Ultra-Fast Asynchronous Rumor Spreading

Ali Pourmiri alipourmiri@gmail.com

University of Isfahan

17 April 2019 IPMCCC'19

Push Protocol (Synchronous)

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$, every informed vertex tells the rumour to a random neighbour.

Push Protocol (Synchronous)

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$, every informed vertex tells the rumour to a random neighbour.
- Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t+1.

Push Protocol (Synchronous)

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$, every informed vertex tells the rumour to a random neighbour.
- Remark 1. Informed vertex may call a neighbour in consecutive steps.
- Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t+1.

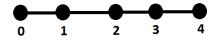
Spread Time: the first time everyone knows the rumour.

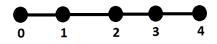
Application: distributed computing

Application: distributed computing

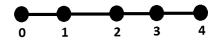
Rumour spreading advantages:

- ✓ Simplicity, locality, no memory
- ✓ Scalability, reasonable link loads
- √ Robustness

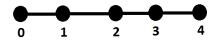




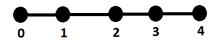
informTime(0) = 0



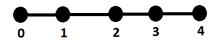
informTime(0) = 0informTime(1) = 1



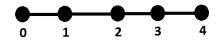
informTime(0) = 0 informTime(1) = 1informTime(2) = 1 + Geo(1/2)



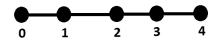
$$\begin{split} &\inf \text{comTime}(0) = 0\\ &\inf \text{comTime}(1) = 1\\ &\inf \text{comTime}(2) = 1 + \text{Geo}(1/2)\\ &\inf \text{comTime}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \end{split}$$



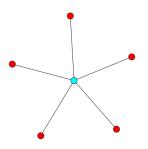
```
\begin{split} &\inf \text{comTime}(0) = 0 \\ &\inf \text{comTime}(1) = 1 \\ &\inf \text{comTime}(2) = 1 + \text{Geo}(1/2) \\ &\inf \text{comTime}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf \text{comTime}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \end{split}
```

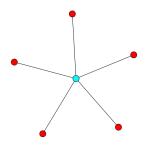


```
\begin{split} &\inf\! \text{orm} \text{Time}(0) = 0 \\ &\inf\! \text{orm} \text{Time}(1) = 1 \\ &\inf\! \text{orm} \text{Time}(2) = 1 + \text{Geo}(1/2) \\ &\inf\! \text{orm} \text{Time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf\! \text{orm} \text{Time}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\mathbb{E}[\text{Spread Time}] = 1 + 3 \times 2 = 7 \end{split}
```

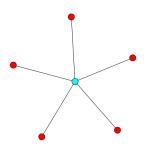


$$\begin{split} &\inf\! \text{orm} \text{Time}(0) = 0 \\ &\inf\! \text{orm} \text{Time}(1) = 1 \\ &\inf\! \text{orm} \text{Time}(2) = 1 + \text{Geo}(1/2) \\ &\inf\! \text{orm} \text{Time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf\! \text{orm} \text{Time}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\mathbb{E}[\text{Spread Time}] = 1 + 3 \times 2 = 7 \\ &= 2n - 3 \end{split}$$





When k+1 vertices are informed and n-1-k uninformed, after $\mathbb{E}[\operatorname{Geo}(\frac{n-k-1}{n-1})] = \frac{n-1}{n-1-k}$ more rounds a new vertex will be informed.



When k+1 vertices are informed and n-1-k uninformed, after $\mathbb{E}[\text{Geo}(\frac{n-k-1}{n-1})] = \frac{n-1}{n-1-k}$ more rounds a new vertex will be informed.

$$\mathbb{E}[ext{Spread Time}] = rac{n-1}{n-1} + rac{n-1}{n-2} + \cdots + rac{n-1}{2} + rac{n-1}{1} pprox n \ln n$$

Ali (Isfahan) Rumor Spreading 17 April 11/53

Improving the protocol

Uninformed vertices ask the informed ones...

Push-Pull Protocol (Synchronous)

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH);
 - and every uninformed vertex queries a random neighbour about the rumour (PULL).

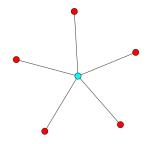
Push-Pull Protocol (Synchronous)

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

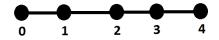
- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL).
- Remark 1. Vertices may call the same neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t+1.

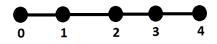
Spread Time: the first time everyone knows the rumour.

◆ロ → ◆母 → ◆ き → を ● り へ ○

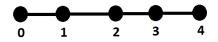


push protocol: $n \ln n$ rounds push-pull protocol: 1 or 2 rounds





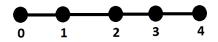
informTime(0) = 0



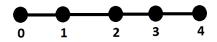
informTime(0) = 0

informTime(1) = 1

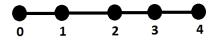
$$\begin{split} &\inf \text{ormTime}(0) = 0 \\ &\inf \text{ormTime}(1) = 1 \\ &\inf \text{ormTime}(2) = 1 + \min \{\text{Geo}(1/2), \text{Geo}(1/2)\} \\ &= 1 + \text{Geo}(3/4) \end{split}$$



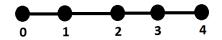
 $\begin{aligned} &\inf \text{ormTime}(0) = 0\\ &\inf \text{ormTime}(1) = 1\\ &\inf \text{ormTime}(2) = 1 + \text{Geo}(3/4)\\ &\inf \text{ormTime}(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \end{aligned}$



$$\begin{split} &\inf \text{comTime}(0) = 0 \\ &\inf \text{comTime}(1) = 1 \\ &\inf \text{comTime}(2) = 1 + \text{Geo}(3/4) \\ &\inf \text{comTime}(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ &\inf \text{comTime}(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \end{split}$$



$$\begin{split} &\inf\! \text{orm} \text{Time}(0) = 0 \\ &\inf\! \text{orm} \text{Time}(1) = 1 \\ &\inf\! \text{orm} \text{Time}(2) = 1 + \text{Geo}(3/4) \\ &\inf\! \text{orm} \text{Time}(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ &\inf\! \text{orm} \text{Time}(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ &\mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \end{split}$$



$$\begin{split} &\inf \text{comTime}(0) = 0 \\ &\inf \text{comTime}(1) = 1 \\ &\inf \text{comTime}(2) = 1 + \text{Geo}(3/4) \\ &\inf \text{comTime}(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ &\inf \text{comTime}(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ &\mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \\ &= \frac{4}{3}n - 2 \qquad \text{(versus } 2n - 3 \text{ for push)} \end{split}$$

✓ on complete graph push: $\log_2 n + \ln n + o(\log n)$ push-pull: $\log_3 n + o(\log n)$

- ✓ on complete graph push: $\log_2 n + \ln n + o(\log n)$ push-pull: $\log_3 n + o(\log n)$
- ✓ Barabasi-Albert preferential attachment graph has Spread Time $\Theta(\log n)$, PUSH alone has Spread Time poly(n).

- ✓ on complete graph push: $\log_2 n + \ln n + o(\log n)$ push-pull: $\log_3 n + o(\log n)$
- ✓ Barabasi-Albert preferential attachment graph has Spread Time $\Theta(\log n)$, PUSH alone has Spread Time poly(n).
- ✓ Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent \in (2,3) has Spread Time $\Theta(\log n)$.

- ✓ on complete graph push: $\log_2 n + \ln n + o(\log n)$ push-pull: $\log_3 n + o(\log n)$
- ✓ Barabasi-Albert preferential attachment graph has Spread Time $\Theta(\log n)$, PUSH alone has Spread Time poly(n).
- ✓ Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent \in (2,3) has Spread Time $\Theta(\log n)$.
- ✓ If Φ is Cheeger constant (conductance) and α is the vertex expansion (vertex isoperimetric number), Spread Time $\leq C \max\{\Phi^{-1} \log n, \alpha^{-1} \log^2 n\}$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣९0

Key Idea: rigorously analyze the size of informed nodes until time t, I_t .

Key Idea: rigorously analyze the size of informed nodes until time t, I_t .

Examples: complete graphs, G(n, p)

$$I_{t+1} \sim (1+c)I_t$$

Key Idea: rigorously analyze the size of informed nodes until time t, I_t .

Examples: complete graphs, G(n, p)

$$I_{t+1} \sim (1+c)I_t$$

Key Idea: efficient connectors facilitate the communication between large degree nodes

Key Idea: rigorously analyze the size of informed nodes until time t, I_t .

Examples: complete graphs, G(n, p)

$$I_{t+1} \sim (1+c)I_t$$

Key Idea: efficient connectors facilitate the communication between large degree nodes

Example: Chung-Lu, preferential attachment,...

Toward a more realistic model...

Asynchronous Rumor Spreading Protocols

Boyd, Ghosh, Prabhakar, Shah'06

- 1. A simple connected graph and each node has a Poisson clock of rate 1
- 2. At the beginning, one vertex knows a rumor
- 3. As soon as the Poisson clock of a vertex rings, he contacts a random neighbor and pushes (or pulls) the rumor to (from) his neighbor

Asynchronous Rumor Spreading Protocols

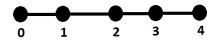
Boyd, Ghosh, Prabhakar, Shah'06

- 1. A simple connected graph and each node has a Poisson clock of rate 1
- 2. At the beginning, one vertex knows a rumor
- 3. As soon as the Poisson clock of a vertex rings, he contacts a random neighbor and pushes (or pulls) the rumor to (from) his neighbor
- Remark 1. The number of calls by a node has Poisson Dist. of rate 1 Remark 2. The time distribution between any two consecutive rings of a node has Exponential Dist. of rate 1

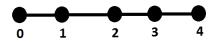
Asynchronous Rumor Spreading Protocols

Boyd, Ghosh, Prabhakar, Shah'06

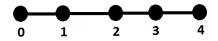
- 1. A simple connected graph and each node has a Poisson clock of rate 1
- 2. At the beginning, one vertex knows a rumor
- 3. As soon as the Poisson clock of a vertex rings, he contacts a random neighbor and pushes (or pulls) the rumor to (from) his neighbor
- Remark 1. The number of calls by a node has Poisson Dist. of rate 1 Remark 2. The time distribution between any two consecutive rings of a node has Exponential Dist. of rate 1
- Spread Time: the first time everyone knows the rumour.



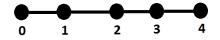
informTime(0) = 0informTime(1) = Exp(1)



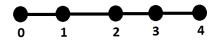
```
\begin{aligned} &\inf \text{comTime}(0) = 0 \\ &\inf \text{comTime}(1) = \text{Exp}(1) \\ &\inf \text{comTime}(2) = \text{Exp}(1) + \text{Exp}(1/2) \\ &\inf \text{comTime}(3) = \text{Exp}(1) + \text{Exp}(1/2) + \text{Exp}(1/2) \end{aligned}
```



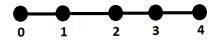
```
\begin{split} &\inf\! \text{ormTime}(0) = 0 \\ &\inf\! \text{ormTime}(1) = \text{Exp}(1) \\ &\inf\! \text{ormTime}(2) = \text{Exp}(1) + \text{Exp}(1/2) \\ &\inf\! \text{ormTime}(3) = \text{Exp}(1) + \text{Exp}(1/2) + \text{Exp}(1/2) \\ &\inf\! \text{ormTime}(4) = \text{Exp}(1) + \text{Exp}(1/2) + \text{Exp}(1/2) + \text{Exp}(1/2) \end{split}
```



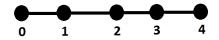
```
\begin{split} &\inf\!\mathrm{rnformTime}(0) = 0\\ &\inf\!\mathrm{rmTime}(1) = \mathrm{Exp}(1)\\ &\inf\!\mathrm{rmTime}(2) = \mathrm{Exp}(1) + \mathrm{Exp}(1/2)\\ &\inf\!\mathrm{rmTime}(3) = \mathrm{Exp}(1) + \mathrm{Exp}(1/2) + \mathrm{Exp}(1/2)\\ &\inf\!\mathrm{rmTime}(4) = \mathrm{Exp}(1) + \mathrm{Exp}(1/2) + \mathrm{Exp}(1/2) + \mathrm{Exp}(1/2)\\ &\mathbb{E}[\mathrm{Spread\ Time}] = 1 + 3 \times 2\\ &= 2(n-2) + 1 \end{split}
```



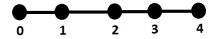
 $\begin{aligned} &\inf\! \text{orm} \text{Time}(0) = 0 \\ &\inf\! \text{cm} \text{Time}(1) = \min\{ \text{Exp}(1), \text{Exp}(1/2) \} = \text{Exp}(3/2) \end{aligned}$



```
\begin{split} &\inf \text{comTime}(0) = 0 \\ &\inf \text{comTime}(1) = \min \{ \text{Exp}(1), \text{Exp}(1/2) \} = \text{Exp}(3/2) \\ &\inf \text{comTime}(2) = \text{Exp}(3/2) + \min \{ \text{Exp}(1/2), \text{Exp}(1/2) \} \\ &= \text{Exp}(3/2) + \text{Exp}(1) \\ &\inf \text{comTime}(3) = \text{Exp}(3/2) + \text{Exp}(1) + \text{Exp}(1) \end{split}
```



```
\begin{split} &\inf\! \text{comTime}(0) = 0 \\ &\inf\! \text{comTime}(1) = \text{Exp}(3/2) \\ &\inf\! \text{comTime}(2) = \text{Exp}(3/2) + \text{Exp}(1) \\ &\inf\! \text{comTime}(3) = \text{Exp}(3/2) + \text{Exp}(1) + \text{Exp}(1) \\ &\inf\! \text{comTime}(4) = \text{Exp}(3/2) + \text{Exp}(1) + \text{Exp}(1) + \min\{\text{Exp}(1/2), \text{Exp}(1)\} \\ &= \text{Exp}(3/2) + \text{Exp}(1) + \text{Exp}(1) + \text{Exp}(3/2) \end{split}
```



```
\begin{split} &\inf\! \text{cnformTime}(0) = 0 \\ &\inf\! \text{cnformTime}(1) = \text{Exp}(3/2) \\ &\inf\! \text{cnformTime}(2) = \text{Exp}(3/2) + \text{Exp}(1) \\ &\inf\! \text{cnformTime}(3) = \text{Exp}(3/2) + \text{Exp}(1) + \text{Exp}(1) \\ &\inf\! \text{cnformTime}(4) = \text{Exp}(3/2) + \text{Exp}(1) + \text{Exp}(1) + \text{Exp}(3/2) \\ &\mathbb{E}[\text{Spread Time}] = 2 + 4/3 \\ &= n - 3 + 4/3 \end{split}
```

Known results

$$\checkmark$$
 on $G_{n,p},\ p\in (rac{\log n}{n},1]$ push-pull: w.h.p. $ST=\log n+O(1)$

Known results

- \checkmark on $G_{n,p},\ p\in (rac{\log n}{n},1]$ push-pull: w.h.p. $ST=\log n+O(1)$
- ✓ on Chung-lu random graph push-pull: w.h.p. $ST = O(\log \log n)$

Known results

- \checkmark on $G_{n,p},\ p\in (rac{\log n}{n},1]$ push-pull: w.h.p. $ST=\log n+O(1)$
- ✓ on Chung-lu random graph push-pull: w.h.p. $ST = O(\log \log n)$
- ✓ For every graph *G* push-pull: w.h.p.

$$ST_{asynch} = O(ST_{synch} + \log n)$$
 $rac{ST_{synch}}{ST_{asynch}} \leq \sqrt{n} \, polylog(n)$

Toward a "bit" more realistic model...

Multiple-Rate Asynchronous Rumor Spreading

P. and Ramezani'19

- \checkmark Each node u has a Poisson clock of rate r_u chosen from a given distribution
- ✓ At the beginning, one vertex knows a rumor
- ✓ As soon as the Poisson clock of a vertex rings, it pushes (pulls) the rumor to (from) a random neighbor contacts a random neighbor.

Spread Time $ST(\varepsilon)$: For every $\varepsilon \in [0,1)$, this is the first time when $(1-\varepsilon)$ fraction of nodes gets informed,

Our results

Theorem (P., Ramezani'19+)

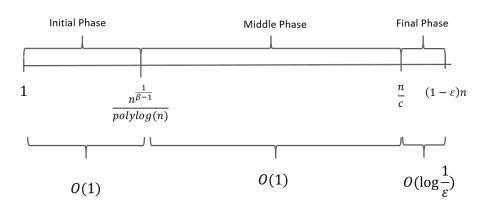
Suppose that R is a power law prob. dist. with exponent $\beta \in (2,3)$. Let us consider the push-pull protocol on an n-node complete graph. Then, with constant probability, we have

$$ST(\varepsilon) = O(1 + \log(1/\varepsilon))$$

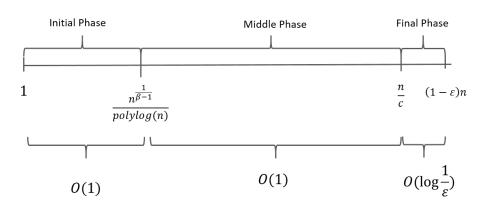
Proof Sketch



Proof Sketch



Proof Sketch



Expected total time: $O(1) + O(1) + O(\log 1/\varepsilon)$

• Each node u was assigned a random number r_u from $R \propto k^{-\beta}$, $\beta \in (2,3)$

- Each node u was assigned a random number r_u from $R \propto k^{-\beta}$, $\beta \in (2,3)$
- I_t : set of informed nodes until time t

- Each node u was assigned a random number r_u from $R \propto k^{-\beta}$, $\beta \in (2,3)$
- It: set of informed nodes until time t
- Recursively define $w_0 = 2^{\frac{4(\beta-2)}{(3-\beta)^2}+1},...,w_{2k} = (n/\log^2 n)^{\frac{1}{\beta-1}},...$

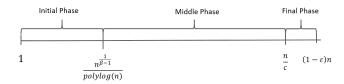
Recursively define
$$w_0 = 2^{(3-\beta)}$$
 , ..., $w_{2k} = (n/\log^-n)^{\beta-1}$, ...
$$w_i := \left\{ \begin{array}{l} \min\left\{\left(\frac{w_{i-1}}{2^{(i-1)/2}}\right)^{\frac{1}{\beta-2}}, \lfloor (n/\log^2 n)^{\frac{1}{\beta-1}}\rfloor\right\} & \text{if } i \text{ is odd,} \\ \frac{w_{i-1}}{2^{i/2}} & \text{otherwise.} \end{array} \right.$$

- Each node u was assigned a random number r_u from $R \propto k^{-\beta}$, $\beta \in (2,3)$
 - It: set of informed nodes until time t
 - Recursively define $w_0=2^{rac{4(eta-2)}{(3-eta)^2}+1},...,w_{2k}=(n/\log^2 n)^{rac{1}{eta-1}},...$
 - Corresponding to each w_i , define random variable

$$T_i := \left\{egin{array}{ll} \min\{t: |I_t| \geq w_i\} & ext{if i is even,} \ \min\{t: \exists u \in I_t ext{ with } r_u \geq w_i\} & ext{otherwise.} \end{array}
ight.$$

$$T_i := \left\{ egin{array}{ll} \min\{t: |I_t| \geq w_i\} & ext{if i is even,} \ \min\{t: \exists u \in I_t ext{ with } r_u \geq w_i\} & ext{otherwise.} \end{array}
ight.$$

$$T_i := \left\{ egin{array}{ll} \min\{t: |I_t| \geq w_i\} & ext{if i is even,} \ \min\{t: \exists u \in I_t ext{ with } r_u \geq w_i\} & ext{otherwise.} \end{array}
ight.$$



Remark

Random variable T_{2k} stochastically dominates the time is required for the initial phase.

- 4 ロ b - 4 個 b - 4 種 b - 4 種 b - 9 9 9 0 0 0 0

Lemma

- 1. $\mathbb{E}[T_0] = O(1)$
- 2. for some constant C, $\mathbb{E}[T_{i+1} T_i] \leq C^{-i}$

Corollary

$$\mathbb{E}[T_{2k}] = \mathbb{E}[T_{2k} - T_0] + \mathbb{E}[T_0] = \sum_{i=0}^{2k-1} \mathbb{E}[T_{i+1} - T_i] + \mathbb{E}[T_0]$$

$$= \sum_{i=0}^{2k-1} \mathbb{E}[\mathbb{E}[T_{i+1} - T_i|T_i]] + \mathbb{E}[T_0] = O(1)$$

44 / 53

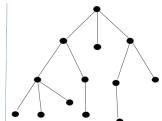
Ali (Isfahan) Rumor Spreading 17 April

Lemma

- 1. $\mathbb{E}[T_0] = O(1)$
- 2. for some constant C, $\mathbb{E}[T_{i+1}-T_i] \leq C^{-i}$

Proof of 1.

$$T_0 = \min\{t : |I_t| \ge w_0 = 2^{\frac{4(\beta-2)}{(3-\beta)^2}+1}\}$$



$$\Rightarrow \mathbb{E}[T_0] = O(1)$$

45 / 53

Ali (Isfahan) Rumor Spreading 17 April

Fix an even i, then

$$T_i = \min\{t: |I_t| \geq w_i\}$$
 $T_{i-1} = \min\{t: \exists u \in I_t ext{ with } r_u \geq w_{i-1}\}$

Fix an even i, then

$$T_i = \min\{t: |I_t| \geq w_i\}$$
 $T_{i-1} = \min\{t: \exists u \in I_t ext{ with } r_u \geq w_{i-1}\}$

Since
$$|I_t| = o(n)$$
, for every $t \in [T_{i-1}, T_i]$,

$$\sum_{u \in I_t} \frac{r_u(n-|I_t|)}{n} \qquad \geq w_{i-1}(1-o(1)) > \frac{w_{i-1}}{2}$$

 $Poission\ Rate(push\ attempt)$

Fix an even i, then

$$T_i = \min\{t: |I_t| \geq w_i\}$$
 $T_{i-1} = \min\{t: \exists u \in I_t ext{ with } r_u \geq w_{i-1}\}$

Since
$$|I_t| = o(n)$$
, for every $t \in [T_{i-1}, T_i]$,

$$\sum_{u \in I_t} rac{r_u(n-|I_t|)}{n} \qquad \geq w_{i-1}(1-o(1)) > rac{w_{i-1}}{2}$$

Poission Rate(push attempt)

✓ So for every $t \in [T_{i-1}, T_i]$, a new node gets informed with an exponential dist. of rate $\frac{2}{w_{i-1}}$.

✓ So for every $t \in [T_{i-1}, T_i]$, a new node gets informed within an exponential dist. of rate $\frac{2}{w_{i-1}}$.

- ✓ So for every $t \in [T_{i-1}, T_i]$, a new node gets informed within an exponential dist. of rate $\frac{2}{w_{i-1}}$.
- \checkmark Only consider the push protocol, to inform w_i new nodes

$$\mathbb{E}[T_{i+1} - T_i | T_i] \le \frac{2w_i}{w_{i-1}} = 2^{-i/2}$$

$$\Rightarrow \mathbb{E}[T_{i+1} - T_i] = \mathbb{E}[\mathbb{E}[T_{i+1} - T_i | T_i]] \le C^{-i}$$

- ✓ So for every $t \in [T_{i-1}, T_i]$, a new node gets informed within an exponential dist. of rate $\frac{2}{w_{i-1}}$.
- \checkmark Only consider the push protocol, to inform w_i new nodes

$$\mathbb{E}[T_{i+1} - T_i | T_i] \le \frac{2w_i}{w_{i-1}} = 2^{-i/2}$$

$$\Rightarrow \mathbb{E}[T_{i+1} - T_i] = \mathbb{E}[\mathbb{E}[T_{i+1} - T_i | T_i]] \leq C^{-i}$$

Similar technique works for odd *i*'s.

Ali (Isfahan) Rumor Spreading 17 April 47/53

Our results

Theorem (P., Ramezani'19+)

Suppose that R is a prob. dist. with mean $\mu=O(1)$ and bounded variance. Let us consider the push protocol on an n-node complete graph. Then,

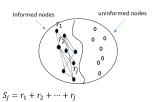
$$\checkmark \ \mathbb{E}[\mathit{ST}(0)] = \tfrac{2\log n}{\mu} + \omega(1)$$

✓ w.h.p., we have

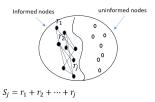
$$ST(0) = \frac{2\log n}{\mu} + \omega(\sqrt{\log n})$$

$$\checkmark \ \mathbb{E}[\mathit{ST}(0)] = \tfrac{2\log n}{\mu} + \omega(1)$$

$$\checkmark \ \mathbb{E}[\mathit{ST}(0)] = \tfrac{2\log n}{\mu} + \omega(1)$$



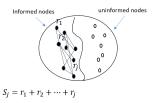
$$\checkmark$$
 $\mathbb{E}[ST(0)] = \frac{2 \log n}{\mu} + \omega(1)$



 t_j : required time to inform (j+1)-th node t_j : exponentially distributed with rate $\frac{n-j}{n-1}S_j$

$$\mathbb{E}[t_j] = \mathbb{E}[\mathbb{E}[t_j|S_j]] = \mathbb{E}[\frac{n-1}{(n-j)S_j}] = \frac{n-1}{n-j} \underbrace{\qquad \mathbb{E}[\frac{1}{S_j}]}_{\text{it needs more cal.}} \sim \frac{n-1}{(n-j)\mu j}$$

$$\checkmark$$
 $\mathbb{E}[ST(0)] = \frac{2 \log n}{\mu} + \omega(1)$



 t_j : required time to inform (j+1)-th node t_j : exponentially distributed with rate $\frac{n-j}{n-1}S_j$

$$\mathbb{E}[t_j] = \mathbb{E}[\mathbb{E}[t_j|S_j]] = \mathbb{E}[\frac{n-1}{(n-j)S_j}] = \frac{n-1}{n-j} \underbrace{\qquad \mathbb{E}[\frac{1}{S_j}]}_{\text{it needs more cal.}} \sim \frac{n-1}{(n-j)\mu j}$$

$$\mathbb{E}[ST(0)] = \sum_{j=1}^{n-1} \mathbb{E}[t_j] = \frac{2\log n}{\mu} \pm O(1)$$

Our results

Theorem (P., Ramezani'19+)

Suppose that R is a power law prob. dist. with exponent $\beta \in (2,3)$. Let us consider the push-pull protocol on an n-node complete graph. Then, with constant probability, we have

$$ST(\varepsilon) = O(\log(1/\varepsilon))$$

Our results

Theorem (P., Ramezani'19+)

Suppose that R is a power law prob. dist. with exponent $\beta \in (2,3)$. Let us consider the push-pull protocol on an n-node complete graph. Then, with constant probability, we have

$$ST(\varepsilon) = O(\log(1/\varepsilon))$$

Theorem (P., Ramezani'19+)

Suppose that R is a prob. dist. with mean $\mu=O(1)$ and bounded variance. Let us consider the push protocol on an n-node complete graph. Then,

$$\checkmark \mathbb{E}[ST(0)] = \frac{2\log n}{\mu} + \omega(1)$$

✓ w.h.p., we have

$$ST(0) = \frac{2\log n}{\mu} + \omega(\sqrt{\log n})$$

Multiple-Call Rumor Spreading (synch. version)

Panagiouto, P., Sauerwald'13

- \checkmark Each node u was assigned a random number r_u chosen from a given distribution
- ✓ At the beginning, one vertex knows a rumor
- \checkmark In each round, node u pushes (pulls) the rumor to (from) r_u random neighbors.

Spread Time: the first time when all nodes become informed.

Asynchronous vs Synchronous

algorithm	distribution	multiple-call	multiple-rate
push	$\mathbb{E}[R] = \mu < \infty, \mathbb{V}[R] < \infty$	$ST(0) = rac{\log n}{\log(1+\mu)} + rac{\log n}{\mu} \pm o(\log n)$	$ST(0) = \frac{\log n}{\mu} \pm o(\log n)$
push-pull	R is a power law with $\beta \in (2,3)$	$ST(\varepsilon) = \Theta(\log\log n)$	$ST(\varepsilon) = \Theta(1)$

Asynchronous vs Synchronous

algorithm	distribution	multiple-call	multiple-rate
push	$\mathbb{E}[R] = \mu < \infty, \mathbb{V}[R] < \infty$	$ST(0) = rac{\log n}{\log(1+\mu)} + rac{\log n}{\mu} \pm o(\log n)$	$ST(0) = \frac{\log n}{\mu} \pm o(\log n)$
push-pull	R is a power law with $\beta \in (2,3)$	$ST(\varepsilon) = \Theta(\log \log n)$	$ST(\varepsilon) = \Theta(1)$

The asynchronous model propagates the rumor much faster

Any Question?

Thank you! alipourmiri@gmail.com