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Diophantine Equations

Diophantine Equation: an indeterminate polynomial equation with
integral coefficients for which integral solutions are sought

ax + by = c : linear equation

y2 = x3 + ax + b : elliptic curve

xn + yn + zn = 0 : Fermat’s equation

Axn + Byn + Czn = 0 : generalized Fermat’s Equation

xp + yq + z r = 0 : Fermat’s equation with signature (p, q, r)



Fermat’s Last Theorem

Fermat’s Last Theorem: The equation xn + yn + zn = 0,
where x , y , z and n are integers, has no non-trivial solutions
(xyz 6= 0) for n > 2.

It is sufficient to consider cases n = 4 and n is an odd prime.

n = 4 : Fermat
p = 3, 5, 7 : Euler, Legendre, Dirichlet, Gauss, Lamé

p is regular prime i.e. p - h(Q(ζp)), ζp = e2πi/p : Kummer

Theorem (Wiles,Taylor,1995)
Let p ≥ 3 be a prime. Then xp + yp + zp = 0 has no non-trivial
integer solutions.



Modular approach

Find an elliptic curve associated to a putative solution

Show that this elliptic curve has properties contradicting to
each other

1 Modularity theorem (Wiles, Taylor-Wiles)

2 Irreducibility of Galois representations (Mazur)

3 Level lowering theorem (Ribet)



Comparing Different Worlds

Elliptic Curves Modular Forms

f(z) =
∑
anq

ny2 = x3 + ax+ b

Galois Representations



Elliptic curves

Definition
An elliptic curve E over a field K is a smooth, projective algebraic
curve of genus one, on which there is a specified point O. The
point O is called point at infinity.

Given by y2 = x3 + ax + b, where a, b are in K if
char(K ) 6= 2, 3.
E (K ) = {(x , y) ∈ K 2 : y2 = x3 + Ax + B} ∪ {O}.
No cusp or self-intersection, E : y2 = x3 − 4x + 6 over R



Elliptic curves mod p

Given E , we can reduce it modulo p.

Then we say E has good reduction at p if the reduced curve
Ẽ is smooth.

We say E has bad reduction at p if the reduced curve Ẽ is
singular.

There can be only finitely many bad primes. The conductor of
E , denoted by NE , is an invariant of E which encodes the bad
primes.



Example
E : y2 = x3 − x + 1, find solutions mod 3.
E (F3) = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}. Note that point
at ∞ is always in the set of solutions, |E (F3)| = 7.

We can do this modulo many other primes p.
Say Np is the number of solutions mod p.

p 3 5 7 11 13 17 19 29 31 37 41
Np 7 8 12 10 19 14 22 37 35 36 51

Number of solutions increase as p increases.



Definition
For an elliptic curve E , define ap = p + 1− Np.

Can we predict ap?

For example, for E : y2 = x3 − x + 1 we have
p 3 5 7 11 13 17 19 29 31 37 41
Np 7 8 12 10 19 14 22 37 35 36 51
ap −3 −2 −4 2 −5 4 −2 −7 −3 2 −9



Modular Forms

A modular form of weight 2k wrt SL2(Z) is a holomorphic
function on the upper half plane satisfying :

f (az + b
cz + d ) = (cz + d)2k f (z),

(
a b
c d

)
∈ SL2(Z)

and a growth condition.

newform of level N: a special kind of modular form for the
group Γ0(N).

Modular forms have power series representations i.e. they can
be written as

∞∑
n=0

cnqn where q = e2πi .



Galois Representations

Let E/K be an elliptic curve and m ∈ Z with m ≥ 1. The
m-torsion subgroup of E , denoted by E [m], is the set of
points of E of order m,

E [m] = {P ∈ E (K ) : [m]P = O}.

E [m] = Z/mZ× Z/mZ if char(K ) = 0.

Let GK = Gal(K/K ) be the absolute Galois group of K . For
an elliptic curve E/K ,

ρE ,p : GK −→ Aut(E [p]) ∼= GL2(Fp)

denotes the mod p Galois representation of E .



Solving xp + yp + zp = 0

Three main ingredients:
Modularity Thm: Every elliptic curve over Q is associated to a
rational newform of level N i.e.
there is a newform f (z) =

∞∑
n=1

cnqn such that

cl = al (E ) = l + 1− |E (Fl )|.

Mazur’s Thm: If E is an elliptic curve over Q with full two
torsion then E doesn’t have any p isogenies for p ≥ 5
(irreducibility of Galois representations attached to the elliptic
curve for each p)

Ribet’s Thm: Sometimes it is possible, due to Ribet’s work, to
replace f by another newform of smaller level if we have
modularity of E and irreducibility of mod p Galois
representations.



Basic sketch

Suppose (a, b, c) is a solution.
Scale a, b and c so that they become coprime integers.

Attach the Frey elliptic curve to this solution:

E : y2 = x(x − ap)(x + bp).

Let ρ̄E ,p be its mod p Galois representation.



ρ̄E ,p is irreducible by Mazur[1978] and modular by
Wiles[1995].

Apply Ribet’s level lowering theorem[1990] and conclude that
ρ̄E ,p arises from a weight 2 newform f of level 2.

There are no such newforms at this level, so we get a
contradiction.

Hence, the equation xp + yp + zp = 0 does not have any
solutions.



Fermat equation over higher degree number fields

K : a number field

OK : its ring of integers and p be a prime.

We refer the equation

ap + bp + cp = 0, a, b, c ∈ OK

as the Fermat equation over K with the exponent p.

Conjecture (Asymptotic Fermat Conjecture)
Let K be a number field such that ζ3 6∈ K. There is a constant BK
depending only on K such that for any prime p > BK , all solutions
to the Fermat equation are trivial i.e. abc = 0.



treat the Fermat equation with fixed exponent p as a curve
and determine the points of low degree (i.e. points defined
over number fields of low degree) on the Fermat curve

For p = 3, 5, 7 and 11, Gross and Rohrlich (78) determined
the solutions to xp + yp + zp = 0 over all number fields K of
degree ≤ (p − 1)/2.

try to use modular approach

Theorem (Jarvis and Meekin, 2004)
The Fermat equation xn + yn = zn has no solutions
x , y , z ∈ Q(

√
2) with xyz 6= 0 and n ≥ 4.



Example (Serre and Mazur)

Consider the equation

xp + yp + Lr zp = 0,

where L = 1 or an odd prime and 0 < r < p, p 6= L, p ≥ 5
prime.

Assume (x , y , z) ∈ Z3 is a non-trivial solution and
gcd(x , y , Lz) = 1.

Let (A,B,C) = (xp, yp, Lr zp), A ≡ −1 (mod 4) and 2|B.

E : Y 2 = X (X − A)(X + B) (Frey curve)



Mazur, Wiles, Ribet =⇒ E ∼ f and f newform of weight 2
and level N = 2L

If L = 1, then N = 2 (the FLT case). Since there are no
newforms of weight 2 and level 2, there are no non-trivial
solutions for L = 1.

There are no newforms of weight 2 and levels 6, 10, 22, i.e.
there are non non-trivial solutions for L = 3, 5, 11.

There are newforms of weight 2 and level 2L for
L = 7, 13, 17, . . .



We need to study the relationship between E and f where f
has a q-expansion

f = q +
∞∑

n=1
cnqn

.
Let Kf = Q(c1, c2, . . . ). Kf is totally real and actually cn
belongs to the ring of integers O of Kf .

Definition
A newform f is irrational if Kf 6= Q and rational if Kf = Q.

It can be shown that if f is irrational,then the exponent p is
bounded for non-trivial solutions to xp + yp + Lr zp = 0, e.g.
this is the case when L = 37.



Some results on Asymptotic Fermat Conjecture

There is a rational f corresponding to E for the remaining
L = 7, 13, 17, 19, 23, . . . .

Eichler-Shimura Relation: A rational weight 2, level N
newform f corresponds to an isogeny class of elliptic curves E ′
defined over Q of conductor N.

Actually, this case also can be reduced to the case in which E ′
is isogenous to an elliptic curve with full 2-torsion.

Question: What are the odd primes L for which there is an
elliptic curve E ′ over Q with full 2-torsion and conductor 2L?



Lemma
Let L be an odd prime. Then there is an elliptic curve E ′ over Q
with full 2-torsion and conductor 2L if and only if L is a Mersenne
or a Fermat prime and L ≥ 31.

Proof.
E ′ has a model

E ′ : y2 = x(x − a)(x + b)

where a, b ∈ Z, ab(a + b) 6= 0, and ∆E ′ = 16a2b2(a + b)2. We
can choose a, b so that the model is minimal away from 2. Hence,

a2b2(a + b)2 = 2uLv

for some nonnegative integers u, v . Then we obtain

a = ±2u1Lv1 , b = ±2u2Lv2 , a + b = ±2u3Lv3

It follows that L is a Mersenne or a Fermat prime and L ≥ 31.



Theorem (Serre and Mazur)
Let L be an odd prime. Suppose L < 31, or L is neither a
Mersenne nor a Fermat prime. Then there is a constant CL s.t.for
all primes p > CL the only solutions (x , y , z) ∈ Z3 to the equation
xp + yp + Lr zp = 0 are the trivial ones satisfying xyz = 0.

Summary
The equation

±2u1Lv1 ± 2u2Lv2 = ±2u3Lv3

is called an S-unit equation with S = {2, L}.
It is possible to relate non-trivial solutions to Fermat type
equations to solutions of certain S-unit equations.



S-unit Equation

K : a number field, OK : its ring of integers
S: finite set of prime ideals of OK
S-integers in K :

OS = {α ∈ K ∗ : vP(α) ≥ 0 for all P 6∈ S}

S-units in K :

O∗S = {α ∈ K ∗ : vP(α) = 0 for all P 6∈ S}

The S-unit equation is

λ+ µ = 1, λ, µ ∈ O∗S



Examples of S-units

K = Q, OK = Z, and S = {2}.

OS = {±2r m : m ∈ Z, r ∈ Z}, O∗S = {±2r : r ∈ Z}

S-unit equation solutions : (1/2, 1/2), (2,−1), (−1, 2)

K = Q, OK = Z, and S = {2, L}.

OS = {±2r Lsm : m ∈ Z, r , s ∈ Z},

O∗S = {±2r Ls : r , s ∈ Z}



K = Q(
√

5), OK = {a( 1+
√

5
2 ) + b : a, b ∈ Z}, and S = {∅}.

O∗S = {±( 1+
√

5
2 )r : r ∈ Z},

S-unit equation solutions : ( 1+
√

5
2 , 1−

√
5

2 )

K = Q(
√

5) and S = {2OK}

O∗S = {±2r ( 1+
√

5
2 )s : r , s ∈ Z},



Conjecture (Asymptotic Fermat Conjecture)
Let K be a number field such that ζ3 6∈ K. There is a constant BK
depending only on K such that for any prime p > BK , all solutions
to the Fermat equation are trivial i.e. abc = 0.

Theorem (Freitas and Siksek, 2015)
Let K be a totally real field. The asymptotic Fermat’s last theorem
holds for K satisfying some explicitly given, algorithmically testable
criterion.

In particular, they show that the criterion in the above
theorem is satisfied by K = Q(

√
d) for a subset of d ≥ 2

having density 5/6 among the squarefree positive integers.
This density becomes 1 if ”Eichler-Shimura conjecture” is
assumed.

Şengün and Siksek[2018] proved the asymptotic Fermat’s Last
Theorem holds for any number field K by assuming
“modularity”.



Assumptions

K: totally real number field
(I)An “Eichler-Shimura” Conjecture over K : Let K be a
totally real field. Let f be a Hilbert newform of level N and
parallel weight 2 and with rational eigenvalues. Then there is
an elliptic curve Ef/K with conductor N having the same
L-function as f.



Assumptions

K: a general number field
(I) Serre’s modularity Conjecture over K : This associates a
totally odd, continuous, finite flat, absolutely irreducible 2
dimensional mod p representation of Gal(K/K ) a cuspform of
parallel weight 2 whose level is equal to the prime-to-p part of the
Artin conductor of the representation.

(II) An “Eichler-Shimura” Conjecture over K : This associates
to a weight 2 cuspform with rational Hecke eigenvalues either an
elliptic curve or a “fake elliptic curve”.

We call (I) and (II) together as “modularity”.



Our results

K : a number field
OK : its ring of integers and p be a prime.

generalized Fermat equation:

Axp + Byp + Czp = 0 where A,B,C are odd integers

i.e. if P is a prime of OK lying over 2, then P - ABC .

Our main theorem depends on the “modularity” conjecture
since the analogues of modularity theorem have not been
proven yet in general.



Our results

Main Theorem (K., Ozman)
K : a number field satisfying the “modularity“

O∗S : the set of S-units of K ,
S: set of primes dividing 2ABC

S-unit equation: λ+ µ = 1, λ, µ ∈ O∗S

Suppose that for every solution (λ, µ) to the S-unit equation, there
is some P ∈ U that satisfies

max{|vP(λ)|, |vP(µ)|} ≤ 4vP(2).

Then there is a constant B = B(K ,A,B,C) such that the
generalized Fermat equation with exponent p and coefficients
A,B,C does not have non-trivial solutions with p > B.



Existence and Density Theorems

Density Theorem (K., Ozman)
Assuming the “modularity”, the asymptotic Fermat’s Last
Theorem holds for 5/6 of the imaginary quadratic number fields.

Theorem 1 (K., Ozman)
K = Q(

√
−d), and −d ≡ 2, 3 (mod 4)

q ≥ 29: prime, and q ≡ 5 (mod 8) and
(
−d
q

)
= −1

Assume the “modularity”.

Then there exists a constant depending on K and q, namely BK ,q,
such that for all p > BK ,q the Fermat equation
xp + yp + qr zp = 0 doesn’t have any non-trivial solutions.



Theorem 2 (K., Ozman)
K = Q(

√
−d) and d ≡ 7 (mod 8), d ≡ 5 (mod 6) and d 6≡ 7

(mod 14)

Assume the “modularity”.

Then there exists a constant depending on K , namely BK , such
that for all p > BK the Fermat equation xp + yp + zp = 0 doesn’t
have any nontrivial solutions.



Comparing the two density results

Density Theorem (Freitas,Siksek)
Assuming the “Eichler-Shimura”, the asymptotic Fermat’s Last
Theorem holds for a set of real quadratic fields of density 1.

Density Theorem (K., Ozman)
Assuming the “modularity”, the asymptotic Fermat’s Last
Theorem holds for 5/6 of the imaginary quadratic number fields.

What is the reason for the disparity?
Because the conclusion of the Eichler-Shimura conjecture over
real quadratic fields is stronger than the conclusions of the
E-S over imaginary quad. fields



Comparing the two density results
K:real quadratic field

a rational weight 2 Hilbert eigenform f over K corresponds to
an ell. curve E/K

K: imag. quad. field

a rational weight 2 Bianchi eigenform over K corresponds to
either an ell. curve E/K or a fake ell. curve A/K (an abelian
surface whose endomorphism alg. is an indefinite division
quaternion algebra)
If 2 splits or ramifies in K , then we can eliminate the fake ell.
curve case

If 2 is inert in Q(
√
−d) i.e. −d ≡ 5 (mod 8), we cannot

eliminate fake ell. curves

This is exactly 1/6 of all imag. quad.fields.



Idea behind the proof

attach the Frey curve

enough of modularity, irreducibility and level lowering known
for totally real fields and assume “modularity” for a general
number field

get newform of weight 2 and some level N

there are newforms at the level N , so no contradiction yet

for p sufficiently large, we can get E ′ with full 2-torsion and
good reduction outside the prime factors of N

parametrize such elliptic curves with the solution of S-unit
equation and get a contradiction by using the valuation
condition on S-units



Sketch of the proof

Let GK = Gal(K̄/K ) be the absolute Galois group of K . For
an elliptic curve E/K ,

ρ̄E ,p : GK −→ Aut(E [p]) ∼= GL2(Fp)

denotes the mod p Galois representation of E .

Let (a, b, c) be a solution of the Fermat equation.

Attach the Frey curve

E : y2 = x(x − Aap)(x + Bbp).

Compute the discriminant ∆E and the j-invariant of jE of the
Frey elliptic curve.



Irreducibility of Galois representations: If p is large
enough, then ρ̄E ,p is irreducible.

Modularity: modularity conjecture from Langlands
programme

Level lowering:
There is a non-trivial weight 2 new complex eigenform f which
has an associated elliptic curve Ef/K of conductor N′ dividing
N with ρ̄E ,p ∼ ρ̄Ef,p.

There is an elliptic curve E ′/K where E ′ has full 2-torsion with
ρ̄E ,p ∼ ρ̄E ,p.



Elliptic Curves with full 2-torsion and solutions to the
S-unit equation

SS : the set of all elliptic curves over K with full 2-torsion
and potentially good outside S

E1 ∼ E2 on SS : E1 and E2 are isomorphic K̄

∆S = {(λ, µ) : λ+ µ = 1, λ, µ ∈ O∗S}

S3, the symmetric group on 3 letters, acts on ∆S .

There is a bijection between S3 \∆S and SS/ ∼

The orbit of (λ, µ) is sent to the class of the Legendre elliptic
curve y2 = x(x − 1)(x − λ).



Proof of the Main Theorem

Let K be a number field satisfying Conjectures and S,U,V be
the sets we defined before with U 6= ∅.

Let (a, b, c) be a non-trivial solution to the Fermat equation.

For the solution above, attach the Frey curve

Apply level lowering and obtain an elliptic curve E ′/K having
full 2-torsion and potentially good reduction away form S with
j-invariant j ′ satisfying vP(j ′) < 0 for all P ∈ U.

We can express j ′ in terms of λ and µ and by using the
condition

max{|vP(λ)|, |vP(µ)|} ≤ 4vP(2)

we deduce that vP(j ′) > 0, contradiction.



Signature (p, p, 2)

We consider the equation xp + yp = z2 over number fields K .

The strategy is the same, we apply the modular approach.

The Frey curve attached to xp + yp = z2 is not “symmetric”.

E : y2 = x(x − Aap)(x + Bbp) for the Fermat equation.

E = Ea,b,c : Y 2 = X 3 + 4cX 2 + 4apX .

for the equation xp + yp = z2.

Solving the S-unit equation over K is not enough but we need
to solve them over some extensions L of K .



Our Result

Theorem (Isik, K., Ozman)
K:a totally real number field with narrow class number h+

K = 1,

L = K (
√

a) for each a ∈ K (SK , 2),

SK -unit equation: λ+ µ = 1, λ, µ ∈ O∗SK
,

Suppose that for every solution (λ, µ) to the SK -unit equation,
there is some P ∈ TK that satisfies

max{|vP(λ)|, |vP(µ)|} ≤ 4vP(2)

.
Suppose also that for each L, for every solution (λ, µ) to the
SL-unit equation, there is some P′ ∈ TL that satisfies

max{|vP′(λ)|, |vP′(µ)|} ≤ 4vP′(2)

.



Theorem
Then there is a constant BK -depending only on K- such that for
p > BK , the equation xp + yp = z2 has no solution (a, b, c) ∈WK .

WK : the set of (a, b, c) ∈ OK such that ap + bp = c2 with P|b for
every P ∈ TK

In this case we say that asymptotic Fermat’s Last Theorem holds
for WK .



Thank you!


