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MDS codes



Let A be a set of size q (the alphabet).

A code C ⊆ An has minimum distance d if any two n-tuples in C
differ in at least d coordinates.

[Singleton bound] |C | 6 qn−d+1.

A code for which |C | = qn−d+1 is called maximum distance
separable (MDS).

MDS codes appear in quantum mechanics, distributed storage
systems, burst error-correction codes, representation of matroids,
threshold sharing schemes.

We are interested in linear codes: C ≤ Fn
q of dimension k.

A well-known example of an MDS code: Reed-Solomon code.



How many errors can a code correct?

Fixing k and q, how large can d (or n = d + k − 1) be?

The larger d , the more errors we can correct/detect.

Example: Let G be an abelian group of size q. Then

C = {(a1, . . . , ak , a1 + · · ·+ ak) | ai ∈ G}

is an MDS code with n = k + 1 and d = 2.

The "trivial" bound n 6 q + k − 1 can be obtained using
elementary projective geometry over Fq.



Arcs



Arcs in PG(k − 1, q)

An arc in PG(k − 1, q) is a set of points no k in a hyperplane.

An arc in PG(2, q) is called a planar arc.



Examples of arcs

1. a frame (basis + all-1-vector) in PG(k − 1, q) (size k + 1)

2. a conic in a plane (ν2(P1))
{(1, t, t2) : t ∈ Fq} ∪ {(0, 0, 1)}

3. a normal rational curve (NRC) (νk−1(P1))
{(1, t, t2, . . . , tk−1) : t ∈ Fq} ∪ {(0, 0, . . . , 0, 1)}

Exercise 1: Prove that these are arcs.

Exercise 2: Which of these examples is complete?



Arc A ↔ MDS code CA

Theorem
The linear code CA generated by the matrix whose columns are the
vectors of an arc A is a linear MDS code, and vice versa, the set of
columns of a generator matrix of a linear MDS code is an arc.

The code CA has parameters [n, k, n − k + 1] where n = |A|.

Example:

NRC (size q + 1) ↔ Reed-Solomon code [q + 1, k, q − k + 2]



The main conjecture (MDS conjecture)

How large can an arc A in PG(k − 1, q) be?

Exercise 3: Show that |A| = k + 1 is the best you can do if q ≤ k.

From now on assume q ≥ k + 1.

MDS conjecture (B. Segre 1950’s):

A cannot be larger than NRC (except if q even and k ∈ {3, q− 2})

(q even, k = 3, allows planar arcs of size q + 2: hyperovals)



The main conjecture (MDS conjecture)

The MDS conjecture is still open!

Most results rely on planar arcs (by projection methods) based on
induction arguments from [Segre1955] and [Kaneta and Maruta
1989].

The results by Segre, Hirschfeld-Korchmáros, and Voloch rely on
Segre’s envelope associated to a planar arc in combination with the
Hasse-Weil theorem or the Stöhr-Voloch theorem.



The MDS conjecture is known to be true for the following k.
(bounds given only up to first order of magnitude, p is prime.)

k < √q, q even [Segre 1967]

k < √pq, q = p2h+1 [Voloch 1991]

k < q, q = p [Ball 2012]

k < 2√q, q = p2 [Ball and De Beule 2012]

k < √q, q = p2h [Ball and Lavrauw 2018]

There are other bounds from Segre, Voloch and Hirschfeld and
Korchmáros which are better for smaller q.



The algebraic envelope associated to a planar arc

Segre proved that the set of tangents to an arc A in PG(2, q) form
an algebraic envelope EA of degree t for q even, and of degree 2t
for q odd, where

t = the number of tangents through a point of A.

Combining EA with the Hasse-Weil theorem and the Stöhr-Voloch
theorem lead to the bounds on the size of complete planar arcs.



The algebraic envelope EA, q even

For q even, the algebraic envelope EA has degree t.

Combining EA with the Hasse-Weil theorem, Segre proved that

N(q) ≤ q −√q + 1.

N(q) = size of the second largest complete arc in PG(2, q).

The examples by Kestenband from 1981 (intersection of Hermitian
curves) imply that this bound is tight if q is a square.



The algebraic envelope EA, q odd

For q odd, the algebraic envelope EA has degree 2t. The
Hasse-Weil theorem and the Stöhr-Voloch theorem lead to the
following results.

For q prime, Voloch (1990) proved N(q) ≤ 44
45q + 8

9 .

For q non-square, Voloch (1991) proved
N(q) ≤ q − 1

4
√pq + 29

16p − 1.

Hirschfeld and Korchmáros (1996) proved that
N(q) ≤ q− 1

2
√q + 5 (provided that the characteristic is at least 5)

improved to
N(q) ≤ q − 1

2
√q + 3 (provided that q > 529 and q 6= 36, 55)

by same authors in 1998.



Algebraic hypersurface associated to an arc in PG(k − 1, q)

Several generalisations were proven of Segre’s envelope.

Blokhuis-Bruen-Thas: On M.D.S. codes, arcs in PG(n, q) with q
even, and a solution of three fundamental problems of B. Segre.
Invent. Math. (1988).

Blokhuis-Bruen-Thas: Arcs in PG(n,q), MDS-codes and three
fundamental problems of B. Segre : some extensions. Geometriae
Dedicata (1990)

Blokhuis-Cameron-Thas: On a generalization of a theorem of B.
Segre. Geometriae Dedicata (1992).



Crucial ingredient: Lemma of tangents

All of the previous results fall back on the Lemma of tangents,
which describes the relation between the set of (combinatorial)
tangent lines at three different points of an arc in terms of an
algebraic formula.

For a planar arc of size q + 1 this says that the triangles ∆abc and
∆ABC are in perspective.



Tensors



Lemma (Scaled coordinate-free lemma of tangents)
Let A be an arc in PG(k − 1, q), with tangent hypersurfaces given
as the zero loci of the forms fS(X ) as defined in (1) and scaled as
in (2), and let g be the function as defined in (3). If σ is a
permutation in Sym(k − 1) and T is a (k − 1)-subset of A then

g(T σ) = (−1)s(t+1)g(T ),

where s is the parity of the permutation σ.

fS(X ) =
t∏

i=1
αi (X ), (1)

fS(e) = (−1)s(t+1)fS∪{e}\{a}(a), (2)

g(S ∪ {a}) = (−1)s(t+1)fS(a), (3)



A tensor associated to an arc

Let νk,t denote the degree t Veronese map on PG(k − 1, q).

We define a function h from

νk,t(A)× νk,t(A)× . . .× νk,t(A) (k − 1 factors)

to Fq by

h(νk,t(a1), νk,t(a2), . . . , νk,t(ak−1)) := g(a1, a2, . . . , ak−1). (4)

and show that h extends to a multilinear form on 〈νk,t(A)〉⊗k−1.



Theorem (Ball-Lavrauw 2019)
There exists a homogeneous polynomial F (Y1, . . . ,Yk−1) (in
k(k − 1) variables) where Yj = (Yj1, . . . ,Yjk), and F is
homogeneous of degree t in each of the k-tuples of variables Yj ,
with the following properties.

(i) For every (k − 2)-subset S = [a1, . . . , ak−2] of the arc A we
have F (a1, . . . , ak−2,X ) = (−1)s(t+1)fS(X ) modulo Φt [X ],
where s is the parity of the permutation which orders S as in
the ordering of A.

(ii) For every sequence a1, . . . , ak−1 of elements of A in which
points are repeated, F (a1, . . . , ak−1) = 0.

(iii) For every permutation σ ∈ Sym(k − 1),

F (Yσ(1), . . . ,Yσ(k−1)) = (−1)s(t+1)F (Y1, . . . ,Yk−1),

modulo Φt [Y1], . . . ,Φt [Yk−1], where s is the parity of σ.
(iv) Any form F (Y1, . . . ,Yk−1) satisfying (i), (ii) and (iii) is

unique modulo Φt [Y1], . . . , Φt [Yk−1].



This extends the planar arc result:

Theorem (Ball-Lavrauw 2018)
Let A be an arc of size q + 2− t of PG(2, q). If A is not
contained in a curve of degree t, then there is a (t, t)-form
F (X ,Y ) ∈ Fq[X ,Y ] such that

F (X , y) = fy (X ),

for all y ∈ A.

Theorem (Segre 1955)
An arc in PG(2, q), q odd, of size q + 1 is a conic.
Proof |A| = q + 1 ⇒ t = 1 ⇒ F (X ,Y ) is a bilinear form with
F (y , y) = 0, ∀y ∈ A ⇒ A is a conic.



Results from [Ball-Lavrauw 2018]

N(q) = size of the second largest complete arc in PG(2, q).

Theorem (A)
If q is odd and a square then N(q) < q −√q +√q/p + 3, and if q
is prime then N(q) < q −√q + 7/2.

Corollary (MDS conjecture for k ≤ √q −√q/p + 2)
If k 6

√q −√q/p + 2 and q = p2h, p odd, then an arc of
PG(k − 1, q) has size at most q + 1.



Sketch of the proof of Theorem (A)

Theorem (A) is a corollary of our main result:

Theorem (B)
Let A be a planar arc of size q + 2− t, q odd, not A * conic.

(i) If A is not contained in a curve of degree t then A is contained
in the intersection of two curves of degree at most t + pblogp tc

which do not share a common component.

(ii) If A is contained in a curve φ of degree t and

pblogp tc(t + 1
2p
blogp tc + 3

2) 6 1
2(t + 2)(t + 1)

then there is another curve of degree at most t + pblogp tc which
contains A and shares no common component with φ.



The existence of a curve of degree t containing A (part (ii))
complicates the proof. We restrict ourselves to part (i):

If A is not contained in a curve of degree t then it is contained in
the intersection of two curves of degree at most t + pblogp tc which

do not share a common component.

The crucial part is the existence of the (t, t)-form obtained from
the scaled coordinate-free version of Segre’s lemma of tangents.



A polynomial in Fq[X ,Y ] is called a (t, t)-form if it is
simultaneously homogeneous of degree t in both sets of variables
X = (X1,X2,X3) and Y = (Y1,Y2,Y3).

Lemma (1)
There exists a (t, t)-form F (X ,Y ) ∈ Fq[X ,Y ] such that for each
y ∈ A, the curve defined by F (X , y) is the union of the t tangent
lines of A at y .

y



For each w = (i , j , k) ∈ {0, . . . , t − 1}3 where i + j + k 6 t − 1,
define ρw (Y ) to be the coefficient of X i

1X
j
2X k

3 in

F (X + Y ,Y )− F (X ,Y ).

Observe that the degree of ρw (Y ) is 2t − i − j − k.

Since
F (X , y) = F (X + y , y)

for all y ∈ A, we have that ρw (y) = 0 for all y ∈ A.



The curves defined by the ρw (Y )’s are then used to prove that one
of the following conditions holds:

Lemma (2)
(i) there are two co-prime forms of degree at most t + pblogp tc

which vanish on A (=Theorem (B) (i));
or
(ii) there exists a form of degree at most t + pblogp tc which is
hyperbolic on A.

Proof (sketch) Consider the gcd φ of the space spanned by the
ρw (Y )′s of degree between t + 1 and t + pblogp tc.
I φ cannot be zero.
I If deg φ = 0 then we get case (i).
I If deg φ > 0, then φ must be hyperbolic on A.



A form φ on PG(2, q) is hyperbolic on A, if it has the property
that φ modulo any bisecant factorises into at most two linear
factors whose multiplicities sum to the degree of φ and which are
zero at the points of A on the bisecant.

y
x

φ(X ) = α(X )aβ(X )b modulo bisecant

with α(x) = 0, β(y) = 0, and a + b = deg φ.



In order to finish the proof we need to exclude case (ii) of Lemma
(2), i.e. we need to show that the existence of a hyperbolic form
on A implies that A is contained in a conic.

Lemma (3)
If there is a form φ which is hyperbolic on an arc A, where
|A| > 2 deg φ+ 2, then all but at most one point of A are
contained in a conic and if q is odd then A is contained in a conic.

Combining the Lemma’s (1) (2) and (3) with Theorem (B)
completes the proof of Theorem (A).



Final comments

I We do not rely on Hasse-Weil or Stöhr-Voloch.
I [Ball-Lavrauw 2019] F (X ,Y ) → tensor T : F (Y1, . . . ,Yk−1)
I The tensor approach simplifies the proof of the MDS

conjecture for q prime.
I We expect/hope this approach will allow further progress.



Thank you for your attention!
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