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1 Introduction

All the graphs that we consider in this paper are finite, simple and undirected. Let
G be a graph. Throughout this paper the order of G is the number of vertices of G.
A k-matching in G is a set of k pairwise nonincident edges and the number of k-match-
ings in G is denoted by m(G, k). If G is of order n, the matching polynomial μ(G, x)

is defined by

μ(G, x) =
∑

k≥0

(−1)km(G, k)xn−2k,
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where m(G, 0) is considered to be 1. The roots of matching polynomial of any graph
are all real numbers. (This was first proved independently in [14] and [18].) The
matching polynomial is related to the characteristic polynomial of G, which is defined
to be the characteristic polynomial of the adjacency matrix of G. In particular these
two coincide if and only if G is a forest [13]. Also the matching polynomial of any
connected graph is a factor of the characteristic polynomial of some tree (see [11,
Theorem 6.1.1]). This is another way to see that the roots of matching polynomial are
real numbers because the adjacency matrix of any graph is a symmetric matrix and so
the roots of its characteristic polynomial are real numbers. The roots of μ(G, x) are
called the matching roots of G. Two nonisomorphic graphs with the same matching
polynomials are said to be comatching. A graph G is said to be matching unique if
it has no comatching graph. We also denote the multiset of the roots of the matching
polynomial of G by R(G). We use exponent symbol to show the multiplicities of the
elements of R(G).

The determination of graphs with few distinct roots of characteristic polynomials
of matrices associated to graphs (i.e. graphs with few distinct eigenvalues) have been
the subject of many researches. Graphs with three adjacency eigenvalues have been
studied by Bridges and Mena [3], Klin and Muzychuk [16], and van Dam [5,6]. Con-
nected regular graphs with four distinct adjacency eigenvalues have been studied by
Doob [9,10], van Dam [5], and van Dam and Spence [8]. Graphs with three Laplacian
eigenvalues have been treated by van Dam and Haemers [7]. Ayoobi, Omidi and Tay-
feh-Rezaie [1] investigated nonregular graphs whose signless Laplacian matrix has
three distinct eigenvalues. For a complete survey on this subject see Chapter 14 of
Brouwer and Haemers [4].

So far, few families of graphs have been shown to be matching unique; these include
unique cages (regular graphs with minimum number of vertices and given degree and
girth), 2-regular graphs, mKr,r , mL , where L is a unique Moore graph with given
degree and odd girth, and the regular complete multipartite graphs [19]. It is also
known that if a graph is matching unique, then its complement is also matching unique
(see [2]).

In this paper, we determine all graphs with at most five distinct matching roots.
As a result, we find new families of matching unique graphs. In particular, we show
that for any positive integer n �= 2, the friendship graph Fn (the graph consisting of n
triangles intersecting in a single vertex) is matching unique.

2 Graphs with Few Matching Roots

We denote the complete graph of order n by Kn and the complete bipartite graph with
parts of sizes r and s by Kr,s . The graph K1,s is called a star. The multiplicity of θ as
a root of μ(G, x) is denoted by mult(θ, G).

The roots of the matching polynomial of any graph, like those of characteristic
polynomial, have the “interlacing” property ([15], see also [11, Corollary 6.1.3]):

Lemma 1 Let G be a graph and u be a vertex of that. Then the roots of μ(G − u, x)

interlace those of μ(G, x), i.e. if θ1 ≥ θ2 ≥ · · · ≥ θn and η1 ≥ η2 ≥ · · · ≥ ηn−1 are
the matching roots of G and G − u, respectively, then
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θ1 ≥ η1 ≥ θ2 ≥ η2 ≥ · · · ≥ θn−1 ≥ ηn−1 ≥ θn .

Consequently, mult(θ, G) differs from mult(θ, G − u) by at most one.

Gallai’s Lemma in matching theory asserts that if a graph G is connected and for
each vertex u of G, the size of maximum matchings of G and G − u are the same,
then G − u has a perfect matching. In the language of matching polynomial, this is
equivalent to say that if mult(0, G − u) < mult(0, G) for every vertex u of G, then
mult(0, G) = 1. This result has been extended to any root of matching polynomials
and is quoted as “an analogue of Gallai’s Lemma”:

Theorem 2 (Ku and Chen [17]) For a connected graph G, if mult(θ, G) ≥ 2, then
there is a vertex u of G such that mult(θ, G − u) ≥ mult(θ, G).

Godsil [12] proved that if there exists two adjacent vertices u, u′ in G such that
mult(θ, G−u) ≥ mult(θ, G) > mult(θ, G−u′), then mult(θ, G−u) = mult(θ, G)+
1. He also observed that any graph G has at least one vertexv such that mult(θ, G−v) =
mult(θ, G) − 1. These results together with the above theorem implies the following
lemma.

Lemma 3 ([17]) For a connected graph G, if mult(θ, G) ≥ 2, then there is a vertex
u of G such that mult(θ, G − u) = mult(θ, G) + 1.

Remark 4 Any graph with an odd number of vertices has a zero matching root and if
θ is a matching root of a graph, then so is −θ .

Lemma 5 Let G be connected graph. If the roots of μ(G, x) are ≥ −1, then G � K2.

Proof Let G be of order n. Since the roots of μ(K1,2, x) are {0,±√
2}, by interlacing,

G has no K1,2 as an induced subgraph. Thus G must be the complete graph Kn . If
n ≥ 3, then, by interlacing, μ(Kn, x) has a root ≤ −√

3 because μ(K3, x) = x3 −3x .
This implies G � K2. �	

We now define two families of graphs which will be used later.
Definition. We add a single vertex u to the graph r K1,k ∪ t K1 and join u to the other
vertices by p edges so that the resulting graph is connected and u is adjacent with
exactly q centers of the stars (for K1,1 either of the vertices is considered as center).
Clearly

r + t ≤ p ≤ r(k + 1) + t and 0 ≤ q ≤ r. (1)

We denote the set of graphs obtained in this way by G(r, k, t; p, q). See Fig. 1. For
any G ∈ G(r, 3, t; p, q), we add s copies of K3 to G and join them by � edges to the
vertex u of G to make a connected graph. Clearly s ≤ � ≤ 3s. We denote the set of
these graphs by H(r, s, t; p, q, �).

Lemma 6 For every G ∈ G(r, k, t; p, q),

μ(G, x) = xr(k−1)+t−1(x2 − k)r−1
(

x4 − (p + k)x2 + (p − q)(k − 1) + t
)

.
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Fig. 1 A typical graph in the
family G(r, k, t; p, q): the
central vertex has degree p and
it is joined to q centers of the
stars K1,k .

Proof Let G ∈ G(r, k, t; p, q). So G has a vertex u such that G − u = r K1,k ∪ t K1.
Since μ(K1,k, x) = xk−1(x2 −k), by interlacing, {(±√

k)r−1, 0r(k−1)+t−1} ⊆ R(G).
Let ±α and ±β be the remaining elements of R(G). Since the squares of the roots of
matching polynomial of a graph sum to its number of edges, we have α2 +β2 +(r −1)

k = rk + p. We note that the multiplicity of zero is equal to the number of vertices
missed by a fixed maximum matching. The maximum matching of G is of size r if
t = 0 and p = q and it is of size r + 1 otherwise. As the product of the squares of the
nonzero roots of matching polynomial of a graph is equal to its number of maximum
matchings,

α2β2kr−1 = m(G, r + 1) = tkr + (p − t − q)(k − 1)kr−1.

Note that if m(G, r + 1) = 0, the above equality is still valid; both sides are zero.
Therefore,

α2 + β2 = p + k, and α2β2 = t + (p − q)(k − 1).

The result now follows. �	
With the same arguments as in the proof of Lemma 6, we can prove the following.

Lemma 7 For every G ∈ H(r, s, t; p, q, �),

μ(G, x) = x2r+s+t−1(x2 − 3)r+s−1
(

x4 − (p + � + 3)x2 + 3t+2(p − t − q)+�
)

.

We distinguish some special graphs in the families G and H which are important
for our purpose. The family G(r, 1, 0; s, q) consists of a single graph and we denote
it by S(r, s). Note that in this case q is determined by r and s, namely q = s − r . Its
matching polynomial is

μ(S(r, s), x) = x(x2 − s − 1)(x2 − 1)r−1. (2)

The family G(r, k, 0; r, r) consists of a single graph which is denoted by T (r, k).
Its matching polynomial is

μ(T (r, k), x) = xr(k−1)+1(x2 − r − k)(x2 − k)r−1. (3)
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Fig. 2 The graphs K (k, t; �), K ′(k, t; �), L(t, �), T (r, k), and S(r, s)

We also denote the unique graphs in G(1, k, t; � + t, 0) and G(1, k, t; � + t + 1, 1) by
K (k, t; �) and K ′(k, t; �), respectively.

Their matching polynomials are

μ(K (k, t; �), x) = xk+t−2(x4 − (k + t + �)x2 + (� + t)(k − 1) + t
)
, (4)

μ(K ′(k, t; �), x) = xk+t−2(x4 − (k + t + � + 1)x2 + (� + t)(k − 1) + t
)
. (5)

Moreover, we show the unique graph in H(0, 1, t; t, 0, �) by L(t, �) for � = 1, 2, 3.
We have

μ(L(t, �), x) = xt
(

x4 − (t + � + 3)x2 + 3t + �
)

. (6)

Typical graphs from the above families are demonstrated in Fig. 2.

Theorem 8 Let G be a connected graph and z(G) be the number of its distinct match-
ing roots.

(i) If z(G) = 2, then G � K2.
(ii) If z(G) = 3, then G is either a star or K3.

(iii) If z(G) = 4, then G is a non-star graph with 4 vertices.
(iv) If z(G) = 5, then G is one of the graphs K (k, t; �), K ′(k, t; �), L(t, �), T (r, k),

S(r, s), for some integers k, r, s, t, �, or a connected non-star graph with 5
vertices.

Proof (i) If z(G) = 2, then R(G) = {(±α)r }, for some α �= 0. Thus, from
Lemma 3 it follows that r = 1, and so G � K2.

(ii) If z(G) = 3, then R(G) = {(±α)r , 0s}, for some α �= 0. From Lemmas 3 and
1 it is seen that it is impossible that r ≥ 2. So r = 1 and we have m(G, 2) = 0.
Hence, G is either the star K1,s+1 or K3.

(iii) If z(G) = 4, then R(G) = {(±α)r , (±β)s}, for some nonzero α, β. Again,
Lemmas 3 and 1 imply that r = s = 1. So G has four vertices possessing a
matching of size 2. Thus G is a connected non-star graph on four vertices.

(iv) If z(G) = 5, then R(G) = {(±α)r , (±β)s, 0t }, for some nonzero α, β. Assume
that β > α > 0. If s ≥ 2, then, by Lemma 3, for some vertex u, R(G − u) =
{(±α)r−1, (±β)s+1, 0t−1}. Hence

m(G − u, s + r) = β2s+2α2r−2 > β2sα2r = m(G, s + r),
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which is a contradiction. Therefore, s = 1.
If t = r = 1, then G is a graph on 5 vertices with m(G, 2) > 0. So G can be any

connected non-star graph on 5 vertices.
If t = 1 and r ≥ 2, then, by Lemma 3, there exists a vertex u such that R(G −u) =

{(±α)r+1}. From part (i) it follows that α = 1 and so G − u � (r + 1)K2. Thus, for
some �, G � S(r + 1, �). By (2), � = β2 − 1. Therefore, G � S(r + 1, β2 − 1).

If t ≥ 2 and r = 1, then there is a vertex u such that R(G − u) = {±η, 0t+1}, for
some η �= 0. Therefore, G − u is either K1,k ∪ t ′K1, for some k and t ′ = t − k + 2, or
K3 ∪ t K1. If G − u � K1,k ∪ t ′K1, then either G � K (k, t ′; �) or G � K ′(k, t ′; �),
for some �. If G − u � K3 ∪ t K1, then G � L(t, �) for some � ∈ {1, 2, 3}.

If t ≥ 2 and r ≥ 2, then, for some vertex u, R(G − u) = {(±α)r+1, 0t−1}. It turns
out that α = √

k, for some integer k. It is seen that one of the following cases may
occur:

(a) G − u = r ′K1,k ∪ t ′K1 with r ′ = r + 1 and t ′ = t − 1 − r ′(k − 1); or
(b) G−u = r1 K1,3∪r2 K3∪t ′K1 with r2 > 0, r1+r2 = r+1 and t ′ = t−2r1−r2−1.

If (a) occurs, then G ∈ G(r ′, k, t ′; p, q), for some p, q. Note that the polynomial
x4 − (p + k)x2 + (p − q)(k − 1) + t ′ under the conditions (1) has no ±√

k root and
it has zero root if and only if t ′ = 0 and either k = 1 or p = q. This means that
G has five nonzero distinct matching roots if and only if t ′ = 0 and either k = 1 or
p = q. If k = 1, then t ′ = t − 1 ≥ 1 and thus G has more than five distinct matching
roots, a contradiction. If p = q and t ′ = 0, then G � T (r ′, k). If (b) occurs, then
G ∈ H(r1, r2, t ′; p, q, �) for some integers p, q, �. Note that since r2 > 0, we have
� > 0. Then it is easily seen that the polynomial x4−(p+�+3)x2+3t ′+2(p−t ′−q)+�

has neither 0 nor ±√
3 as a root. Therefore, μ(G, x) has more than five distinct roots

which is a contradiction. �	

3 Characterization by Matching Polynomial

In this section we characterize the graphs S(r, s), L(t, �), K ′(1, t; 1), K (1, t; 1), and
K (k, t; �) with |� + t − k| ≤ 1 by their matching polynomials.

Remark 9 The graphs K (k, t; �) and K (� + t, k − �; �) are isomorphic. The same is
true for the graphs K ′.
Theorem 10 The graphs K (k, t; �) with |� + t − k| ≤ 1 are matching unique except
for

(k, t, �) ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (3, 1, 2), (3, 0, 2),

(3, 2, 2), (3, 0, 3), (4, 1, 2), (4, 3, 1)}.

Proof We first note that in a K (k, t; �), k ≥ �. By the assumption of the theorem,
� + t = k + ε for ε ∈ {−1, 0, 1}. Let G be a graph with μ(G, x) = μ(K (k, t; �), x).
If one removes the isolated vertices (if any) from G, the resulting subgraph H must
be one of the graphs described in Theorem 8 (iii),(iv), a union of two stars, or a union
of an star and K3.

If H is a K (m, s; q), then from (4) it is clear that
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k + t ≥ m + s, 2k + ε = m + s + q, and

(k + ε)(k − 1) + t = (q + s)(m − 1) + s.

Let m = k + r for some integer r . Then q + s = 2k + ε − m = k + ε − r. Thus

s = (k + ε)(k − 1) + t − (q + s)(m − 1)

= t + (k + ε)(k − 1) − (k + ε − r)(k + r − 1)

= t + r2 − εr − r.

Therefore, m + s = k + t + r2 − εr . Since r2 − εr ≥ 0, we have m + s = k + t and
r2 − εr = 0. So r = 0 or r = ε. If r = 0, then m = k, s = t , and q = �. If r = ε,
then m = k + ε, s = t − ε, and q = � = k + ε − t . But the graphs K (k, t; k + ε − t)
and K (k + ε, t − ε; k + ε − t) are isomorphic by Remark 9.

If H is a K ′(m, s; q), then from (4) and (5) we see that

k + t ≥ m + s, 2k + ε = m + s + q + 1, and

(k + ε)(k − 1) + t = (q + s)(m − 1) + s.

Let m = k + r for some integer r . Then

q + s = k + ε − r − 1. (7)

Thus

s = (k + ε)(k − 1) + t − (q + s)(m − 1)

= t + (k + ε)(k − 1) − (k + ε − r − 1)(k + r − 1)

= t + k + r2 − εr − 1.

Therefore, m + s = t + k + r2 − εr + k + r − 1. On the other hand, k + t ≥ m + s,
r2 − εr ≥ 0, and k + r = m ≥ 1. So the equality must occur in all the above three
inequalities. It follows that m = k = 1 and r = 0. Hence, by (7), q + s = ε. Since
q ≥ 1, we find that ε = q = 1 and s = 0. Thus t = 0 and � = k + ε − t = 2,
a contradiction.

If H is an L(s, q), then, by (6),

k + t − 2 ≥ s, 2k + ε = s + q + 3 and (k + ε)(k − 1) + t = 3s + q.

From the last two equations we have

2q + 9 = 3(2k + ε) − (k + ε)(k − 1) − t.
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Table 1 The graphs K (k, t; �)

with |� + t − k| ≤ 1 which are
not matching unique. The
numbers in the last column refer
to the graphs in the Appendix
table

Graph Comatching Graph Comatching

K (2, 1; 2) L(1, 1) K (2, 1; 1) K1,1 ∪ K3

K (3, 0; 2) L(1, 1) K (2, 1; 2) 5.16

K (3, 1; 2) L(2, 1) K (2, 2; 1) 5.18 ∪ K1

K (3, 2; 2) L(3, 1) K (3, 0; 2) 5.16

K (4, 1; 2) L(3, 1) K (3, 0; 3) 5.12

K (4, 3; 1) K1,5 ∪ K3 K (3, 1; 1) 5.18 ∪ K1

It follows that

2q + 9 + t = 4ε + (7 − ε)k − k2

≤ 49/4 + ε/2 + ε2/4. (8)

This holds only if q ≤ 2. If q = 2, then t = 0 and ε = 1 implying � = k + 1, a con-
tradiction. Therefore, q = 1. Now, it is easy to find all the values of k, t, ε satisfying
(8). The comatching graphs obtained here are shown in Table 1.

Now, if we consider H to be a connected graph of order 4 or 5, we come up with
the right list of Table 1.

If H is a K1,r ∪ K1,s , then we have k + t ≥ r + s and � + t + k = r + s which
implies that � = 0, a contradiction.

If H is a K1,r ∪ K3, then

k + t − 2 ≥ r, � + t + k = r + 3, and (k + ε)(k − 1) + t = 3r.

The first two conditions imply that � = 1, t = k + ε − 1 and r = 2k + ε − 3. Now, the
third condition yield to k2 + (ε − 6)k − 3ε + 8 = 0. Hence k = 3 − ε/2 ± 1

2

√
4 + ε2

and so ε = 0 and k = 2, 4. It follows that the graphs K (2, 1; 1) and K (4, 3; 1) are
comatching with K1,1 ∪ K3 and K1,5 ∪ K3, respectively.

If H is a T (r, m), then r = 2; since if r ≥ 3, then T (r, m) has more than 4 non-zero
roots and if r = 1, then T (r, m) is an star. Thus, in view of (3),

k + t − 2 ≥ 2m − 1, 2k + ε = 2m + 2, and (k + ε)(k − 1) + t = m(2 + m).

The second condition implies that ε = 0 and so m = k − 1. Now the third condition
gives t = k−1. This means that K (k, k−1; 1) and T (2, k−1) have the same matching
polynomial, but indeed they are isomorphic.

If H is an S(r, s), then with the same reason as above, r ≤ 2. So H is a graph with
at most 5 vertices which is already considered. �	

We denote graph K (1, t; 1) and K ′(1, t; 1) by S(t) and S′(t), respectively.

Theorem 11 For any integer t ≥ 0, the graph S(t) is matching unique unless t ∈
{2, 3, 4}; and S′(t) is matching unique unless t ∈ {2, 3}.
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Proof For t = 0, 1, we have S(0) � K1,2 and S(1) isomorphic to the path on 4
vertices which are matching unique. Suppose that t ≥ 2 and G be a graph with

μ(G, x) = μ(S(t), x) = xt−1(x4 − (t + 2)x2 + t).

It is easily seen that the polynomial x4 − (t + 2)x2 + t cannot be decomposed into
(x2 − r)(x2 − s) for some positive integers r, s. Therefore, in view of Theorem 8, G
consists of a connected component H and possibly some isolated vertices such that
R(H) and R(S(t)) have the same nonzero elements. Whence z(H) = 4 or 5 and so
H is one of the graphs described in Theorem 8 (iii),(iv) excluding S(r, s) and T (r, k).
Further, we have

m(H, 1) = m(H, 2) + 2, and t = m(H, 2) ≥ 2. (9)

First, let H be of order 4. From the Appendix table, we see that, besides 4.6 � S(1),
the only graph of order 4 satisfying (9) is the graph 4.4, i.e. K2,2, which corresponds
to t = 2. It follows that S(2) and K2,2 ∪ K1 are comatching.

Now let H have 5 vertices. Among the connected graphs of order 5, from the Appen-
dix table we see that the graphs 5.9 (corresponding to t = 4), 5.15 (corresponding
to t = 3), and 5.20 � S(2) satisfy (9). Hence S(3) and S(4) are comatching with
5.15 ∪ K1 and 5.9 ∪ 2K1, respectively.

If H is an L(s, q), then t + 2 = s + q + 3 and t = 3s + q which implies that
2s − 1 = 0, a contradiction.

If H is a K (m, s; q), then t + 2 = m + s + q and t = (s + q)(m − 1) + s. Let
a = s + q and b = m − 1. Then s + ab = t = a + b − 1 and so

s + (a − 1)(b − 1) = 0, with a ≥ 1, b ≥ 0.

If a = 1, then s = 0 and so q = 1. Hence m = t + 1 which gives the graph
K (t + 1, 0; 1) which is isomorphic to S(t). So we assume that a �= 1. If b = 0, then
m = 1 and s + 1 − a = 0 which implies q = 1 and s = t . This gives the graph
K (1, t; 1) which is S(t) itself. If b = 1, then m = 2 and s = 0. So 1 ≤ q = t ≤ 2. If
q = t = 1, we have K (2, 0; 1) isomorphic to S(1) and if q = t = 2, we obtain the
graph K (2, 0; 2) ∪ K1 which is comatching with S(2). If b ≥ 2, then a = 0 implying
q = 0 which is a contradiction.

If H is a K ′(m, s; q), then t + 2 = m + s + q + 1 and t = (s + q)(m − 1) + s.
Let a = s + q and b = m − 1. Then s + ab = t = a + b and so

s + (a − 1)(b − 1) = 1, with a ≥ 1, b ≥ 0.

If a = 1, then s = 1 and so q = 0 which is impossible. So we assume that a �= 1.
If b = 0, then m = 1 and s + 1 − a = 1 implying q = 0 which is again impossible.
If b = 1, then m = 2 and s = 1. Hence either q = 1, t = 3 or q = 2, t = 4. It fol-
lows that S(3) and S(4) are comatching with K ′(2, 1; 1) ∪ K1 and K ′(2, 1; 2) ∪ 2K1,
respectively. If b = 2, then m = 3 and s = 2−a = 2−s −q implying that 2s = 2−q
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which holds only if q = 2 and s = 0. Therefore, t = 4 and we find that S(4) is co-
matching with K ′(3, 0; 2) ∪ 2K1. If b ≥ 3, then a = 0 which implies that q = 0, a
contradiction.

This completes the proof for S(t). The proof for S′(t) is similar. �	

Remark 12 The graphs L(t, 1) and L(t, 3) are comatching with K (t + 1, 1; 2) and
K ′(t + 2, 0; 3), respectively.

Theorem 13 For any positive integer t , the graph L(t, 2) is matching unique except
for t ∈ {1, 4, 5, 6}.

Proof For t = 1, the graph L(t, 2) is the graph 5.10 of the Appendix table and it is
comathing with 5.11. So we assume that t ≥ 2.

Let G be a graph with

μ(G, x) = μ(L(t, 2), x) = xt
(

x4 − (t + 5)x2 + 3t + 2
)

.

If one removes the isolated vertices (if any) from G, the resulting subgraph H must
be one of the graphs described in Theorem 8 (iii),(iv), a union of two stars, or a union
of an star and K3.

If H is a K1,r ∪ K1,s , then we have r + s + 2 ≤ t + 4. On the other hand, counting
the number of edges, t + 5 = r + s, a contradiction. If H is a K1,r ∪ K3, then we have
t +5 = r +3 and 3t +2 = 3r which is impossible. If H is an S(r, s), then ±1 ∈ R(H)

which is not the case for t ≥ 2. If H is a T (r, k), then as in the proof of Theorem 10, we
have r = 2. Thus from (3) we see that t ≥ 2k − 1 and t + 5 = 2k + 2, a contradiction.
If H is an L(t ′, �′), then we have t + 5 = t ′ + �′ + 3 and 3t + 2 = 3t ′ + �′ which
obviously implies that t = t ′ and �′ = 2.

If H is a K (m, s; q), then

t ≥ m + s − 2, t + 5 = m + s + q and 3t + 2 = (s + q)(m − 1) + s.

From the first two conditions we see that q ≥ 3 and from the last two conditions,
1 = (s + q − 3)(4 − m) − s. It is straightforward to see that this equation has no
solution under the condition m ≥ q ≥ 3 and s ≥ 0.

If H is a K ′(m, s; q), then

t ≥ m + s − 2, t + 5 = m + s + q + 1 and 3t + 2 = (s + q)(m − 1) + s.

From the first two conditions we see that q ≥ 2 and from the last two conditions,

(s + q − 3)(4 − m) − s + 2 = 0 subject to m ≥ q ≥ 2 and s ≥ 0.
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It is not hard to find all the solutions of the above equation. It turns out that the
graphs L(4, 2), L(5, 2) and L(6, 2) are comatching with K ′(4, 2; 2), K ′(4, 2; 3) ∪
K1 and K ′(4, 2; 4) ∪ 2K1, respectively. Note that L(6, 2) is also comatching with
K ′(5, 0; 5) ∪ 3K1.

Now, if we consider H to be a connected graph of order 4 or 5, we find that the
graphs L(1, 2) and L(2, 2) are comatching with 5.11 and 5.8 ∪ K1. �	

We remark that if r ≤ r ′ ≤ s ≤ 2r , then the graphs S(r ′, s) and S(r, s)∪(r ′ −r)K2
have the same matching polynomials. So in general, for a given s, the graphs S(r, s)
are not matching unique unless for the smallest value of r such that S(r, s) can be
defined (these include the friendship graph Fn � S(n, 2n)). This is shown below.

Theorem 14 For any positive integer s, the graph S( s
2�, s) is matching unique except

for s ∈ {3, 4, 5}. In particular, for any positive integer n �= 2, the friendship graph Fn

is matching unique.

Proof For s = 1, 2, the graphs S( s
2�, s) are isomorphic to K1,2 and K3, respec-

tively, which are obviously matching unique. So let s ≥ 3. Let G be a graph with
μ(G, x) = μ(S( s

2�, s), x). Thus mult(0, G) = 1 and ±√
s + 1 ∈ R(G) for s ≥ 3. It

follows that G has neither K3 nor K1,s+1 as a component. Therefore from Theorem 8
it is seen that G consists of a connected component H and possibly some copies of K2
and at most one isolated vertices such that {±1,±√

s + 1} ⊆ R(H). From the Appen-
dix table we find that no graph H ′ with z(H ′) = 4 has ±1 as roots of its matching
polynomial. Hence z(H) = 5, and

R(H) = {0,±1,±√
s + 1}, for some s ≥ 3. (10)

Thus, H is one of the graphs of Theorem 8 (iv). If H is an S(r ′, s′), then it readily
follows that s′ = s and r ′ =  s

2�.
If H is a graph of Theorem 8 (iv), not an S(r, s), with more than 5 vertices, then

mult(0, H) ≥ 2 which is impossible. It follows that H is a non-star 5-vertex graph.
From the Appendix table we see that only graphs of order 5 satisfying (10) are the

graphs 5.5, 5.6, 5.10, 5.11, 5.16, and 5.17 of that table. The graph 5.16 is isomorphic
to S(2, 3), and 5.11 is isomorphic to S(2, 4). It turns out that the graph S(2, 4) is
comatching with 5.10, S(2, 3) is comatching with 5.17, and S(3, 5) is comatching
with the union of a K2 with either 5.5 or 5.6. �	
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123



Graphs and Combinatorics

Table 2 Connected graphs up to five vertices and their matching polynomial
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