}_{g}^{ \pm} \times \operatorname{GSp}\left(2 g, \mathbb{A}^{\infty}\right)\right) / K^{\infty}
$$

where $\mathfrak{h}_{g}^{ \pm}:=G S p(2 g, \mathbb{R}) / K_{\infty}$ is the so-called double half-space.

Plan

(1) Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures
(2) Construction of \mathfrak{M}_{n} and $K_{\infty, p} \mathcal{M}$
- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem
(3) Related results and questions

Shimura data I

Deligne's notion of Shimura datum (G, X) axiomatizes the properties of $\left(G S p(2 g), \mathfrak{h}_{g}^{ \pm}\right)$. To any such pair he attaches a canonical number field (called the reflex field) and an adelic system of complex manifolds

$$
K_{\infty} M(G, X):=G(\mathbb{Q}) \backslash\left(X \times G\left(\mathbb{A}^{\infty}\right)\right) / K^{\infty}
$$

as K^{∞} runs through the set of compact open subgroups of $G\left(\mathbb{A}^{\infty}\right)$. The projective limit acquires a right $G\left(\mathbb{A}^{\infty}\right)$-action and is denoted $M(G, X)$.

Shimura data II

Theorem (Baily-Borel, Deligne, Milne, Borovoi)
 If (G, X) and K^{∞} are as above, then
 $K^{\infty} M(G, X)=M(G, X) / K^{\infty}$ is a quasi-projective variety possessing a canonical model over the reflex field E.

Fix a prime number p. The group K^{∞} might allow a factorization into a hyperspecial subgroup $K_{p} \subset G\left(\mathbb{Q}_{p}\right)$ and some other compact open $K^{\infty, p} \subset G\left(\mathbb{A}^{\infty, p}\right)$. In this case p is unramified in E and one expects $K^{\infty} M(G, X)$ to have "good reduction" at all divisors $\operatorname{Spec} \mathcal{O}_{E} \ni \mathfrak{p} \mid p$, more specifically we have:

Shimura data III

Conjecture (Langlands)

Assume that $G^{a d}$ is anisotropic and that $K^{\infty}=K_{p} K^{\infty, p}$ holds for some hyperspecial group K_{p}. Then $K^{\infty} M(G, X)$ can be extended to a smooth projective scheme \mathcal{M} over the semi-local number ring $\left(1+p \mathcal{O}_{E}\right)^{-1} \mathcal{O}_{E}$.

One says that a Shimura datum (G, X) is of Hodge type if there exists an embedding $(G, X) \hookrightarrow\left(G S p(2 g), \mathfrak{h}_{g}^{ \pm}\right)$for some g. For this class of Shimura data the conjecture is known to be true if $p \neq 2$, thanks to works of Mark Kisin and Adrian Vasiu, who proved a more specific statement, which was previously conjectured by James Milne.

main theorem

Theorem (Bültel)

Let $p \neq 2$ be a prime and let (G, X) be a Shimura datum satisfying:

- $G^{d e r}$ is a simply connected almost simple group of type E_{7}.
- $G_{\mathbb{R}}^{a d}$ possesses more than four times as many compact factors than non-compact ones.
- $G_{\mathbb{Q}_{p}}^{a d}$ is quasisplit and G splits over the unramified extension $K\left(\mathbb{F}_{p^{f}}\right)$ of degree f over \mathbb{Q}_{p}.
Fix an embedding $\iota: K\left(\mathbb{F}_{p^{f}}\right) \rightarrow \mathbb{C}$. There exists a compact open subgroup $K_{p} \subset G\left(\mathbb{Q}_{p}\right)$, such that for any compact open subgroup $K^{\infty, p} \subset G\left(\mathbb{A}^{\infty, p}\right)$ there exists a smooth projective $W\left(\mathbb{F}_{p^{f}}\right)$-scheme ${ }_{K^{\infty, p}} \mathcal{M}$ of which the complexification (via ι) is isomorphic to $K_{p} K^{\infty, p} M(G, X)$.

Plan

(1) Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures
(2) Construction of \mathfrak{M}_{n}^{f} and $K^{\infty, p} \mathcal{M}$
- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem
(3) Related results and questions

absolute Hodge cycles I

Definition

Let n be an integer. A pure Hodge structure of weight n is a finite dimensional \mathbb{Q}-vector space V which is equipped with a decomposition $\mathbb{C} \otimes V=\oplus_{p+q=n} V^{p, q}$ such that $V^{q, p}$ is the complex conjugate of $V^{p, q}$.
If n is even, there exists a unique Hodge structure of weight n on the \mathbb{Q}-vector space $(2 i \pi)^{n / 2}$, which is denoted by $\mathbb{Q}(n / 2)$.

Let Y be a smooth projective complex variety. It is known that for every non-negative integer n, the \mathbb{Q}-vector space $H^{n}(Y, \mathbb{Q})$ possesses a natural Hodge structure of weight n. A Hodge structure is just a direct sum of pure Hodge structures (of different weights), for example $\oplus_{n=0}^{2 \operatorname{dim} Y} H^{n}(Y, \mathbb{Q})$.

absolute Hodge cycles II

Conjecture (Hodge)

Every morphism from $H^{2 p}(Y, \mathbb{Q})$ to $\mathbb{Q}(-p)$ (in the category of Hodge structures) arises from a \mathbb{Q}-linear combination of p-dimensional subvarieties Z by means of $Z \leadsto\left(\eta \mapsto \int_{Z} \eta\right)$.

A strong evidence for this conjecture is the following result:

Theorem (Deligne)

Every Hodge cycle on an abelian variety Y over an algebraically closed subfield of \mathbb{C} is an absolute Hodge cycle: Automorphisms of the field of complex numbers preserve Hodgeness of p-cycles, when regarded as elements of

$$
H_{d R}^{2 p}(Y)(p) \times H_{e t}^{2 p}(Y, \hat{\mathbb{Z}}(p)) .
$$

\mathcal{O}_{L}-linear tensor products of period lattices I

Let L be a CM field of finite degree over \mathbb{Q}, and suppose that \mathcal{O}_{L} acts on three principally polarized abelian varieties $\left(Y_{1}, \lambda_{1}\right)$, $\left(Y_{2}, \lambda_{2}\right)$ and $\left(Y_{3}, \lambda_{3}\right)$, of dimension $\frac{n_{1}[L: \mathbb{Q}]}{2}, \frac{n_{2}[L: \mathbb{Q}]}{2}$ and $\frac{n_{3}[L: \mathbb{Q}]}{2}$ respectively.
The triple is called multipliable if for each embedding $\sigma: L \rightarrow \mathbb{C}$ at least one of the three σ-eigenspaces $\operatorname{Lie}_{\sigma} Y_{1}, \operatorname{Lie}_{\sigma} Y_{2}$ or $\mathrm{Lie}_{\sigma} Y_{3}$ vanishes. In this case we obtain yet another principally polarized abelian variety

$$
\left(\dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}, \lambda\right)
$$

again with \mathcal{O}_{L}-action by decreeing its period lattice to be:
$H_{1}\left(\dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}, \mathbb{Z}\right)=H_{1}\left(Y_{1}, \mathbb{Z}\right) \otimes_{\mathcal{O}_{L}} H_{1}\left(Y_{2}, \mathbb{Z}\right) \otimes_{\mathcal{O}_{L}} H_{1}\left(Y_{3}, \mathbb{Z}\right)(-1)$.

\mathcal{O}_{L}-linear tensor products of period lattices II

This formula can be expressed by saying that a certain element in

$$
H^{4}\left(Y_{1} \times Y_{2} \times Y_{3} \times \dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}, \mathbb{Z}(2)\right)
$$

is a Hodge cycle, and therefore absolutely Hodge! In the algebraic context the assignment

$$
\left(Y_{1}, Y_{2}, Y_{3}\right) \mapsto \dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}
$$

remains meaningful, provided that the characteristic of the ground field is odd and unramified in L.

Properties of \mathcal{O}_{L}-linear tensor products

Recall the ℓ-adic Tate module $T_{\ell}(Y):=\lim _{n} Y\left[\ell^{n}\right]$ for any abelian variety Y over some fixed field $k \supset \mathbb{F}_{p^{t}}$ and prime $\ell \neq p$.

Proposition

$\operatorname{End}_{\mathcal{O}_{L}}\left(Y_{1}\right) \otimes_{\mathcal{O}_{L}} \operatorname{End}_{\mathcal{O}_{L}}\left(Y_{2}\right) \otimes_{\mathcal{O}_{L}} \operatorname{End}_{\mathcal{O}_{L}}\left(Y_{3}\right) \subset \operatorname{End}_{\mathcal{O}_{L}}\left(\dot{\otimes}_{i \in\{1,2,3\}} Y_{i}\right)$ holds for every multipliable triple $\left(Y_{1}, Y_{2}, Y_{3}\right)$, respecting:

$$
\begin{aligned}
& T_{\ell}\left(Y_{1}\right) \otimes \mathcal{O}_{L} T_{\ell}\left(Y_{2}\right) \otimes_{\mathcal{O}_{L}} T_{\ell}\left(Y_{3}\right)(1) \cong T_{\ell}\left(\dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}\right) \\
& \mathbb{D}\left(Y_{1}\right) \otimes_{\mathcal{O}_{L}} \mathbb{D}\left(Y_{2}\right) \otimes_{\mathcal{O}_{L}} \mathbb{D}\left(Y_{3}\right)(1) \cong \mathbb{D}\left(\dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}\right)
\end{aligned}
$$

Plan

(1) Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures
(2) Construction of \mathfrak{M}_{n}^{f} and $K^{\infty, p} \mathcal{M}$
- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem
(3) Related results and questions

Poly-unitary Shimura data I

- a hyperspecial subgroup $U_{p} \subset G_{0}\left(K\left(\mathbb{F}_{p^{t}}\right)\right)$, where G_{0} is such that $G=\operatorname{Res}_{L_{+} / \mathbb{Q}} G_{0}$
- a totally imaginary quadratic extension L of L^{+}which is unramified at p
- a triple of homomorphisms $\rho_{i}: G_{0} \rightarrow \mathrm{GU}\left(V_{i} / L, \Psi_{i}\right)$ rendering each Ψ_{i} a skew-Hermitian polarization on V_{i} and such that G_{0} is the intersection of the stabilizers of
$\operatorname{End}_{G_{0}}\left(V_{1} \otimes_{L} V_{2} \otimes_{L} V_{3}\right)$,
and $\operatorname{End}_{G_{0}}\left(V_{i}\right)$ for every $i \in\{1,2,3\}$.
- U_{p}-invariant, self-dual \mathcal{O}_{L}-lattices $\mathfrak{V}_{i} \subset V_{i}$
- an ideal $\mathfrak{f} \subset\left(1+p \mathcal{O}_{L^{+}}\right)^{-1} \mathcal{O}_{L^{+}}$and a non-negative integer n which is coprime to p

Poly-unitary Shimura data II

Let the $W\left(\mathbb{F}_{p^{t}}\right)$-scheme \mathfrak{M}_{n}^{f} be defined by the moduli problem that assigns to given $S / W\left(\mathbb{F}_{p^{t}}\right)$ the following set of data:

- a multipliable triple of principally polarized abelian S-schemes $\left(Y_{i}, \lambda_{i}\right)_{1 \leq i \leq 3}$ with \mathcal{O}_{L}-operation
- Rosati-invariant and \mathcal{O}_{L}-linear homomorphisms

$$
\iota_{\{1,2,3\}}: \mathcal{O}_{L}+\mathfrak{f} \operatorname{End}_{G_{0}}\left(\mathfrak{V}_{1} \otimes \mathcal{O}_{\mathcal{L}} \mathfrak{V}_{2} \otimes \mathcal{O}_{\mathcal{L}} \mathfrak{V}_{3}\right) \rightarrow \operatorname{End}_{\mathcal{O}_{\mathcal{L}}}\left(\dot{\bigotimes}_{i \in\{1,2,3\}} Y_{i}\right)
$$

and $\iota_{i}: \mathcal{O}_{L}+\mathfrak{f} \operatorname{End}_{G_{0}}\left(\mathfrak{V}_{i}\right) \rightarrow \operatorname{End}_{\mathcal{O}_{L}}\left(Y_{i}\right)$ for every $i \in\{1,2,3\}$

- level n-structures $\eta_{i}: \mathfrak{V}_{i} / n \mathfrak{V}_{i} \xlongequal{\cong} Y_{i}[n]$, compatible with $\iota_{\{1,2,3\}}$ and ι_{i} for every $i \in\{1,2,3\}$
N.B.: $\operatorname{End}_{G_{0}}\left(\mathfrak{V}_{1} \otimes_{\mathcal{O}_{L}} \mathfrak{V}_{2} \otimes_{\mathcal{O}_{L}} \mathfrak{V}_{3}\right)\left(\right.$ resp. End $\left.G_{G_{0}}\left(\mathfrak{V}_{i}\right)\right)$ acts on $\left(\dot{\otimes}_{i \in\{1,2,3\}} Y_{i}\right)[n]$ (resp. $\left.Y_{i}[n]\right)$.

Plan

(1) Shimura Varieties

- Theorems of Riemann and Mumford
- Integral Models: Results and Conjectures
(2) Construction of \mathfrak{M}_{n}^{f} and $K^{\infty, p} \mathcal{M}$
- Hodge cycles
- Poly-unitary moduli problems
- Proof of the main theorem
(3) Related results and questions

A commutative diagram I

Fix a reductive group scheme \mathcal{G} over \mathbb{Z}_{p} and let μ be a cocharacter of $\mathcal{G}_{W\left(\mathbb{F}_{p^{t}}\right)}$ all of whose weights in Lie \mathcal{G} are contained in the set $\{-1,0,1\}$. To this data one associates a canonical fpqc stack $\mathcal{B}(\mathcal{G}, \mu)$ over $W\left(\mathbb{F}_{p^{t}}\right)$. Its points over an algebraically closed field $k \supset \mathbb{F}_{p^{t}}$ are given by the quotient $\mathcal{G}(W(k)) \mu(p) \mathcal{G}(W(k)) / \sim$ where $b_{2} \sim b_{1}$ if and only if $b_{2}=g^{-1} b_{1}{ }^{F} g$ for some $g \in \mathcal{G}(W(k))$ (Bültel, Hedayatzadeh, Lau, Pappas). The integral models of a Shimura variety $\kappa_{\infty} M(G, X)$ are expected to allow a morphism to $\mathcal{B}\left(\mathcal{G}, \mu_{x}\right)$, where μ_{X} arises from the Shimura datum (G, X) and \mathcal{G} is the reductive \mathbb{Z}_{p}-model of G whose \mathbb{Z}_{p}-points $\mathcal{G}\left(\mathbb{Z}_{p}\right)$ yield the hyperspecial factor K_{p} of the level $K^{\infty}=K_{p} K^{\infty, p}$.

A commutative diagram II

Let $\mathfrak{B}^{\mathfrak{f}}$ be the p-divisible group version of the moduli problem \mathfrak{M}_{n}^{f}. Spurred by the aforementioned expectation, one constructs a commutative diagram

$$
\begin{aligned}
& K_{\infty, p} \overline{\mathcal{M}} \longrightarrow \overline{\mathcal{B}}\left(\mathcal{G}, \mu_{X}\right) \\
& \downarrow \\
& \text { Flex }^{\top} \downarrow \\
& \mathfrak{M}_{n}^{\mathfrak{f}} \longrightarrow \mathfrak{B}^{\mathfrak{f}}
\end{aligned}
$$

with horizontal arrows being formally étale and ${ }_{K^{\infty, p}} \overline{\mathcal{M}} \rightarrow \mathfrak{M}_{n}^{f}$ being radicial and universally closed.

A commutative diagram III

Theorem

The $\mathbb{F}_{p^{t}}$-variety $k_{k^{\infty, p}} \overline{\mathcal{M}}$ is smooth and it possesses a lift $K_{K^{\infty, p}} \mathcal{M}$, of which the generic fiber is a finite union of quotients of X by congruence subgroups.

The lift is exhibited by requiring that the map to $\mathcal{B}\left(\mathcal{G}, \mu_{X}\right)$ extends to $K_{\infty, p} \mathcal{M}$. The characterization of the universal covering space follows works of Varshavsky (e.g. in: J. of Differential Geom. 49(1998), p.75-113). The congruence subgroups are obtained from applying a theorem of Prasad and Rapinchuk in: Inst. Hautes Études Sci. Publ. Math. 84(1996), p.91-187.

Definition of Flex ${ }^{\top}$ |

Recall that an F-crystal over an algebraically closed field k of characteristic p is a pair (M, F), where M is a finitely generated torsion free $W(k)$-module and $F: M \rightarrow M$ is a Frobenius-linear injective map.

Lemma

Consider some $\mathbb{Z} / r \mathbb{Z}$-grading $\bigoplus_{i=0}^{r-1} M_{i}$ on some F-crystal (M, F), satisfying $F\left(M_{i}\right)=M_{i+1}$ for $i \in\{1, \ldots, r-1\}$ and $p^{w} M_{1} \subset F\left(M_{0}\right) \subset M_{1}$ for some $w \leq r$. Then
$M_{i}^{\prime}:=F^{i} M_{0}+p^{\max \{w-i, 0\}} M_{i}$ for $i \in\{0, \ldots, r-1\}$ defines a
$\mathbb{Z} / r \mathbb{Z}$-graded Dieudonné module over k with $p^{w-1} M \subset M^{\prime} \subset M$, i.e. $p M^{\prime} \subset F\left(M^{\prime}\right) \subset M^{\prime}=\bigoplus_{i=0}^{r-1} M_{i}^{\prime}$.

Definition of Flex^{\top} II

Notice that giving a $\mathbb{Z} / r \mathbb{Z}$-gradation on an F-crystal over k is equivalent to giving a action of $W\left(\mathbb{F}_{p^{r}}\right)$ thereon, this is due to $W\left(\mathbb{F}_{p^{r}}\right) \otimes_{\mathbb{Z}_{p}} W(k) \cong W(k)^{r}$.

Corollary

Suppose that three $\mathbb{Z} / r \mathbb{Z}$-graded F-crystals K, L and M satisfy the assumptions of the previous lemma, but in addition assume that $3 w \leq r$ holds. Moreover, let M^{\prime} be the Dieudonné lattice as in the previous lemma, but in addition consider
$L_{i}^{\prime}:=F^{i} L_{0}+p^{\max \{2 w-i, 0\}} L_{i}$ and $K_{i}^{\prime}:=F^{i} K_{0}+p^{\max \{3 w-i, 0\}} K_{i}$ for
$i \in\{0, \ldots, r-1\}$. Then all of $K^{\prime} \subset K, L^{\prime} \subset L, M^{\prime} \subset M$ and
$K^{\prime} \otimes{ }_{W\left(\mathbb{F}_{\left.p^{r}\right)}\right.} L^{\prime} \otimes{ }_{W\left(\mathbb{F}_{\left.p^{r}\right)}\right.} M^{\prime} \subset K \otimes W_{\left(\mathbb{F}_{p r}\right)} L \otimes{ }_{W\left(\mathbb{F}_{\left.p^{r}\right)}\right)} M$ are
$\mathbb{Z} / r \mathbb{Z}$-graded Dieudonné lattices.

Definition of Flex ${ }^{\top}$ III

From now on:

- Assume that $G(\mathbb{R})$ has only one single non-compact factor, in particular G_{0} is simple.
- Assume that p is inert in L^{+}but splits in L, so that $\mathbb{Z}_{p} \otimes \mathcal{O}_{L^{+}} \cong W\left(\mathbb{F}_{p^{r}}\right)$ and $\mathbb{Z}_{p} \otimes \mathcal{O}_{L} \cong W\left(\mathbb{F}_{p^{r}}\right) \oplus W\left(\mathbb{F}_{p^{r}}\right)$. Observe that this induces a splitting $\rho_{i} \cong \varrho_{i} \oplus \varrho_{i}$ for some representation ϱ_{i} of $G_{0, W\left(\mathbb{F}_{\left.\rho^{r}\right)}\right)}$
- Assume that the μ-weights of ϱ_{i} are contained in the set $\{0, \ldots, w\}$

Definition of Flex ${ }^{\top}$ IV

Sketch

(1) Take some $b \in \mathcal{G}(W(k)) \mu(p) \mathcal{G}(W(k)) / \sim$
(2) Using ϱ_{1}, ϱ_{2} and ϱ_{3} yields $\mathbb{Z} / r \mathbb{Z}$-graded F-crystals K, L and M over k, moreover End $G_{0}\left(\mathfrak{V}_{1} \otimes_{\mathcal{O}_{L}} \mathfrak{V}_{2} \otimes_{\mathcal{O}_{L}} \mathfrak{V}_{3}\right)$ (resp. End $_{G_{0}}\left(\mathfrak{V}_{i}\right)$) acts on $K \otimes_{W\left(\mathbb{F}_{\left.p^{r}\right)}\right.} L \otimes_{W\left(\mathbb{F}_{\left.p^{r}\right)}\right.} M$ (resp. K, L and M).
(3) Applying the corollary yields $\mathbb{Z} / r \mathbb{Z}$-graded Dieudonné lattices K^{\prime}, L^{\prime} and M^{\prime}, moreover $p^{3 w-1} \operatorname{End}_{G_{0}}\left(\mathfrak{V}_{1} \otimes_{\mathcal{O}_{L}} \mathfrak{V}_{2} \otimes_{\mathcal{O}_{L}} \mathfrak{V}_{3}\right)\left(\right.$ resp. p^{w} End $\left._{G_{0}}\left(\mathfrak{V}_{i}\right)\right)$ acts on $K^{\prime} \otimes{ }_{W\left(\mathbb{F}_{\left.p^{\prime}\right)}\right.} L^{\prime} \otimes_{W\left(\mathbb{F}_{\left.p^{r}\right)}\right.} M^{\prime}$ (resp. on K^{\prime}, L^{\prime} and M^{\prime}).
Take $\mathfrak{f}=p^{3 w-1}$. The triple K^{\prime}, L^{\prime} and M^{\prime} together with these four actions gives rise to: $\operatorname{Flex}^{\top}(b) \in \mathfrak{B}^{\mathfrak{f}}(k)$

p-adic Hodge theory

(1) Can one use p-adic Hodge theory to describe $K_{p} K^{\infty, p} M(G, X)$ in terms of $K^{\infty, p} \overline{\mathcal{M}}$ as K_{p} varies?
(2) Is the level structure K_{p} occuring in theorem 5 hyperspecial?
(3) Are the adelic representations coming from the local systems on $K_{p} K^{\infty}, p M(G, X)$ crystalline? (They are deRham according to a theorem of Ruochuan Liu and Xinwen Zhu, Inv. Math. 207)

Rational Tate cycles

- Can one use Deligne's theory of absolute Hodge cycles in positive characteristic ("Rational Tate cycles" in the sense of J. Milne)?
(2) Could this give a less roundabout way to prove that $\operatorname{End}_{\mathcal{O}_{L}}\left(Y_{1}\right) \otimes_{\mathcal{O}_{L}} \operatorname{End}_{\mathcal{O}_{L}}\left(Y_{2}\right) \otimes_{\mathcal{O}_{L}} \operatorname{End}_{\mathcal{O}_{L}}\left(Y_{3}\right)$ is contained in $\operatorname{End}_{\mathcal{O}_{L}}\left(\dot{\otimes}_{i \in\{1,2,3\}} Y_{i}\right)$?

