Fair partition of a convex planar pie

¹Moscow Institute of Physics and Technology ²IST Austria

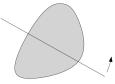
Tehran, April, 2019

Question (Nandakumar and Ramana Rao, 2008)

Given a positive integer m and a convex body K in the plane, can we cut K into m convex pieces of equal areas and perimeters?

Previously known results

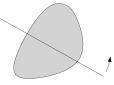
• For m = 2 it can be done by a simple continuity argument.



Split in two parts of equal area and rotate. At some point the perimeters must be equal.

Previously known results

• For m = 2 it can be done by a simple continuity argument.

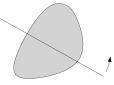


Split in two parts of equal area and rotate. At some point the perimeters must be equal.

• A generalization of the continuity argument through an appropriate Borsuk–Ulam-type theorem yields a proof for $m = p^k$ with p prime. The topological tool was used previously by Viktor Vassiliev for a different problem (1989). The fair partition result for $m = 2^k$ was proved explicitly by Mikhail Gromov (2003).

Previously known results

• For m = 2 it can be done by a simple continuity argument.



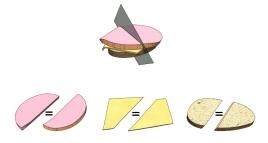
Split in two parts of equal area and rotate. At some point the perimeters must be equal.

- A generalization of the continuity argument through an appropriate Borsuk–Ulam-type theorem yields a proof for $m = p^k$ with p prime. The topological tool was used previously by Viktor Vassiliev for a different problem (1989). The fair partition result for $m = 2^k$ was proved explicitly by Mikhail Gromov (2003).
- For *m*, which is not a prime power, this direct technique fails.

A classical example: the ham sandwich theorem

Theorem

Any 3 sufficiently nice probability measures in \mathbb{R}^3 can be simultaneously equipartitioned by a plane.



https://curiosamathematica.tumblr.com

• The configuration space is the sphere S^3 , which naturally

 \mathbb{R}^{3}

 S^3

• The configuration space is the sphere S^3 , which naturally

 \mathbb{R}^{3}

 S^3

parametrizes (oriented) planes in \mathbb{R}^3 .

• The test map $f: S^3 \to \mathbb{R}^3$ sends an oriented plane $u \in S^3$ to the point $f(u) \in \mathbb{R}^3$ whose *i*-th coordinate is the difference of the values of the *i*-th measure on the two corresponding halfspaces.

• The configuration space is the sphere S^3 , which naturally

 \mathbb{R}^{3}

 S^3

parametrizes (oriented) planes in \mathbb{R}^3 .

- The test map f: S³ → ℝ³ sends an oriented plane u ∈ S³ to the point f(u) ∈ ℝ³ whose i-th coordinate is the difference of the values of the i-th measure on the two corresponding halfspaces.
- Solutions are in $f^{-1}(0)$.

• The configuration space is the sphere S^3 , which naturally

 \mathbb{R}^{3}

 S^3

parametrizes (oriented) planes in \mathbb{R}^3 .

- The test map $f: S^3 \to \mathbb{R}^3$ sends an oriented plane $u \in S^3$ to the point $f(u) \in \mathbb{R}^3$ whose *i*-th coordinate is the difference of the values of the *i*-th measure on the two corresponding halfspaces.
- Solutions are in $f^{-1}(0)$.
- This map is Z₂-equivariant, i.e., f(−u) = −f(u), and the classical Borsuk–Ulam theorem guarantees that any such map must have a zero, which yields the desired equipartition.

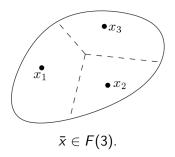
Theorem (Karasev, Hubard, Aronov, Blagojević, Ziegler, 2014)

If m is a power of a prime then any convex body K in the plane can be partitioned into m parts of equal area and perimeter.

The case m = 3 was done first by Bárány, Blagojević, and Szűcs. In dimension $n \ge 3$ a similar result with equal volumes and equal n - 1 other continuous functions of m convex parts was also established for $m = p^k$.

Configuration space

F(m) is the space of *m*-tuples of pairwise distinct points in \mathbb{R}^2 . Given $\bar{x} \in F(m)$ we can use Kantorovich theorem on optimal transportation to equipartition *K* into *m* parts of equal area. The partition is a weighted Voronoi diagram with centers in \bar{x} .



The space F(m) is smaller than the space E(m) of all equal are convex partitions. However, there is an \mathfrak{S}_m -equivariant map

 $F(m) \rightarrow E(m),$

given by the Kantorovich theorem, and an \mathfrak{S}_m -equivariant map

$$E(m) \rightarrow F(m),$$

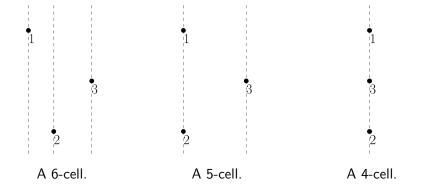
sending a partition into its centers of mass. The maps do not commute, but show that the spaces are equivalent from the points of view of plugging them into a Borsuk–Ulam-type theorems. The dimension of F(m) is 2m. We can further simplify it.

Lemma (Blagojević and Ziegler, 2014)

Space F(m) retracts \mathfrak{S}_m -equivariantly to its subpolyhedron $P(m) \subset F(m)$ with $\dim(P(m)) = m - 1$.

This lemma allows to imagine how the solution changes if we consider a family of problems depending on a parameter.

Cellular decomposition of F(3)



Let the map $f : P(m) \to \mathbb{R}^m$ send a generalized Voronoi equal area partition into the *perimeters* of the *m* parts. The test map is \mathfrak{S}_m -equivariant, if \mathfrak{S}_m acts on \mathbb{R}^m by permutations of the coordinates.

A partition corresponding to $u \in P(m)$ solves the problem if $f(u) \in \Delta := \{(x, x, \dots, x) \in \mathbb{R}^m\}.$

Theorem (Blagojević and Ziegler)

If $m = p^k$ is a prime power and $f : P(m) \to \mathbb{R}^m$ is an \mathfrak{S}_m -equivariant map in general position, then $f^{-1}(\Delta)$ is a non-trivial 0-dimensional cycle modulo p in homology with certain twisted coefficients.

If *m* is not a prime power then there exists an \mathfrak{S}_m -equivariant map $f: P(m) \to \mathbb{R}^m$ with $f^{-1}(\Delta) = \emptyset$.

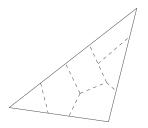
Theorem (Akopyan, Avvakumov, K.)

For any $m \ge 2$ any convex body K in the plane can be partitioned into m parts of equal area and perimeter.

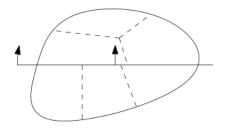
Theorem (Akopyan, Avvakumov, K.)

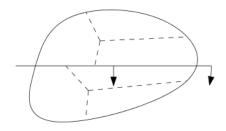
For any $m \ge 2$ any convex body K in the plane can be partitioned into m parts of equal area and perimeter.

When m is not a prime power, the theorem was unknown even for simplest K, e.g., for generic triangles.

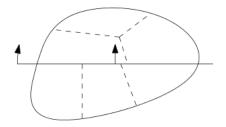


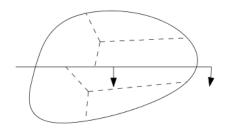
• "Naive" argument for m = 6 (the smallest non-prime-power):



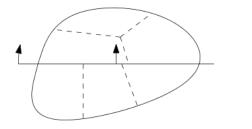


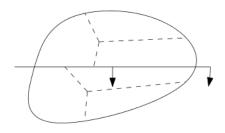
- "Naive" argument for m = 6 (the smallest non-prime-power):
 - Pick a direction and a halving line in that direction.



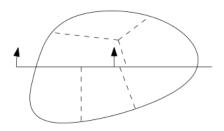


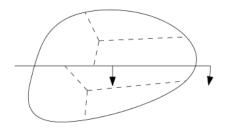
- "Naive" argument for m = 6 (the smallest non-prime-power):
 - Pick a direction and a halving line in that direction.
 - Fair partition each half into 3 pieces.



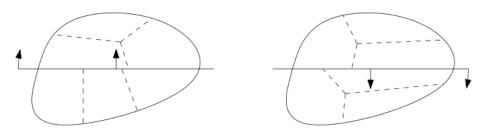


- "Naive" argument for m = 6 (the smallest non-prime-power):
 - Pick a direction and a halving line in that direction.
 - Fair partition each half into 3 pieces.
 - Rotate the direction.



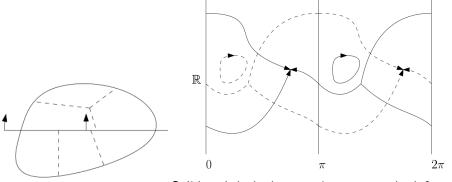


- "Naive" argument for m = 6 (the smallest non-prime-power):
 - Pick a direction and a halving line in that direction.
 - Fair partition each half into 3 pieces.
 - Rotate the direction.
- There are difficulties arguing this way, because the partitions in three parts may not depend continuously on parameters of the half subproblem.



Proof sketch for m = 6

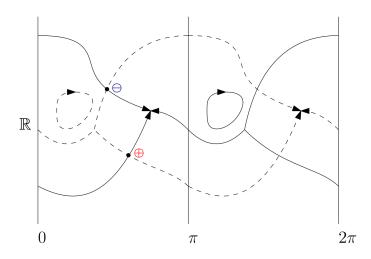
As we rotate the direction, plot the *perimeters* of *all* the solutions, the language of multivalued functions must be useful.



Solid and dashed are perimeters on the left and right, resp. Solid/dashed intersections are fair partitions.

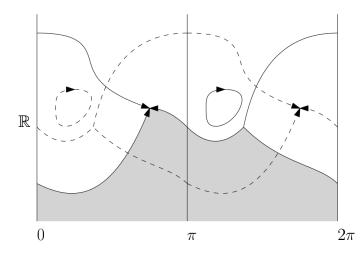
Number of solutions

In this particular example the number of solutions, with signs, is 0!



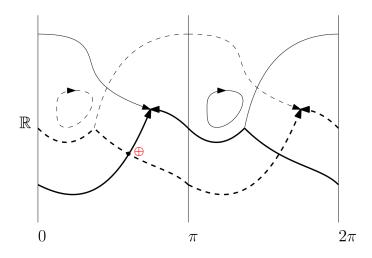
Proof sketch for m = 6

Solid graph separates the bottom from the top, from the homology modulo 3 description of the solution set by Blagojević and Ziegler.



Proof sketch for m = 6

After choosing an appropriate subgraph of the multivalued function, bold solid and bold dashed curves intersect at 1 point, modulo 2.



• Decompose into primes $m = p_1 \dots p_k$, then consider iterated partitions, first cut into p_1 parts, then cut every part into p_2 parts, and so on.

- Decompose into primes $m = p_1 \dots p_k$, then consider iterated partitions, first cut into p_1 parts, then cut every part into p_2 parts, and so on.
- Parameterize the partitions on each stage by $P(p_i)$ and assume the areas equalized by the weighted Voronoi argument.

- Decompose into primes $m = p_1 \dots p_k$, then consider iterated partitions, first cut into p_1 parts, then cut every part into p_2 parts, and so on.
- Parameterize the partitions on each stage by $P(p_i)$ and assume the areas equalized by the weighted Voronoi argument.
- Argue from bottom to top: Assume that the perimeters are equalized in all parts of every *i*-th stage region and thus form a multivalued function of the corresponding region.

- Decompose into primes $m = p_1 \dots p_k$, then consider iterated partitions, first cut into p_1 parts, then cut every part into p_2 parts, and so on.
- Parameterize the partitions on each stage by $P(p_i)$ and assume the areas equalized by the weighted Voronoi argument.
- Argue from bottom to top: Assume that the perimeters are equalized in all parts of every *i*-th stage region and thus form a multivalued function of the corresponding region.
- Establish the top-from-bottom separation property for this multivalued function, using the modulo *p_i* homology argument.

- Decompose into primes $m = p_1 \dots p_k$, then consider iterated partitions, first cut into p_1 parts, then cut every part into p_2 parts, and so on.
- Parameterize the partitions on each stage by $P(p_i)$ and assume the areas equalized by the weighted Voronoi argument.
- Argue from bottom to top: Assume that the perimeters are equalized in all parts of every *i*-th stage region and thus form a multivalued function of the corresponding region.
- Establish the top-from-bottom separation property for this multivalued function, using the modulo *p_i* homology argument.
- Choose a "nice" multivalued subfunction, for which a Borsuk–Ulam-type theorem holds.

- Decompose into primes $m = p_1 \dots p_k$, then consider iterated partitions, first cut into p_1 parts, then cut every part into p_2 parts, and so on.
- Parameterize the partitions on each stage by $P(p_i)$ and assume the areas equalized by the weighted Voronoi argument.
- Argue from bottom to top: Assume that the perimeters are equalized in all parts of every *i*-th stage region and thus form a multivalued function of the corresponding region.
- Establish the top-from-bottom separation property for this multivalued function, using the modulo *p_i* homology argument.
- Choose a "nice" multivalued subfunction, for which a Borsuk–Ulam-type theorem holds.
- Step i → i − 1 equializing the perimeter values in parts of (i − 1)th stage region, keeping the separation property for the new multivalued function, the common value of the perimeter.

Generalizations:

- "Area" can be any finite Borel measure, zero on hyperplanes.
- "Perimeter" can be any Hausdorff-continuous function on convex bodies (e.g., diameter).
- Unknown, if we replace "area" with an arbitrary (i.e., non-additive) rigid-motion-invariant continuous function of convex bodies.
- If we want to equalize the volumes and two perimiter-like functions in \mathbb{R}^3 , then it is possible for $m = p^k$ (K., Aronov, Hubard, Blagojević, Ziegler), but our current method does not work already for $m = 2p^k$.

Full version is arXiv:1804.03057.

Thank you for your attention!

Full version is arXiv:1804.03057.