Some relations between rank of a graph and its complement

Saieed Akbari a,b,*, Alireza Alipour a,b, Javad Ebrahim Ebrahim Boroojeni a, Ebrahim Ghorbani a,b, Mirhamed Mirjalalieh Shirazi a

a Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran
b Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

Received 29 December 2005; accepted 30 October 2006
Available online 20 December 2006
Submitted by R.A. Brualdi

Abstract

Let G be a graph of order n and rank(G) denotes the rank of its adjacency matrix. Clearly, n ≤ rank(G) + rank(\overline{G}) ≤ 2n. In this paper we characterize all graphs G such that rank(G) + rank(\overline{G}) = n, n + 1 or n + 2. Also for every integer n ≥ 5 and any k, 0 ≤ k ≤ n, we construct a graph G of order n, such that rank(G) + rank(\overline{G}) = n + k.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 05C50; 15A03

Keywords: Adjacency matrix; Rank; Complement of a graph

1. Introduction

Throughout this paper all graphs are simple. For a graph G we denote its complement by \overline{G}. The order of G is the number of vertices of G. For any graph G with the vertex set \{v_1, \ldots, v_n\}, the adjacency matrix of G is an n × n matrix A whose entries a_{ij} are given by a_{ij} = 1, if v_i and v_j are adjacent and a_{ij} = 0 if they are not adjacent. The rank and the null space of the adjacency
matrix of G are denoted by rank(G) and ker(G), respectively. We say λ is an eigenvalue of G if it is an eigenvalue of its adjacency matrix. For a vertex v of G, $N(v)$ denotes the neighborhood of v. In this paper a cycle of order n is denoted by C_n. We denote the complete k-partite graph with part sizes p_1, \ldots, p_k by K_{p_1, \ldots, p_k}. We also denote the null graph of order n by \overline{K}_n. Let G_1, \ldots, G_n be a sequence of disjoint graphs. Denote by $P(G_1, \ldots, G_n)$ the graph obtained from $G_1 \cup \cdots \cup G_n$ (disjoint union of G_1, \ldots, G_n) by joining every vertex of G_i to each vertex of G_{i+1}, for any i, $1 \leq i \leq n - 1$. We also use $G_1 \vee G_2$ for $P(G_1, G_2)$. The square matrix with all entries 1 is denoted by J.

It is obvious that for any graph G of order n, $n \leq \text{rank}(G) + \text{rank}(\overline{G}) \leq 2n$. The main goal of this paper is the classification of all graphs of order n for which rank(G) + rank(\overline{G}) $= n$, $n + 1$ or $n + 2$.

2. Characterization of graphs with rank(G) + rank(\overline{G}) $= n$, $n + 1$

In this section we classify all graphs G such that rank(G) + rank(\overline{G}) $= n$ or $n + 1$. We start with the following theorem.

Theorem A [4, p. 163]. A graph has exactly one positive eigenvalue if and only if its non-isolated vertices form a complete multipartite graph.

Lemma 1 [4, p. 21]. If for every eigenvalue λ of a graph G, $\lambda \geq -1$, then G is a union of complete graphs.

Lemma 2. Given a graph G of order n. For any integer k, if rank(G) + rank(\overline{G}) $= n + k$, then G has at most $k + 1$ eigenvalues not contained in {$-1, 0$}.

Proof. Let $W_1 = \text{Ker}(G)$, $W_2 = \text{Ker}(\overline{G})$ and $K = \text{Ker}(J)$, then dim $W_1 + \text{dim } W_2 = n - k$ and dim $K = n - 1$. Since dim $W_2 + \text{dim } K - \text{dim } (W_2 \cap K) = \text{dim } (W_2 + K) \leq n$, dim $(W_2 \cap K) \geq \text{dim } W_2 - 1$. Since $A + \overline{A} = J - I$, therefore $W_1 \cap W_2 = \{0\}$ and for every $x \in W_2 \cap K$, $Ax = -x$. Hence the multiplicity of the eigenvalue -1 is at least dim $W_2 - 1$. Since dim $W_1 + \text{dim } W_2 = n - k$, A has at most $k + 1$ eigenvalues not contained in {$-1, 0$}. □

We state two following simple lemmas without proof.

Lemma 3. Let G be a graph and u, v be two distinct vertices such that $N(u) = N(v)$, then rank(G) = rank($G\setminus \{v\}$).

Lemma 4. Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$ and adjacency matrix A. If $N(v_i) \cup \{v_i\} = N(v_j) \cup \{v_j\}$ and (x_1, \ldots, x_n) is a vector in the null space of A, then $x_i = x_j$.

Lemma 5. Let $k \geq 1$, $p_1, \ldots, p_k \geq 2$ and $q \geq 0$. If G is isomorphic to $K_{p_1} \cup \cdots \cup K_{p_k} \cup \overline{K}_q$, then rank($G$) $= p_1 + \cdots + p_k$ and rank(\overline{G}) $= q + k$, if $q + k \geq 2$.

Proof. The first part is obvious. For the second part we note that graph \overline{G} is isomorphic to $P(K_q, K_{p_1}, \ldots, p_k)$. Now by Lemma 3, rank($\overline{G}$) = rank($P(K_q, K_{p_1}, \ldots, p_k)$) = rank($K_{q+k}$) = $q + k$. □
Lemma 6. Let \(q \geq 0, k \geq 2 \) and \(p_1 \geq \cdots \geq p_k \geq 1 \). If \(G \) is isomorphic to \(\overline{K}_q \cup K_{p_1, \ldots, p_k} \), then \(\text{rank}(G) = k \). If \(r \) is the largest index such that \(p_r \geq 2 \) (for \(p_1 = 1 \), put \(r = 0 \)), then

\[
\text{rank}(\overline{G}) = \begin{cases}
q + p_1 + \cdots + p_k & \text{if } r = k, \\
p_1 + \cdots + p_r & \text{if } q = 0, \\
q + p_1 + \cdots + p_r + 1 & \text{if } q \geq 1 \text{ and } r < k.
\end{cases}
\]

Proof. By Lemma 3 we have \(\text{rank}(G) = \text{rank}(K_{1, \ldots, 1}) = k \). The graph \(\overline{G} \) is isomorphic to \(P(K_q, K_{p_1} \cup \cdots \cup K_{p_k}) \). If \(q = 0 \), then obviously \(\text{rank}(\overline{G}) = p_1 + \cdots + p_r \). Suppose that \(q \geq 1 \) and \(r \geq k - 1 \), that is \(p_{k-1} \geq 2 \). Let \(\overline{A} \) be the adjacency matrix of \(\overline{G} \) and \(\mathbf{x} \) be a vector in the null space of \(\overline{A} \). By Lemma 4, \(\mathbf{x} = (z, \ldots, z, y_1, \ldots, y_1, \ldots, y_k, \ldots, y_k)' \), where \(z \) is repeated \(q \) times and \(y_i \) is repeated \(p_i \) times, \(i = 1, \ldots, k \). Now \(\overline{A}\mathbf{x} = \mathbf{0} \) implies that

\[
\begin{pmatrix}
q - 1 & p_1 & \cdots & p_k \\
q & p_1 - 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
q & 0 & \cdots & p_k - 1
\end{pmatrix}
\begin{pmatrix}
z \\
y_1 \\
\vdots \\
y_k
\end{pmatrix}
= \mathbf{0}.
\]

Since \(p_1 \geq \cdots \geq p_{k-1} \geq 2 \), one may easily conclude that \(z = y_1 = \cdots = y_k = 0 \). Therefore \(\text{rank}(\overline{G}) = q + p_1 + \cdots + p_k \). If \(q \geq 1 \) and \(r < k \), then by Lemma 3, \(\text{rank}(\overline{G}) = \text{rank}P(K_q, (K_{p_1} \cup \cdots \cup K_{p_r} \cup K_1)) \) and by previous case we conclude that \(\text{rank}(\overline{G}) = q + p_1 + \cdots + p_r + 1 \). \(\square \)

Theorem 1. Let \(G \) be a graph of order \(n \), then \(\text{rank}(G) + \text{rank}(\overline{G}) = n \geq 2 \) if and only if either \(G \) or \(\overline{G} \) is a complete graph.

Proof. Let \(\text{rank}(G) + \text{rank}(\overline{G}) = n \). By Lemma 2, \(G \) has at most one eigenvalue different from 0, \(-1\). If \(G \) is a null graph, then we are done. So it has exactly one positive eigenvalue. Thus by Lemma 1, \(G \) is a union of finitely many complete graphs. Since \(G \) has exactly one positive eigenvalue, \(G = K_p \cup \overline{K}_q \), where \(p \geq 2 \) and \(q \geq 0 \). If \(q \geq 1 \), then by Lemma 5, \(\text{rank}(G) = p \) and \(\text{rank}(\overline{G}) = q + 1 \), thus \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 1 \) which is impossible. So \(q = 0 \) and we are done. \(\square \)

Theorem 2. Let \(G \) be a graph of order \(n \), then \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 1 \) if and only if either \(G \) or \(\overline{G} \) is isomorphic to \(K_p \cup \overline{K}_q \), where \(p \geq 2, q \geq 1 \).

Proof. One part of theorem is obvious by Lemma 5. So assume that \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 1 \). By Lemma 2, \(G \) has at most two eigenvalues different from 0, \(-1\). Since \(G \) is not a null graph, it has at least one positive eigenvalue. Now two cases can be considered.

Case 1. The graph \(G \) has exactly one positive eigenvalue. By Theorem A, \(G \) is isomorphic to the union of a null graph of order \(q \) and a \(k \)-partite graph \(K_{p_1, \ldots, p_k} \), where \(q \geq 0, k \geq 1, p_1 \geq \cdots \geq p_k \geq 1 \) and \(q + p_1 + \cdots + p_k = n \). If \(k = 1 \), then we are done. So we may assume that \(k \geq 2 \). Let \(r \) be the largest index such that \(p_r \geq 2 \). By Lemma 6, \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 1 \) only if \(q = 0, r = 1 \) or \(q \geq 1, r = 0 \). In the first case \(\overline{G} \) and in the second case \(G \) is the union of a complete graph and a null graph.
Case 2. The graph \(G \) has exactly two positive eigenvalues. In this case for every eigenvalue \(\lambda \) of \(G \), \(\lambda \geq -1 \), therefore by Lemma 1, \(G \) is a union of finitely many complete graphs. Since \(G \) has exactly two positive eigenvalues, therefore \(G \) is the union of the complete graphs \(K_{p_1}, K_{p_2} \) and the null graph of order \(q \), where \(p_1, p_2 \geq 2 \) and \(q \geq 0 \). Hence by Lemma 5, \(\text{rank}(G) = p_1 + p_2 \) and \(\text{rank}(\overline{G}) = q + 2 \), which implies that \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 2 \), a contradiction. \(\square \)

3. Characterization of graphs with \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 2 \)

In this section we would like to determine all graphs \(G \) which \(\text{rank}(G) + \text{rank}(\overline{G}) = n + 2 \).

Theorem B [5]. The second smallest eigenvalues of both graphs \(G \) and \(\overline{G} \) are at least \(-1\) if and only if at least one of these graphs belongs to one of the following families of graphs:

(a) \(P(K_m, \overline{K}_n, \overline{K}_p, K_q) \) \((m \geq 1, n \geq 1, p \geq 1, q \geq 1)\);
(b) \(P(\overline{K}_m, K_n, K_p, \overline{K}_q) \) \((m = n = 1, p \geq 1, q \geq 1)\) or \(m = p = 1, n \geq 1, q \geq 1 \) or \(m = 1, n = p = 2, q \geq 1 \) or \(m = n = p = q = 2 \);
(c) \(P(\overline{K}_m, K_n, \overline{K}_p, K_q) \) \((1 \leq m \leq 2, n \geq 1, p \geq 1, q \geq 1)\) or \(m = 3, n \geq 1, 1 \leq p \leq 2, q \geq 1 \) or \(m \geq 4, n \geq 1, p = 1, q \geq 1 \);
(d) \(P(\overline{K}_m, \overline{K}_n, \overline{K}_p, K_q) \) \((m = n = 2, p = 3, q \geq 1)\) or \(m = p = 2, n \geq 1, q \geq 1 \);
(e) \(P(K_m, \overline{K}_n, \overline{K}_p) \) \((m \geq 2, n \geq 1, p \geq 1)\);
(f) \(P(K_m, K_n, \overline{K}_p) \) \((m \geq 2, n \geq 1, p \geq 1)\);
(g) \(P(K_m, \overline{K}_n, K_p) \) \((m \geq 2, n \geq 1, p \geq 1)\);
(h) \(P(K_m, K_n, K_p) \) \((m \geq 2, n \geq 1, p \geq 1)\);
(i) \(P(\overline{K}_m, K_n) \) \((m \geq 1, n \geq 1)\);
(j) \(P(\overline{K}_m, \overline{K}_n) \) \((m \geq 1, n \geq 1)\).

The proof of the next lemma is similar to the proof of Lemma 6.

Lemma 7. Let \(G \) be a graph. Then the following hold:

(a) If \(G \) is isomorphic to \(P(K_m, \overline{K}_n, \overline{K}_p, K_q) \), \(m, n, p, q \geq 1 \), then \(\text{rank}(G) = m + q + 2 \) and \(\text{rank}(\overline{G}) = n + p + 2 \).
(b) If \(G \) is isomorphic to \(P(\overline{K}_m, K_n, K_p, \overline{K}_q) \), \(m, n, p, q \geq 1 \), then \(\text{rank}(G) = n + p + 2 \) and \(\text{rank}(\overline{G}) = m + q + 2 \).
(c) If \(G \) is isomorphic to \(P(\overline{K}_m, K_n, \overline{K}_p, K_q) \), \(m, n, p, q \geq 1 \), then \(\text{rank}(G) = n + q + 2 \) and \(\text{rank}(\overline{G}) = m + p + 2 \).
(d) If \(G \) is isomorphic to \(P(\overline{K}_m, \overline{K}_n, \overline{K}_p, K_q) \), \(m = n = 2, p = 3, q \geq 1 \) or \(m = p = 2, n \geq 1, q \geq 1 \), then \(\text{rank}(G) = q + 3 \) and \(\text{rank}(\overline{G}) = m + n + p + 1 \).
(e) If \(G \) is isomorphic to \(P(K_m, \overline{K}_n, \overline{K}_p) \), \(m \geq 2, n, p \geq 1 \), then \(\text{rank}(G) = m + 2 \) and \(\text{rank}(\overline{G}) = n + p + 1 \).
(f) If \(G \) is isomorphic to \(P(K_m, K_n, \overline{K}_p) \), \(m \geq 2, n, p \geq 1 \), then \(\text{rank}(G) = m + n + 1 \) and \(\text{rank}(\overline{G}) = p + 1 \).
(g) If \(G \) is isomorphic to \(P(K_m, \overline{K}_n, K_p) \), \(m \geq 2, n, p \geq 1 \), then \(\text{rank}(G) = m + p + 1 \) and \(\text{rank}(\overline{G}) = n + 2 \).
(h) If G is isomorphic to $P(K_m, K_n, K_p)$, $m \geq 2$, n, $p \geq 1$, then $\text{rank}(G) = m + n + p$ and $\text{rank}(\overline{G}) = 2$.

(i) If G is isomorphic to $P(K_m, K_n)$, $m \geq 2$, $n \geq 1$, then $\text{rank}(G) = n + 1$ and $\text{rank}(\overline{G}) = m$.

(j) If G is isomorphic to $P(K_m, K_n)$, $m, n \geq 2$, then $\text{rank}(G) = 2$ and $\text{rank}(\overline{G}) = m + n$.

The following corollary is an easy consequence of Lemma 7.

Corollary 1. Suppose that a graph G of order n belongs to one of ten families of graphs given in Theorem B. If $\text{rank}(G) + \text{rank}(\overline{G}) = n + 2$, then G belongs to one of the following families:

(i) $P(K_m, K_p, K_q)$ $(m \geq 2$, $p, q \geq 1)$;
(ii) $P(K_m, K_p)$ $(m \geq 2$, $p, q \geq 1)$;
(iii) $P(K_m, K_p, K_q)$ $(m \geq 2, p \geq 1)$.

Theorem 3. Let G be a graph of order n, then $\text{rank}(G) + \text{rank}(\overline{G}) = n + 2$ if and only if either G or \overline{G} is isomorphic to one of the following families of graphs:

(i) $P(K_m, K_p, K_q)$ $(m \geq 2$, $p, q \geq 1)$;
(ii) $P(K_m, K_p, K_q)$ $(m \geq 2, p, q \geq 2)$;
(iii) $P(K_m, K_p, K_q)$ $(m \geq 2, p, q \geq 1)$.

Proof. One part of theorem is obvious by Lemmas 5 and 7. So assume that $\text{rank}(G) + \text{rank}(\overline{G}) = n + 2$. By Lemma 2 both G and \overline{G} have at most three eigenvalues different from 0, -1. Clearly G and \overline{G} have at least one positive eigenvalue. Now we consider three cases.

Case 1. The graph G or \overline{G}, say G, has exactly one positive eigenvalue. By Theorem A, G is isomorphic to the union of the null graph \overline{K}_q and the k-partite graph $K_{p_1}, ..., p_k$, where $q \geq 0$, $k \geq 2$, $p_1 \geq \cdots \geq p_k \geq 1$. Let r be the largest index such that $p_i \geq 2$. By Lemma 6, $\text{rank}(G) + \text{rank}(\overline{G}) = n + 2$ only if $r = k = 2$ or $q = 0$, $r = 2$ or $q \geq 1$, $r = 1$. In the first case \overline{G} is isomorphic to $P(K_{p_1}, K_q, K_{p_2})$, $p_1, p_2 \geq 2, q \geq 0$, in the second case \overline{G} is isomorphic to $K_{p_1} \cup K_{p_2} \cup \overline{K}_m, p_1, p_2 \geq 2, m \geq 1$ and in the third case \overline{G} is isomorphic to $P(K_{p_1}, K_q, K_{m}), p_1 \geq 2, q, m \geq 1$.

Case 2. Both G and \overline{G} have exactly two positive eigenvalues. In this case the second smallest eigenvalues of both graphs G and \overline{G} are at least -1, therefore at least one of them belongs to one of ten families of graphs given in Theorem B. Since $\text{rank}(G) + \text{rank}(\overline{G}) = n + 2$, either G or \overline{G} belongs to one of the families given in Corollary 1.

Case 3. The graph G or \overline{G}, say G, has exactly three positive eigenvalues. In this case for every eigenvalue λ of G we have $\lambda \geq -1$, therefore by Lemma 1, G is a union of finitely many complete graphs. Since G has exactly three positive eigenvalues, G is the union of three complete graphs $K_{p_1}, K_{p_2}, K_{p_3}$ and the null graph \overline{K}_q, where $p_1, p_2, p_3 \geq 2$ and $q \geq 0$. Hence by Lemma 5, $\text{rank}(G) = p_1 + p_2 + p_3$ and $\text{rank}(\overline{G}) = q + 3$ which implies that $\text{rank}(G) + \text{rank}(\overline{G}) = n + 3$, a contradiction. □
4. A solution for the equation $\text{rank}(G) + \text{rank}(\overline{G}) = n + k$ ($1 \leq k \leq n$)

In [1] it has been proved that for any regular graph G, $\text{rank}(G \vee K_1) = \text{rank}(G) + 1$. The next lemma is a generalization of this result.

Lemma 8. Let G and H be regular graphs. Then $\text{rank}(G \vee H) = \text{rank}(G) + \text{rank}(H)$.

Proof. By [4, Theorem 2.8] the number of zero eigenvalues of $G \vee H$ is equal to sum of the number of zero eigenvalues of G and H. □

Remark 1. It is well known that if G is an r-regular graph of order n with eigenvalues $r, \lambda_2, \ldots, \lambda_n$, then the eigenvalues of \overline{G} are $n - r - 1, -1 - \lambda_2, \ldots, -1 - \lambda_n$, see [2, p. 20].

Remark 2. If n is not divisible by 4, then we have $\text{rank}(C_n) = n$ (see [2, p. 17]). Also by considering the eigenvalues of C_n and using Remark 1 if n is not divisible by 3, then $\text{rank}(\overline{C_n}) = n$.

Lemma 9. For any integer $n \geq 5$ ($n \neq 6, 8$), there exists a 2-regular graph G of order n such that both G and \overline{G} have full ranks.

Proof. If n is not divisible by 3 and 4, then by Remarks 1 and 2, set $G = C_n$. Otherwise, noting that $C_{n-k} \cup C_k$ is a regular graph and using Remarks 1 and 2 define G as follows:

1. If $n \equiv 0, 3, 4, 6$ (mod 12), then set $G = C_{n-5} \cup C_5$.
2. If $n \equiv 8, 9$ (mod 12), then set $G = C_{n-7} \cup C_7$. □

Lemma 10. For any integer $n \geq 3$ and every k, $0 \leq k \leq \lfloor n/2 \rfloor$, there exists a graph G of order n such that $\text{rank}(G) + \text{rank}(\overline{G}) = n + k$.

Proof. If $k = 0$, then consider the complete graph K_n. If $k = 1$, then consider the complete bipartite graph $K_{1,n-1}$. For each k, $2 \leq k \leq \lfloor n/2 \rfloor$ consider a complete k-partite graph such that each part has at least two vertices. Such a graph has rank k and its complement has full rank, as desired. □

Lemma 11. For every integer $n \geq 9$, there exists a graph G of order n such that $\text{rank}(G) + \text{rank}(\overline{G}) = n + 8$ and for any $n \geq 7$, there exists a graph G of order n such that $\text{rank}(G) + \text{rank}(\overline{G}) = n + 6$.

Proof. Set $G = C_7 \cup K_{n-7}$. Thus G has full rank and $\overline{G} = \overline{C_7} \vee K_{n-7}$. But we observe that $\text{rank}(\overline{G}) = \text{rank}(\overline{C_7} \vee K_1)$. Since by Remark 2 $\overline{C_7}$ has full rank, Lemma 8 implies that $\text{rank}(\overline{G}) = 8$. Thus $\text{rank}(G) + \text{rank}(\overline{G}) = n + 8$, as desired. For the second part set $H = C_5 \cup K_{n-5}$. Now similar to the previous case we conclude that $\text{rank}(H) + \text{rank}(\overline{H}) = n + 6$ and the proof is complete. □

Lemma 12. For any integer $n \geq 2$, we define a graph G as follows: consider the complete graph K_n with the vertex set $\{v_1, \ldots, v_n\}$ and add n new vertices u_1, \ldots, u_n and for any i, $1 \leq i \leq n$, join each u_i to v_i. Then G and \overline{G} have full ranks.
Proof. By Observation 3 of [1], G has full rank. To show that \overline{G} has full rank we note that the adjacency matrix of \overline{G} is of the form

\[
\begin{pmatrix}
J - I & J - I \\
J - I & 0
\end{pmatrix}.
\]

So it has full rank. □

We close this paper with the following theorem.

Theorem 4. For every integer $n \geq 5$ and any k, $0 \leq k \leq n$, there exists a graph G of order n such that $\text{rank}(G) + \text{rank}(\overline{G}) = n + k$.

Proof. We have the following six cases.

Case 1. $n \geq 16$. If $0 \leq k \leq 8$, then by Lemma 10 we have done. If $k \geq 9$, then by Lemma 9 there is a regular graph G_k with k vertices such that both G_k and \overline{G}_k have full ranks. Now set $G = G_k \vee K_{n-k}$. By Lemma 8 we have $\text{rank}(G) + \text{rank}(\overline{G}) = n + k$. So for $n \geq 16$ we are done.

Case 2. $12 \leq n \leq 15$. For $0 \leq k \leq 6$, we can construct the desired graph by Lemma 10. For $k \geq 9$ and $k = 7$, set $G = G_k \vee K_{n-k}$ as before. For $k = 8$ use Lemma 11.

Case 3. $8 \leq n \leq 11$. For any $0 \leq k \leq 4$, by Lemma 10 there is nothing to prove. For $k \geq 9$ and $k = 5, 7$ set $G = G_k \vee K_{n-k}$ as before. Apply Lemma 11 for $k = 6$. For $n \neq 8$ and $k = 8$ we again use Lemma 11. Finally for $n = 8$ and $k = 8$ consider the graph defined in Lemma 12 for $n = 4$.

Case 4. $n = 7$. By Lemma 10 there is nothing to prove for $0 \leq k \leq 3$. For $k = 5, 7$ set $G = G_k \vee K_{n-k}$ as before. Apply Lemma 11 for $k = 6$. For $k = 4$ see (14–710) in [3, p. 223].

Case 5. $n = 6$. Apply Lemma 10 for $0 \leq k \leq 3$. For $k = 5$ set $G = G_k \vee K_{n-k}$ as before. For $k = 6$ consider the graph given in Lemma 12 for $n = 3$. For $k = 4$ see (No. 3.2) in [4, p. 293].

Case 6. $n = 5$. For $0 \leq k \leq 2$, apply Lemma 10. Set $G = C_5$ for $k = 5$. For $k = 4$ see (No. 1.16) in [4, p. 273]. Finally for $k = 3$ see (No. 1.18) in [4, p. 273]. □

Acknowledgments

The first and second authors are indebted to the Research Council of Sharif University of Technology for support.

References