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Abstract

We investigate the existence of 3-designs and uniform large sets of 3-designs with block
size 6 admitting PSL(2, q) as an automorphism group. We show the existence of sim-
ple 3-(28, 6, 10m) designs for 1 ≤ m ≤ 230. Most of these designs were previously
unknown.
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1 Introduction

Let t, k, v, and λ be integers such that 0 ≤ t ≤ k ≤ v and λ > 0. Let X be a v-set and
Pk(X) denote the set of all k-subsets of X. A t-(v, k, λ) design is a pair D = (X, D) in
which D is a collection of elements of Pk(X) (called blocks) such that every t-subset of X
appears in exactly λ blocks. If D has no repeated blocks, then it is called simple. Here we
are concerned only with simple designs. It is well known that a set of necessary conditions
for the existence of a t-(v, k, λ) design is

λ

(
v − i

t− i

)
≡ 0

(
mod

(
k − i

t− i

))
, (1)

for 0 ≤ i ≤ t. An automorphism of D is a permutation σ on X such that σ(B) ∈ D for
each B ∈ D. An automorphism group of D is a group whose elements are automorphisms
of D. A large set of t-(v, k, λ) designs, denoted by LS[N ](t, k, v), is a set of N disjoint
t-(v, k, λ) designs (X, Di) such that Di partition Pk(X) and N =

(
v−t
k−t

)
/λ. A large set is

said to be G-uniform if each of its designs admits G as an automorphism group.
Let G be a finite group acting on X. For x ∈ X, the orbit of x is G(x) = {gx| g ∈ G}

and the stabilizer of x is Gx = {g ∈ G| gx = x}. It is well known that |G| = |G(x)||Gx|.
*This research was in part supported by a grant from IPM.
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If there is an x ∈ X such that G(x) = X, then G is called transitive. The action of G on
X induces a natural action on Pk(X). If this latter action is transitive, then G is called
k-homogeneous.

Let q be a prime power and let X = GF (q) ∪ {∞}. Then the set of all mappings

g : x 7→ ax + b

cx + d
,

on X such that a, b, c, d ∈ GF (q), ad−bc is a nonzero square and g(∞) = a/c, g(−d/c) = ∞
if c 6= 0, and g(∞) = ∞ if c = 0, is a group under composition of mappings called projective
special linear group and is denoted by PSL(2, q). It is well known that PSL(2, q) is 3-
homogeneous if and only if q ≡ 3 (mod 4). Note that |PSL(2, q)| = (q3 − q)/2. The
structure of the elements of PSL(2, q) is well known (see for example [5] or [6]) and is
given in Table 1 for q ≡ 3 (mod 4) where ϕ denotes Euler’s function.

Throughout this paper, we let q be a prime power congruent to 3 (mod 4), X =
GF (q) ∪ {∞}, and G = PSL(2, q) acting on X. We also denote G{0,1,∞} by H. It is easy
to see that

H = {x 7→ x, x 7→ x− 1
x

, x 7→ 1
1− x

}.

Table 1
The structure of the elements of PSL(2, q), q = pn, q ≡ 3 (mod 4)

order order of the centralizer number of conjugacy classes type

1 q3−q
2 1 1q+1

2 q + 1 1 2
q+1
2

p q 2 11p
q
d

d| q−1
2

q−1
2

ϕ(d)
2 12d

q−1
d

d| q+1
2 , d 6= 2 q+1

2
ϕ(d)

2 d
q+1

d
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The group PSL(2, q) has been used for constructing t-designs by different authors,
see for example [1,3,4,7,8,9,10]. In [3], all 3-designs and uniform large sets of 3-designs
with block sizes 4 and 5 admitting PSL(2, q) as an automorphism group were completely
determined. In this paper, we investigate the existence of 3-designs and uniform large
sets of 3-designs with block size 6 from PSL(2, q). Since PSL(2, q) is 3-homogeneous, a
3-(q + 1, k, λ) design admits PSL(2, q) as an automorphism group if and only if its block
set is the union of orbits of PSL(2, q) on Pk(X). We determine the number of orbits for
all possible orbit sizes from the action of PSL(2, q) on P6(X) and then use the results
to construct 3-(q + 1, 6, λ) designs and large sets of these designs. Finally, as a result,
we establish the existence of 3-(28, 6, 10m) designs for 1 ≤ m ≤ 230. These designs were
mostly unknown prior to this research [9]. Note that the method used in this paper is
similar to the one in [10].

2 Orbit Counting

In this section we consider the action of G on P6(X) and determine the possible sizes of
orbits and the number of orbits for any fixed size. For a 6-subset B of X, let

ΛB =
{
{x, y, z}| {0, 1,∞, x, y, z} ∈ G(B)

}
.

The cardinality of ΛB (denoted by λB) is called the index of G(B) which is clearly well
defined. Note that λB > 0. We denote the number of orbits of index i by Ni.

Lemma 2.1 Let B ∈ P6(X). Then λB|GB| = 60 and
i) if q ≡ 11 (mod 20), then λB = 10, 12, 20, 30, 60,
ii) if q 6≡ 11 (mod 20), then λB = 10, 20, 30, 60.

Proof. Since G(B) is a 3-(q + 1, 6, λB) design, we have |G(B)| = λB

(
q+1
3

)
/
(
6
3

)
. There-

fore, by |G| = |GB||G(B)|, we find λB|GB| = 60. By (1), 4|λB(q − 1) and so λB is even.
Moreover, 5|λBq(q − 1) and therefore if q 6≡ 11 (mod 20), then 5|λB. It follows that
λB = 2, 4, 6, 10, 12, 20, 30, 60, if q ≡ 11 (mod 20) and λB = 10, 20, 30, 60, otherwise. We
now show that λB 6= 2, 4, 6 or equivalently |GB| 6= 10, 15, 30 when q ≡ 11 (mod 20).

First suppose that |GB| = 10. Let K be a normal subgroup of GB of order 5 and
g ∈ GB be an element of order 2. Then there are k1, k2 ∈ K such that gk1 = k2g. Note
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that k1 and k2 fix exactly one element x of B. Since g(x) = k2(g(x)), we have g(x) = x

which is a contradiction with the fact that g has no fixed point.
Now let |GB| = 15. As there is a unique group of order 15 which is cyclic, GB has an

element of order 15. But such an element cannot fix B and therefore |GB| 6= 15.
Finally, let |GB| = 30. Let P1 and P2 be 3-Sylow and 5-Sylow subgroups of GB, re-

spectively. Since P2 is always normal in GB, P1P2 is a subgroup of order 15 of GB which
is impossible as described above. �

Lemma 2.2 Let H act on P3

(
GF (q) \ {0, 1}

)
. Then the number of orbits of sizes 1 and

3 are equal to L and
((

q−2
3

)
− L

)
/3, respectively, where

L =


q−3
3 if q ≡ 3 (mod 12),

q−4
3 if q ≡ 7 (mod 12),

q−2
3 if q ≡ 11 (mod 12).

(2)

Furthermore, the set of orbits of size 1 is{
{α,

α− 1
α

,
1

1− α
}| α ∈ GF (q) \ {0, 1}, α2 − α + 1 6= 0

}
.

Proof. Let s1 and s2 be the number of orbits of sizes 1 and 3, respectively. It is easy
to see that

s1 + 3s2 =
(

q − 2
3

)
.

The total number of orbits can be found by the Cauchy-Frobenius lemma. We have

s1 + s2 = 1
|H|

∑
g∈H

Fix(g)

= 1
3

((
q−2
3

)
+ 2L

)
,

where L is the number of 3-subsets of GF (q) \ {0, 1} fixed by x 7→ (x − 1)/x (note that
x 7→ (x − 1)/x and x 7→ 1/(1 − x) have the same order and so, by Table 1, fixed the
same number of 3-subsets). Therefore, s1 = L and s2 =

((
q−2
3

)
− L

)
/3. By Table 1, L

is easily determined as shown in (2). Now suppose that B lies in an orbit of size 1 and
let α ∈ B. Then (α − 1)/α, 1/(1 − α) ∈ B. If α2 − α + 1 6= 0, then B = {α, α−1

α , 1
1−α}.
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If α2 − α + 1 = 0, then it is easily seen that every element of B satisfies the equation
x2 − x + 1 = 0. But this is an impossibility since this equation has at most two solutions
in GF (q). Finally, every subset of the form {α, α−1

α , 1
1−α} clearly belongs to an orbit of

size 1. �

Lemma 2.3 Let Aα := {0, 1,∞, α, (α− 1)/α, 1/(1− α)}, where α ∈ GF (q) \ {0, 1} and
let B ∈ P6(X). Then
i) |GB| = 3, 6 if and only if G(B) = G(Aα) for some α,
ii) if |GB| = 6, then G(B) contains exactly one element of the form Aα,
iii) if |GB| = 3, then G(B) contains exactly two elements of the form Aα,
iv) |GB| = 6 if and only if G(B) = G(Aα) for some α such that −α2 + α− 1 is a nonzero
square or, α = 2 and q 6≡ 0 (mod 3).

Proof. (i) If G(B) = G(Aα) for some α, then H ≤ GAα . Therefore, 3 | |GB|.
Conversely, let 3 | |GB|. Then λB = 10, 20. Since ΛB is the union of orbits of H on
P3(GF (q) \ {0, 1}), it must contain some orbits of size 1 which are of the form {α, (α −
1)/α, 1/(1− α)}. Therefore, Aα ∈ G(B) for some α.

(ii), (iii) Suppose that Aα, Aβ ∈ G(B) where Aα 6= Aβ . Hence there is a g ∈ G such
that g(Aα) = Aβ. Note that GAα and GAβ

contain H as a normal subgroup. So there are
h1, h2 ∈ H such that h1g = gh2. Hence,

g({0, 1,∞}) = {β, (β − 1)/β, 1/(1− β)}. (3)

Now let Aγ ∈ G(B) be distinct from Aα and Aβ and k ∈ G such that k(Aβ) = Aγ . With
a similar argument as for g we have k({0, 1,∞}) = {γ, (γ − 1)/γ, 1/(1 − γ)}. So by (3),
kg({0, 1,∞}) = {0, 1,∞} and therefore kg ∈ H. Now kg(Aα) = Aα and on the other hand
k
(
g(Aα)

)
= Aγ which is a contradiction. Therefore, G(B) contains at most two distinct

blocks of the form Aα. Since λB = 10 or 20, the assertion follows.
(iv) Let |GB| = 6. Then by (ii), Aα ∈ G(B) for some α. Assume that g ∈ GAα is

of order 2. Then, similar to (3), g({0, 1,∞}) = {α, (α − 1)/α, 1/(1 − α)}. With no loss
of generality, suppose g(0) = α. If g(∞) = 1/(1 − α), then clearly g(x) = (x − α)/

(
(1 −

α)x − 1
)

and therefore −α2 + α− 1 is a nonzero square. If g(∞) = (α − 1)/α, then
g(x) =

(
(α−1)x−α2 +α

)
/(αx−α+1). Since g(1) = 1/(1−α), we obtain (1− α)3 = −1

and therefore α = 2 and necessarily q 6≡ 0 (mod 3). Conversely, if −α2 + α− 1 is a
nonzero square, then g(x) = (x − α)/

(
(1 − α)x − 1

)
is of order 2, and g(Aα) = Aα, and

therefore |GAα | = |GB| = 6. If α = 2 and q 6≡ 0 (mod 3), then g(x) = (x− 2)/(2x− 1) or
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g(x) = (2x − 1)/(x − 2) belongs to G and since both of them are of order 2 and fix Aα,
we have |GAα | = |GB| = 6. �

Lemma 2.4 The value of N10 is given by

N10 =


0 if q ≡ 3 (mod 12),

q−1
6 if q ≡ 7 (mod 12),

q+7
6 if q ≡ 11 (mod 12).

Proof. Let S =
{
t ∈ GF (q) \ {0, 1}| − t2 + t − 1 is a nonzero square

}
. By Lemma

2.3, it suffices to find |S|. Let T =
{
t ∈ GF (q) \ {0, 1}| t2 − t + 1 is a square

}
. Note that

|S|+ |T | = q − 2 and S ∩ T = ∅. We have

|T | = |
{
t ∈ GF (q) \ {0, 1}| ∃x ∈ GF (q), x2 − 3 = (2t− 1)2

}
|

= |
{
y ∈ GF (q) \ {−1, 1}| ∃x ∈ GF (q), −3 = (y − x)(y + x)

}
|

= |
{
y ∈ GF (q) \ {−1, 1}| ∃a, b ∈ GF (q), ab = −3, y = (a + b)/2

}
|

= |
{
{a, b}| a, b ∈ GF (q), ab = −3, a + b 6= ±2

}
|

= |
{
{a, b}| a, b ∈ GF (q), ab = −3, {a, b} 6= {−1, 3}, {−3, 1}

}
|.

Therefore,

|T | =


q − 2 if q ≡ 3 (mod 12),

q−3
2 if q ≡ 7 (mod 12),

q−5
2 if q ≡ 11 (mod 12).

Using the fact that −3 is non square if and only if q ≡ 11 (mod 12) (see [2] or deduce it
from Lemma 2.2), we have

|S| =


0 if q ≡ 3 (mod 12),

q−1
2 if q ≡ 7 (mod 12),

q+1
2 if q ≡ 11 (mod 12).
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Now Lemma 2.3 implies that

N10 =


0 if q ≡ 3 (mod 12),

q−1
6 if q ≡ 7 (mod 12),

q+7
6 if q ≡ 11 (mod 12). �

Lemma 2.5 If q ≡ 11 (mod 20), then N12 = 2.

Proof. The number of B ∈ P6(X) such that |GB| = 5 is 12
(
q+1
3

)
N12/

(
6
3

)
. On the other

hand, by Table 1, each element of order 5 of G fixes exactly 2(q− 1)/5 elements of P6(X)
and there are exactly 2q(q + 1) elements of order 5 in G. Therefore, (q + 1)q(q − 1)/5
distinct 6-subsets are fixed by the elements of order 5 of G. We now have 12

(
q+1
3

)
N12/

(
6
3

)
=

(q − 1)q(q + 1)/5 and hence N12 = 2. �

Theorem 2.6 The number of orbits of PSL(2, q) on P6(X) for all possible orbit indices
are given below.

q (mod 60) N10 N12 N20 N30 N60

3, 27 0 0 q−3
6

q2−4q+3
24

2q3−33q2+72q+27
720

7, 19, 43 q−1
6 0 q−7

12
q2−8q+7

24
2q3−33q2+132q+7

720

23, 47, 59 q+7
6 0 q−11

12
q2−8q−9

24
2q3−33q2+132q+167

720

11 q+7
6 2 q−11

12
q2−8q−9

24
2q3−33q2+132q−121

720

31 q−1
6 2 q−7

12
q2−8q+7

24
2q3−33q2+132q−281

720

Proof. We use the Cauchy-Frobenius lemma to count the total number M of orbits
of G on P6(X). We have

M =
1
|G|

∑
g∈G

|Fix(g)|,

where |Fix(g)| is the number of 6-subsets of X fixed by g. We refer to Table 1 to find
|Fix(g)|. If |Fix(g)| 6= 0, then o(g) = 1, 2, 3, 5, 6, where o(g) denotes the order of g. Let ni
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be the number of elements of order i in G. If o(g) = 1, then |Fix(g)| =
(
q+1
6

)
. If o(g) = 2,

then |Fix(g)| =
(
(q+1)/2

3

)
and n2 = |G|/(q + 1). If o(g) = 3, then

|Fix(g)| =



( q
3
2

)
if q ≡ 3 (mod 12),( q−1

3
2

)
if q ≡ 7 (mod 12),( q+1

3
2

)
if q ≡ 11 (mod 12),

and

n3 =


2|G|

q if q ≡ 3 (mod 12),
2|G|
q−1 if q ≡ 7 (mod 12),
2|G|
q+1 if q ≡ 11 (mod 12).

If o(g) = 5, then q ≡ 11 (mod 20), |Fix(g)| = 2(q − 1)/5, and n5 = 4|G|/(q − 1). If
o(g) = 6, then q ≡ 11 (mod 12), |Fix(g)| = (q + 1)/6, and n6 = 2|G|/(q + 1). We now
obtain

M =



2q3−3q2+72q−243
720 if q ≡ 3, 27 (mod 60),

2q3−3q2+72q−323
720 if q ≡ 7, 19, 43 (mod 60),

2q3−3q2+72q+77
720 if q ≡ 23, 47, 59 (mod 60),

2q3−3q2+72q+1229
720 if q ≡ 11 (mod 60),

2q3−3q2+72q+829
720 if q ≡ 31 (mod 60).

The total number of orbits gives the equation

N10 + N12 + N20 + N30 + N60 = M. (4)

By Lemmas 2.2 and 2.3, we also have

N10 + 2N20 =


q−3
3 if q ≡ 3 (mod 12),

q−4
3 if q ≡ 7 (mod 12),

q−2
3 if q ≡ 11 (mod 12).

(5)
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On the other hand, by counting the 6-subsets of X containing 0, 1,∞, we have

10N10 + 12N12 + 20N20 + 30N30 + 60N60 =
(

q − 2
3

)
. (6)

According to Lemmas 2.4 and 2.5, N10 and N12 are known. Therefore, the system of
equations containing (4),(5), and (6) are easily solved and the values of N20, N30, and N60

are determined. �

3 3-Designs and Large Sets

In this section we use the results of previous section to find 3-(q+1, 6, λ) designs with auto-
morphism group PSL(2, q) and large sets of these designs. Recall that every 3-(q+1, 6, λ)
design with automorphism group G = PSL(2, q) is a union of distinct orbits of G on
P6(X).

Theorem 3.1 Let q ≡ 11 (mod 20). Then, there exist 3-(q + 1, 6, λ) designs with au-
tomorphism group PSL(2, q) if and only if λ ≡ 0, 2, 4 (mod 10), 1 ≤ λ ≤

(
q−2
3

)
, and

λ 6= i,
(
q−2
3

)
− i for i = 2, 4, 14.

Proof. Let D denote a 3-(q + 1, 6, λ) design with automorphism group PSL(2, q). If
D exists, then by (1), 2|λ and 1 ≤ λ ≤

(
q−2
3

)
. By Theorem 2.6, the indices of orbits of

G on P6(X) are 10, 12, 20, 30, 60. Therefore, λ ≡ 0, 2, 4 (mod 10) and λ 6= i,
(
q−2
3

)
− i for

i = 2, 4, 14.
Conversely, note that there are designs for λ = 10, 12, 20, 22, 24. It is easy to see that

if there exists D, then by replacing some suitable orbits of D by some unused orbits, one
can obtain a 3-(q + 1, 6, λ + 10) design. Otherwise, there are no more unused orbits and
D is the complete 3-(q + 1, 6,

(
q−2
3

)
) design. �

Theorem 3.2 Let q 6≡ 11 (mod 20). Then, there are 3-(q + 1, 6, λ) designs with auto-
morphism group PSL(2, q) if and only if 10|λ and 1 ≤ λ ≤

(
q−2
3

)
except for λ = 10 when

q ≡ 0 (mod 3).

Proof. Suppose that a 3-(q+1, 6, λ) design with automorphism group PSL(2, q) exists.
By Theorem 2.6, the indices of orbits of G on P6(X) are 10, 12, 20, 30, 60. Therefore, 10|λ.

Conversely, similar to the proof of Theorem 3.1, one can show that for any λ such
that 10|λ and 1 ≤ λ ≤

(
q−2
3

)
, a 3-(q + 1, 6, λ) design exists except for λ = 10 when

q ≡ 0 (mod 3). �
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Theorem 3.3 Let q ≡ 11 (mod 20). Then, there are PSL(2, q)-uniform LS[N ](3, 6, q+1)
if and only if N = 2 and q ≡ 11, 91 (mod 120).

Proof. Consider the action of G on P6(X). Suppose that there is a G-uniform
LS[N ](3, 6, q + 1). Since N12 = 2 and the other orbits have indices which are multiple
of 10, we have N = 2. On the other hand, by the necessary conditions (1),

(
q−2
3

)
(q− 1)/8

must be integer. Therefore, q ≡ 11 or 91 (mod 120).
Conversely, let N = 2 and q ≡ 11, 91 (mod 120). First let q ≡ 11 (mod 120). In

this case, N10 and N30 are odd and N20 is even. Let D be an empty set. Consider
1, (N10−3)/2, N20/2, and (N30−1)/2 orbits of indices 12, 10, 20, and 30, respectively, and
add them to D. If N60 is odd, then also add [N60/2], 3, and 1 orbits of indices 60, 10,
and 30, respectively, to D. If N60 is even, then add [N60/2] and 1 orbits of indices 60
and 30, respectively, to D. Now {(X, D), (X, P6(X) \D)} is a LS[2](3, 6, q + 1). Now let
q ≡ 91 (mod 120). Note that N10, N20, and N30 are odd. Consider (N10−1)/2, (N20−1)/2,
and (N30 − 1)/2 orbits of indices 10, 20 and 30, respectively, and add them to D. If N60

is odd, then also add [N60/2], 1, 1, and 1 orbits of indices 60, 10, 20, and 30, respectively,
to D. If N60 is even, then add [N60/2] orbits of index 60 and one orbit of index 30 to D.
Now {(X, D), (X, P6(X) \D)} is a LS[2](3, 6, q + 1). �

Theorem 3.4 Let q 6≡ 11 (mod 20). Then, there are PSL(2, q)-uniform LS[N ](3, 6, q+1)
if and only if one of the following holds:
i)

(
q−2
3

)
/N ≡ 0 (mod 60),

ii)
(
q−2
3

)
/N ≡ 10, 40 (mod 60) and N ≤ N10 + [N20/2],

iii)
(
q−2
3

)
/N ≡ 20, 50 (mod 60) and N ≤ [N10/2] + N20,

iv)
(
q−2
3

)
/N ≡ 30 (mod 60) and N ≤ N20 + N30 + [(N10 −N20)/2].

Proof. Consider the action of G on P6(X). Let
(
q−2
3

)
= N(60m + l) where 0 ≤ l ≤ 60.

Suppose that there is a G-uniform large set of 3-(q + 1, 6, 60m + l) designs. Then by The-
orem 2.6, l ≡ 0 (mod 10). If l = 10, 40, then some designs of the large set contain orbits
of index 10 and each of the other designs contains necessarily at least two orbits of index
20. Therefore, N ≤ N10 +[N20/2]. If l = 20, 50, then some designs in the large set contain
orbits of index 20 and each of the other designs contains at least two orbits of index 10.
Hence, N ≤ [N10/2] + N20. If l = 30, then some designs in the large set contain orbits
of index 30 and each of the other designs contains one orbit of index 10 and one orbit of
index 20 or at least three orbits of index 10. Therefore, N ≤ N20 +N30 + [(N10−N20)/2].
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Conversely, let one of (i)–(iv) hold. Let Df (1 ≤ f ≤ N) be N empty sets. Here
is a useful observation. If there are x1, x2, x3, and x4 orbits of indices 10, 20, 30, and
60, respectively, such that 10x1 + 20x2 + 30x3 + 60x4 = 60x, then it is easy to see
that by suitable combinations of these orbits we can find x disjoint 3-(q + 1, 6, 60) de-
signs. If (i) holds, then by this observation we are done. Now let (ii) hold. Note that
N30 ≥ [N20/2] and N30 ≥ N10. Choose x (0 ≤ x ≤ min{N,N10}) orbits of index 10
and add to each of Di (1 ≤ i ≤ x) one of them. Choose 2(N − x) orbits of index 20
and add to each of Dj (x < j ≤ N) two of them. If l = 10 (respectively, l = 40), then
also add to each of Dj (respectively, Di) one orbit of index 30. If l = 10 (respectively,
l = 40), this leaves

(
q−2
3

)
− 10x − 70(N − x) = 60xm + 60(N − x)(m − l) (respectively,(

q−2
3

)
− 40x − 40(N − x) = 60xm + 60(N − x)m) 6-subsets unused. Therefore, by the

observation above, Df (1 ≤ f ≤ N) can be filled with suitable unused orbits to obtain
N sets with the same size. Now {(X, Df )| 1 ≤ f ≤ N} is the desired large set. Now
suppose that (iii) holds. Choose x (0 ≤ x ≤ min{N,N20}) orbits of index 20 and add to
each of Di (1 ≤ i ≤ x) one of them. Choose 2(N − x) orbits of index 10 and add to each
of Dj (x < j ≤ N) two of them. If l = 50, then also add to each of Di (1 ≤ i ≤ N), one
orbit of index 30 (note that N30 ≥ [N10/2] + N20). The number of unused blocks is equal
to

(
q−2
3

)
− lx − l(N − x) = 60mN . Therefore, by the observation above, the remaining

orbits can be divided between to Df (1 ≤ f ≤ N) to obtain N sets of the same size which
results in large set {(X, Df )| 1 ≤ f ≤ N}. Finally, assume that (iv) holds. Choose x

orbits (0 ≤ x ≤ min{N,N30}) of index 30 and add to each of Di (1 ≤ i ≤ x) one of them.
Choose y orbits (0 ≤ y ≤ min{N20, N − x}) of index 10 and y orbits of index 20 and add
to each of Dj (x < j ≤ N − x− y) one orbit of index 10 and one orbit of index 20. There
are totaly

(
q−2
3

)
− 30x − 30y − 30(N − x − y) = 60mN unused 6-subsets and therefore,

by the observation above, the remaining orbits can be appended in a suitable way to Df

(1 ≤ f ≤ N) to obtain N sets of the same size. Now {(X, Df )| 1 ≤ f ≤ N} is the desired
large set. �

4 3-(28, 6, 10m) Designs

The existence of 3-(28, 6, 10m) designs has been known only for a small number of some
large values of m (see [9]). In the previous section we showed that these designs exist for
all possible values of m, i.e., 1 ≤ m ≤ 230 except for m = 1, 229 (Theorem 3.2). Note that
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the existence of 3-(28, 6, 10m) designs for m = 1 implies the existence of such designs for
m = 229. By [9], a 3-(28, 6, 10) design with repeated blocks exists, but no simple one is
known. We now construct a simple 3-(28, 6, 10) design by prescribing a suitable subgroup
of PSL(2, 27) as its automorphism group. Let PSL(2, 27) = 〈a, b〉 where

a = (1 2)(3 4)(5 7)(6 8)(9 12)(10 13)(11 15)(14 19)(16 20)(17 21)(18 22)(23 25)(24 26)(27 28),

b = (2 3 5)(4 6 9)(7 10 14)(8 11 16)(12 17 20)(13 18 23)(15 19 22)(21 24 27)(25 26 28).

Consider the subgroup L = 〈b, c〉 of PSL(2, 27) in which

c = (2 3 19 21 25 27 20 15 10 23 5 16 17)(4 26 13 22 18 8 28 7 24 9 12 11 6).

The order of L is 351. The union of orbits of L with representatives

{1, 2, 3, 4, 7, 19}, {2, 3, 4, 5, 6, 9},

{2, 3, 4, 9, 22, 23}, {2, 3, 5, 8, 11, 16},

{2, 3, 4, 8, 23, 24}, {2, 3, 4, 6, 13, 21},

identify the block set of a 3-(28, 6, 10) design. This design was found via DISCRETA,
a program to construct t-designs with prescribed automorphism group written at the
Mathematics Department, University of Bayreuth, Germany.
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