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The problem statement

Question (Nandakumar and Ramana Rao, 2008)

Given a positive integer m and a convex body K in the plane, can we
cut K into m convex pieces of equal areas and perimeters?



Previously known results

For m = 2 it can be done by a simple continuity argument.

Split in two parts of equal area and rotate. At some point the
perimeters must be equal.

A generalization of the continuity argument through an
appropriate Borsuk–Ulam-type theorem yields a proof for m = pk

with p prime. The topological tool was used previously by Viktor
Vassiliev for a different problem (1989). The fair partition result
for m = 2k was proved explicitly by Mikhail Gromov (2003).

For m, which is not a prime power, this direct technique fails.
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A classical example: the ham sandwich theorem

Theorem
Any 3 sufficiently nice probability measures in R3 can be
simultaneously equipartitioned by a plane.

https://curiosamathematica.tumblr.com

https://curiosamathematica.tumblr.com


Scheme of proof

The configuration space is the sphere S3, which naturally

parametrizes (oriented) planes in R3.

The test map f : S3 → R3 sends an oriented plane u ∈ S3 to the
point f (u) ∈ R3 whose i -th coordinate is the difference of the
values of the i -th measure on the two corresponding halfspaces.

Solutions are in f −1(0).

This map is Z2-equivariant, i.e., f (−u) = −f (u), and the
classical Borsuk–Ulam theorem guarantees that any such map
must have a zero, which yields the desired equipartition.
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Convex fair partitions for prime power

Theorem (Karasev, Hubard, Aronov, Blagojević, Ziegler,
2014)

If m is a power of a prime then any convex body K in the plane can
be partitioned into m parts of equal area and perimeter.

The case m = 3 was done first by Bárány, Blagojević, and Szűcs. In
dimension n ≥ 3 a similar result with equal volumes and equal n − 1
other continuous functions of m convex parts was also established for
m = pk .



Configuration space

F (m) is the space of m-tuples of pairwise distinct points in R2.
Given x̄ ∈ F (m) we can use Kantorovich theorem on optimal
transportation to equipartition K into m parts of equal area. The
partition is a weighted Voronoi diagram with centers in x̄ .

x̄ ∈ F (3).



No need to consider partitions not in F (m)

The space F (m) is smaller than the space E (m) of all equal are
convex partitions. However, there is an Sm-equivariant map

F (m)→ E (m),

given by the Kantorovich theorem, and an Sm-equivariant map

E (m)→ F (m),

sending a partition into its centers of mass. The maps do not
commute, but show that the spaces are equivalent from the points of
view of plugging them into a Borsuk–Ulam-type theorems.



Further simplification of F (m)

The dimension of F (m) is 2m. We can further simplify it.

Lemma (Blagojević and Ziegler, 2014)

Space F (m) retracts Sm-equivariantly to its subpolyhedron
P(m) ⊂ F (m) with dim(P(m)) = m − 1.

This lemma allows to imagine how the solution changes if we
consider a family of problems depending on a parameter.



Cellular decomposition of F (3)

A 6-cell. A 5-cell. A 4-cell.



Equivariant map

Let the map f : P(m)→ Rm send a generalized Voronoi equal area
partition into the perimeters of the m parts. The test map is
Sm-equivariant, if Sm acts on Rm by permutations of the
coordinates.
A partition corresponding to u ∈ P(m) solves the problem if
f (u) ∈ ∆ := {(x , x , . . . , x) ∈ Rm}.



Homology of the solution set

Theorem (Blagojević and Ziegler)

If m = pk is a prime power and f : P(m)→ Rm is an Sm-equivariant
map in general position, then f −1(∆) is a non-trivial 0-dimensional
cycle modulo p in homology with certain twisted coefficients.

If m is not a prime power then there exists an Sm-equivariant map
f : P(m)→ Rm with f −1(∆) = ∅.



Our main result

Theorem (Akopyan, Avvakumov, K.)

For any m ≥ 2 any convex body K in the plane can be partitioned
into m parts of equal area and perimeter.

When m is not a prime power, the theorem was unknown even for
simplest K , e.g., for generic triangles.
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“Naive” continuity argument

“Naive” argument for m = 6 (the smallest non-prime-power):

Pick a direction and a halving line in that direction.
Fair partition each half into 3 pieces.
Rotate the direction.

There are difficulties arguing this way, because the partitions in
three parts may not depend continuously on parameters of the
half subproblem.
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Proof sketch for m = 6

As we rotate the direction, plot the perimeters of all the solutions,
the language of multivalued functions must be useful.

Solid and dashed are perimeters on the left and
right, resp. Solid/dashed intersections are fair
partitions.



Number of solutions

In this particular example the number of solutions, with signs, is 0!



Proof sketch for m = 6

Solid graph separates the bottom from the top, from the homology
modulo 3 description of the solution set by Blagojević and Ziegler.



Proof sketch for m = 6

After choosing an appropriate subgraph of the multivalued function,
bold solid and bold dashed curves intersect at 1 point, modulo 2.



Plan of the proof for arbitrary m

Decompose into primes m = p1 . . . pk , then consider iterated
partitions, first cut into p1 parts, then cut every part into p2

parts, and so on.

Parameterize the partitions on each stage by P(pi) and assume
the areas equalized by the weighted Voronoi argument.

Argue from bottom to top: Assume that the perimeters are
equalized in all parts of every i -th stage region and thus form a
multivalued function of the corresponding region.

Establish the top-from-bottom separation property for this
multivalued function, using the modulo pi homology argument.

Choose a “nice” multivalued subfunction, for which a
Borsuk–Ulam-type theorem holds.

Step i → i − 1 equializing the perimeter values in parts of
(i − 1)th stage region, keeping the separation property for the
new multivalued function, the common value of the perimeter.
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Summary

Generalizations:

“Area” can be any finite Borel measure, zero on hyperplanes.

“Perimeter” can be any Hausdorff-continuous function on
convex bodies (e.g., diameter).

Unknown, if we replace “area” with an arbitrary (i.e.,
non-additive) rigid-motion-invariant continuous function of
convex bodies.

If we want to equalize the volumes and two perimiter-like
functions in R3, then it is possible for m = pk (K., Aronov,
Hubard, Blagojević, Ziegler), but our current method does not
work already for m = 2pk .

Full version is arXiv:1804.03057.

https://arxiv.org/abs/1804.03057


Summary

Thank you for your attention!

Full version is arXiv:1804.03057.
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