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Push Protocol (Synchronous)
Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . , every informed vertex tells the rumour
to a random neighbour.

Remark 1. Informed vertex may call a neighbour in consecutive steps.
Remark 2. If a vertex receives the rumour at time t , it starts passing it
from time t + 1.
Spread Time: the first time everyone knows the rumour.
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Application: distributed computing

Rumour spreading advantages:

X Simplicity, locality, no memory

X Scalability, reasonable link loads

X Robustness
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Example: a path

informTime(0) = 0
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Example: a path

informTime(0) = 0

informTime(1) = 1
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(1/2)
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(1/2)

informTime(3) = 1+Geo(1/2) +Geo(1/2)
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Example: a path
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(1/2)

informTime(3) = 1+Geo(1/2) +Geo(1/2)

informTime(4) = 1+Geo(1/2) +Geo(1/2) +Geo(1/2)

E[Spread Time] = 1+ 3× 2 = 7
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(1/2)

informTime(3) = 1+Geo(1/2) +Geo(1/2)

informTime(4) = 1+Geo(1/2) +Geo(1/2) +Geo(1/2)

E[Spread Time] = 1+ 3× 2 = 7

= 2n − 3
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Example: a star

When k + 1 vertices are informed and n − 1− k uninformed,
after E[Geo(n−k−1

n−1 )] = n−1
n−1−k more rounds a new vertex will be

informed.

E[Spread Time] =
n − 1
n − 1

+
n − 1
n − 2

+ · · ·+ n − 1
2

+
n − 1
1
≈ n lnn
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Improving the protocol

Uninformed vertices ask the informed ones...
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Push-Pull Protocol (Synchronous)
Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random neighbour
(PUSH);
and every uninformed vertex queries a random neighbour about
the rumour (PULL).

Remark 1. Vertices may call the same neighbour in consecutive steps.
Remark 2. If a vertex receives the rumour at time t , it starts passing it
from time t + 1.
Spread Time: the first time everyone knows the rumour.
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Example: a star

push protocol: n lnn rounds
push-pull protocol: 1 or 2 rounds
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Example: a path

informTime(0) = 0
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Example: a path

informTime(0) = 0

informTime(1) = 1
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+min{Geo(1/2),Geo(1/2)}

= 1+Geo(3/4)
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(3/4)

informTime(3) = 1+Geo(3/4) +Geo(3/4)
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Example: a path

informTime(0) = 0
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informTime(2) = 1+Geo(3/4)

informTime(3) = 1+Geo(3/4) +Geo(3/4)
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(3/4)

informTime(3) = 1+Geo(3/4) +Geo(3/4)

informTime(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3
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Example: a path

informTime(0) = 0

informTime(1) = 1

informTime(2) = 1+Geo(3/4)

informTime(3) = 1+Geo(3/4) +Geo(3/4)

informTime(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3

=
4
3
n − 2 (versus 2n − 3 for push)
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Known results

X on complete graph
push: log2 n + lnn + o(logn)
push-pull: log3 n + o(logn)

X Barabasi-Albert preferential attachment graph has
Spread Time Θ(logn),
PUSH alone has Spread Time poly(n).

X Random graphs with power-law expected degrees
(a.k.a. the Chung-Lu model) with exponent ∈ (2, 3) has
Spread Time Θ(logn).

X If Φ is Cheeger constant (conductance)
and α is the vertex expansion (vertex isoperimetric number),
Spread Time ≤ C max{Φ−1 logn , α−1 log2 n}.

Ali (Isfahan) Rumor Spreading 17 April 22 / 53



Known results

X on complete graph
push: log2 n + lnn + o(logn)
push-pull: log3 n + o(logn)

X Barabasi-Albert preferential attachment graph has
Spread Time Θ(logn),
PUSH alone has Spread Time poly(n).

X Random graphs with power-law expected degrees
(a.k.a. the Chung-Lu model) with exponent ∈ (2, 3) has
Spread Time Θ(logn).

X If Φ is Cheeger constant (conductance)
and α is the vertex expansion (vertex isoperimetric number),
Spread Time ≤ C max{Φ−1 logn , α−1 log2 n}.

Ali (Isfahan) Rumor Spreading 17 April 22 / 53



Known results

X on complete graph
push: log2 n + lnn + o(logn)
push-pull: log3 n + o(logn)

X Barabasi-Albert preferential attachment graph has
Spread Time Θ(logn),
PUSH alone has Spread Time poly(n).

X Random graphs with power-law expected degrees
(a.k.a. the Chung-Lu model) with exponent ∈ (2, 3) has
Spread Time Θ(logn).

X If Φ is Cheeger constant (conductance)
and α is the vertex expansion (vertex isoperimetric number),
Spread Time ≤ C max{Φ−1 logn , α−1 log2 n}.

Ali (Isfahan) Rumor Spreading 17 April 22 / 53



Known results

X on complete graph
push: log2 n + lnn + o(logn)
push-pull: log3 n + o(logn)

X Barabasi-Albert preferential attachment graph has
Spread Time Θ(logn),
PUSH alone has Spread Time poly(n).

X Random graphs with power-law expected degrees
(a.k.a. the Chung-Lu model) with exponent ∈ (2, 3) has
Spread Time Θ(logn).

X If Φ is Cheeger constant (conductance)
and α is the vertex expansion (vertex isoperimetric number),
Spread Time ≤ C max{Φ−1 logn , α−1 log2 n}.

Ali (Isfahan) Rumor Spreading 17 April 22 / 53



Key Idea : rigorously analyze the size of informed nodes until time t ,
It .

Examples: complete graphs, G(n , p)

It+1 ∼ (1+ c)It

Key Idea: efficient connectors facilitate the communication between
large degree nodes
Example: Chung-Lu, preferential attachment,.. .
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Key Idea : rigorously analyze the size of informed nodes until time t ,
It .
Examples: complete graphs, G(n , p)

It+1 ∼ (1+ c)It

Key Idea: efficient connectors facilitate the communication between
large degree nodes
Example: Chung-Lu, preferential attachment,.. .



Toward a more realistic model...
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Asynchronous Rumor Spreading Protocols
Boyd, Ghosh, Prabhakar, Shah’06

1. A simple connected graph and each node has a Poisson clock of
rate 1

2. At the beginning, one vertex knows a rumor

3. As soon as the Poisson clock of a vertex rings, he contacts a
random neighbor and pushes (or pulls) the rumor to (from) his
neighbor

Remark 1. The number of calls by a node has Poisson Dist. of rate 1
Remark 2. The time distribution between any two consecutive rings of
a node has Exponential Dist. of rate 1
Spread Time: the first time everyone knows the rumour.
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Example: Asynchronous push on a path

informTime(0) = 0

informTime(1) = Exp(1)
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Example: Asynchronous push on a path

informTime(0) = 0

informTime(1) = Exp(1)

informTime(2) = Exp(1) + Exp(1/2)

informTime(3) = Exp(1) + Exp(1/2) + Exp(1/2)
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Example: Asynchronous push on a path
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Example: Asynchronous push on a path

informTime(0) = 0

informTime(1) = Exp(1)

informTime(2) = Exp(1) + Exp(1/2)

informTime(3) = Exp(1) + Exp(1/2) + Exp(1/2)

informTime(4) = Exp(1) + Exp(1/2) + Exp(1/2) + Exp(1/2)

E[Spread Time] = 1+ 3× 2

= 2(n − 2) + 1
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Example: Asynchronous push-pull on a path

informTime(0) = 0

informTime(1) = min{Exp(1),Exp(1/2)} = Exp(3/2)
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Example: Asynchronous push-pull on a path

informTime(0) = 0

informTime(1) = min{Exp(1),Exp(1/2)} = Exp(3/2)

informTime(2) = Exp(3/2) +min{Exp(1/2),Exp(1/2)}

= Exp(3/2) + Exp(1)

informTime(3) = Exp(3/2) + Exp(1) + Exp(1)
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Example: Asynchronous push-pull on a path

informTime(0) = 0

informTime(1) = Exp(3/2)

informTime(2) = Exp(3/2) + Exp(1)

informTime(3) = Exp(3/2) + Exp(1) + Exp(1)

informTime(4) = Exp(3/2) + Exp(1) + Exp(1) +min{Exp(1/2),Exp(1)}

= Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)
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Example: Asynchronous push-pull on a path

informTime(0) = 0

informTime(1) = Exp(3/2)

informTime(2) = Exp(3/2) + Exp(1)

informTime(3) = Exp(3/2) + Exp(1) + Exp(1)

informTime(4) = Exp(3/2) + Exp(1) + Exp(1) + Exp(3/2)

E[Spread Time] = 2+ 4/3

= n − 3+ 4/3
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Known results

X on Gn ,p , p ∈ ( log n
n , 1]

push-pull: w.h.p. ST = logn + O(1)

X on Chung-lu random graph
push-pull: w.h.p. ST = O(log logn)

X For every graph G
push-pull: w.h.p.

STasynch = O(STsynch + logn)

STsynch

STasynch
≤
√

npolylog(n)
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Toward a "bit" more realistic model...
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Multiple-Rate Asynchronous Rumor Spreading
P. and Ramezani’19

X Each node u has a Poisson clock of rate ru chosen from a given
distribution

X At the beginning, one vertex knows a rumor

X As soon as the Poisson clock of a vertex rings, it pushes (pulls) the
rumor to (from) a random neighbor contacts a random neighbor.

Spread TimeST (ε): For every ε ∈ [0, 1), this is the first time when
(1− ε)fraction of nodes gets informed,
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Our results

Theorem (P., Ramezani’19+)

Suppose that R is a power law prob. dist. with exponent β ∈ (2, 3).
Let us consider the push-pull protocol on an n-node complete
graph. Then, with constant probability, we have

ST (ε) = O(1+ log(1/ε))
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Proof Sketch
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Proof Sketch
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Proof Sketch
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Proof Sketch: Initial Phase

• Each node u was assigned a random number ru from R ∝ k−β,
β ∈ (2, 3)

• It : set of informed nodes until time t

• Recursively define w0 = 2
4(β−2)
(3−β)2

+1
, ...,w2k = (n/log2 n)

1
β−1 , ..

wi :=


min

{(
wi−1

2(i−1)/2

) 1
β−2

, b(n/log2 n)
1
β−1 c
}

if i is odd,

wi−1
2i/2 otherwise.

(1)
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Proof Sketch: Initial Phase

• Each node u was assigned a random number ru from R ∝ k−β,
β ∈ (2, 3)

• It : set of informed nodes until time t

• Recursively define w0 = 2
4(β−2)
(3−β)2

+1
, ...,w2k = (n/log2 n)

1
β−1 , ..

• Corresponding to each wi , define random variable

Ti :=

{
min{t : |It | ≥ wi } if i is even,
min{t : ∃u ∈ It with ru ≥ wi } otherwise.
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Ti :=

{
min{t : |It | ≥ wi } if i is even,
min{t : ∃u ∈ It with ru ≥ wi } otherwise.

Remark
Random variable T2k stochastically dominates the time is required for
the initial phase.
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Lemma
1. E[T0] = O(1)

2. for some constant C , E[Ti+1 − Ti ] ≤ C−i

Corollary

E[T2k ] = E[T2k − T0] + E[T0] =

2k−1∑
i=0

E[Ti+1 − Ti ] + E[T0]

=

2k−1∑
i=0

E[E[Ti+1 − Ti |Ti ]] + E[T0] = O(1)
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Lemma
1. E[T0] = O(1)

2. for some constant C , E[Ti+1 − Ti ] ≤ C−i

Proof of 1.

T0 = min{t : |It | ≥ w0 = 2
4(β−2)
(3−β)2

+1
}

⇒ E[T0] = O(1)
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Proof of 2.
Fix an even i , then

Ti = min{t : |It | ≥ wi }

Ti−1 = min{t : ∃u ∈ It with ru ≥ wi−1}

Since |It | = o(n), for every t ∈ [Ti−1,Ti ],∑
u∈It

ru(n − |It |)
n︸ ︷︷ ︸

Poission Rate(push attempt)

≥ wi−1(1− o(1)) >
wi−1

2

X So for every t ∈ [Ti−1,Ti ], a new node gets informed with an
exponential dist. of rate 2

wi−1
.
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Proof of 2.
X So for every t ∈ [Ti−1,Ti ], a new node gets informed within an

exponential dist. of rate 2
wi−1

.

X Only consider the push protocol, to inform wi new nodes
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⇒ E[Ti+1 − Ti ] = E[E[Ti+1 − Ti |Ti ]] ≤ C−i

Similar technique works for odd i ’s.
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Our results

Theorem (P., Ramezani’19+)

Suppose that R is a prob. dist. with mean µ = O(1) and bounded
variance. Let us consider the push protocol on an n-node complete
graph. Then,

X E[ST (0)] = 2 log n
µ +ω(1)

X w.h.p., we have

ST (0) =
2 logn
µ

+ω(
√

logn)
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X E[ST (0)] = 2 log n
µ

+ω(1)

tj : required time to inform (j + 1)-th node
tj : exponentially distributed with rate n−j

n−1Sj

E[tj ] = E[E[tj |Sj ]] = E[
n − 1

(n − j )Sj
] =

n − 1
n − j

E[
1
Sj

]︸ ︷︷ ︸
it needs more cal.

∼
n − 1

(n − j )µj

E[ST (0)] =
n−1∑
j=1

E[tj ] =
2 logn
µ

±O(1)
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Our results

Theorem (P., Ramezani’19+)

Suppose that R is a power law prob. dist. with exponent β ∈ (2, 3). Let
us consider the push-pull protocol on an n-node complete graph. Then,
with constant probability, we have

ST (ε) = O(log(1/ε))

Theorem (P., Ramezani’19+)

Suppose that R is a prob. dist. with mean µ = O(1) and bounded
variance. Let us consider the push protocol on an n-node complete
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X w.h.p., we have
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Multiple-Call Rumor Spreading (synch. version)
Panagiouto, P., Sauerwald’13

X Each node u was assigned a random number ru chosen from a
given distribution

X At the beginning, one vertex knows a rumor

X In each round, node u pushes (pulls) the rumor to (from) ru

random neighbors.

Spread Time: the first time when all nodes become informed.
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Asynchronous vs Synchronous

algorithm distribution multiple-call multiple-rate
push E[R] = µ <∞,V[R] <∞ ST (0) = log n

log(1+µ) +
log n
µ ± o(logn) ST (0) = log n

µ ± o(logn)
push-pull R is a power law with β ∈ (2, 3) ST (ε) = Θ(log logn) ST (ε) = Θ(1)

The asynchronous model propagates the rumor much faster
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Any Question?

Thank you!
alipourmiri@gmail.com


