Commutativity pattern of finite nonabelian p-groups determine their orders

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Communications in Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>LAGB-2011-2780.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Papers</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>16-Sep-2011</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Abdollahi, Alireza; University of Isfahan, Department of Mathematics Akbari, saieed; Sharif University, Mathematical Sciences Dorbidi, Hamid; Sharif University of Technology Shahverdi, Hamid; University of Isfahan</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Non-commuting graph, p-group, graph isomorphism, groups with abelian centralizers</td>
</tr>
</tbody>
</table>
COMMUTATIVITY PATTERN OF FINITE NON-ABELIAN
p-GROUPS DETERMINE THEIR ORDERS

A. ABDOLLAHI, S. AKBARI, H. DORBIDI, AND H. SHAHVERDI

Abstract. Let G be a non-abelian group and $Z(G)$ be the center of G. Associate a graph Γ_G (called non-commuting graph of G) with G as follows: take $G \setminus Z(G)$ as the vertices of Γ_G and join two distinct vertices x and y, whenever $xy \neq yx$. Here, we prove that “the commutativity pattern of a finite non-abelian p-group determine its order among the class of groups”; this means that if P is a finite non-abelian p-group such that $\Gamma_P \cong \Gamma_H$ for some group H, then $|P| = |H|$.

1. Introduction and Results

Given a finite non-abelian group G, one can associate in many different ways a graph to G (e.g. [3, 11]). Here we consider the non-commuting graph Γ_G of G: the set of vertices of Γ_G is $G \setminus Z(G)$, and two vertices x and y are adjacent if and only if $xy \neq yx$. The non-commuting graph was first considered by Paul Erdős in 1975 [8]. The non-commuting graph of finite groups has been studied by many people (e.g., [1, 7]).

The non-commuting graph of a group is a discrete way to reflect the commutativity pattern of the group. In [1] the following conjecture was formulated:

Conjecture 1.1 (Conjecture 1.1 of [1]). Let G and H be two finite non-abelian groups such that $\Gamma_G \cong \Gamma_H$. Then $|G| = |H|$.

Conjecture 1.1 was refuted in [7] by exhibiting two groups G and H of orders

$$|G| = 2^{10} \cdot 5^3 \neq 2^3 \cdot 5^6 = |H|$$

with isomorphic non-commuting graphs.

In [1], it is proved that Conjecture 1.1 holds whenever one of the groups in question is a symmetric group, dihedral group, alternative group or a non-solvable AC-group (where by an AC-group we mean a group in which the centralizer of every non-central element is abelian). Recently Darafsheh [5] has proved the validity of Conjecture 1.1 whenever one of the groups G or H is a non-abelian finite simple group.

The main result of the present paper shows that any pair of groups consisting a counterexample for Conjecture 1.1 cannot contain a group of prime power order.

2000 Mathematics Subject Classification. 20D15; 20D45.

Key words and phrases. Non-commuting graph; p-group; graph isomorphism; groups with abelian centralizers.

The first author’s research was in part supported by a grant from IPM (No. 90050219) as well as by the Center of Excellence for Mathematics, University of Isfahan. The second author’s research was in part supported by a grant from IPM (No. 90050212).
Theorem 1.2. If P is a finite non-abelian p-group such that $\Gamma_P \cong \Gamma_G$ for some group G, then $|P| = |G|$.

This is a curious general phenomenon for non-abelian groups of prime power order: the order of a prime power order group can be determined among all finite groups by a proper model of its commutativity behavior, i.e., the non-commuting graph.

2. Preliminary Results

It is not hard to prove that the finiteness or the being non-abelian of a group can be transferred under graph isomorphism whenever two groups have the same non-commuting graph. Throughout P denotes a fixed but arbitrary finite non-abelian p-group of order p^n whose center $Z(P)$ is of order p^s and $1 < p^{s_1} < p^{s_2} < \cdots < p^{s_k}$ are all distinct conjugacy class sizes of P, where p^{s_i} is the size of conjugacy class g_i^G of the element g_i. Throughout we also denote by u the common divisor $\gcd(a_1, \ldots, a_k, n-r)$ of $\{a_1, \ldots, a_k, n-r\}$.

Lemma 2.1. Let G be a finite non-abelian group and H be a group such that $\phi : \Gamma_G \to \Gamma_H$ is a graph isomorphism. Then the following hold:

1. $|C_G(h)|$ divides $(|g^G| - 1)(|Z(H)| - |Z(G)|)$, where $h = \phi(g)$.
2. If $|Z(G)| \geq |Z(H)|$ and G contains a non-central element g such that $|C_G(g)|^2 \geq |G| \cdot |Z(G)|$, then $|G| = |H|$.

Proof. (1) Since $\Gamma_G \cong \Gamma_H$, we have

\[|G| - |Z(G)| = |H| - |Z(H)| \Rightarrow |H| = |G| - |Z(G)| + |Z(H)| \quad (a) \]

and

\[|C_G(g)| - |Z(G)| = |C_H(h)| - |Z(H)| \Rightarrow |C_H(h)| = |C_G(g)| + |Z(H)| - |Z(G)| \quad (b) \]

As $|C_H(h)|$ divides $|H|$, $|C_H(h)|$ divides

\[\frac{|G|}{|C_G(g)|} \left| \frac{|C_G(g)| + |Z(H)| - |Z(G)|}{|C_G(g)|} \right| \]

it follows from (a), (b), (c) $|C_H(h)|$ divides

\[(|g^G| - 1)(|Z(H)| - |Z(G)|). \]

(2) Let $h = \phi(g)$. By part (1), we have $|C_H(h)| = |C_G(g)| + |Z(H)| - |Z(G)|$ divides $\left(\frac{|g^G| - 1}{|C_G(g)| + |Z(H)| - |Z(G)|} \right)$. Now, the inequality $|C_G(g)|^2 \geq |G| \cdot |Z(G)|$ implies that

\[0 \leq |C_H(h)| \leq \left(\frac{|g^G| - 1}{|C_G(g)| + |Z(H)| - |Z(G)|} \right) < |C_G(g)| + |Z(H)| - |Z(G)| = |C_H(h)| \]

and this yields $\left(\frac{|g^G| - 1}{|C_G(g)| + |Z(H)| - |Z(G)|} \right) = 0$. Hence $|Z(G)| = |Z(H)|$. \hfill \square

Lemma 2.2. Suppose that $H = P_1 \times A$ is a finite group, where P_1 is a p-group, A is a finite abelian group such that $\gcd(p, |A|) = 1$. If $\Gamma_P \cong \Gamma_H$, then $|P| = |H|$.

Proof. Let ϕ be a graph isomorphism from Γ_P to Γ_H. Suppose $h = \phi(g_t)$ for some $1 \leq t \leq k$ and $|P_t| = p^{s_t}, |Z(F_t)| = p^{s_t}, |A| = a$ and $|C_H(h)| = ap^{s_t}$. Since $\Gamma_P \cong \Gamma_H$, we have

\[|P| - |Z(P)| = p^{s_t} (p^{n-r} - 1) = ap^{s_t} (p^{n-a} - 1) = |H| - |Z(H)|, \]

\[|P| - |C_P(g_t)| = p^{n-a} (p^{s_t} - 1) = ap^{s_t} (p^{s_t-a} - 1) = |H| - |C_H(h)|, \]
Therefore we have the following equalities since gcd(a, p) = 1.

Therefore a = 1. Since r = ω, |Z(P)| = |Z(H)|. Hence |P| = |H|.

Lemma 2.3. Suppose H = Q × A, where Q is a q-group for some prime q, A is an abelian group and gcd(|A|, q) = 1. If ΓP ≅ ΓH, then |H| = |P|.

Proof. If p = q, then Lemma 2.2 completes the proof. Suppose, for a contradiction, that p ≠ q.

Note that |gp1| = pa1. Let φ be a graph isomorphism from ΓP to ΓH and let φ(g1) = h, |A| = a, |Q| = q̇, |CH(h)| = aq, |Z(H)| = aqω.

It is clear that κ > ν > ω. Since ΓP ≅ ΓH, we have

(1) |CH(h)| − |Z(H)| = aqω(−ν − 1) = p̂(p̂a1 − 1) = |Cp(g1)| − |Z(P)|,
(2) |H| − |CH(h)| = aqν(−ω − 1) = p̂na1 − 1) − |P| − |Cp(g1)|.

Since |gp1| ≤ |gP| for all g ∈ P \ Z(P), hH has the minimum size among all conjugacy classes of non-central elements of H. By considering the conjugacy class equation of H, we have

aqν = aqω + qνω + s

where

|xH| = {gH | g ∈ H \ Z(H)} \ {hH}.

Since gcd(a, q) = 1 and qνω | \sumi=1 |xiH|, it follows that κ − ν ≤ ω. (1)

Equation (1) implies that the largest p-power number possibly dividing a is p̂. Now it follows from Equations (1), (2) and the inequality (1) that

p̂na1 − 1 ≤ qνω − 1 ≤ p̂na1 − 2,

which is a contradiction. This completes the proof. □

Lemma 2.4. Let H be a group such that ΓP ≅ ΓH. Then |Z(H)| divides p̂(p̂u − 1), where u = gcd(a1, ..., ak, n − r).

Proof. (1) Since ΓP ≅ ΓH, \ |P| − |Z(P)| = |H| − |Z(H)| and \ |P| − |Cp(gi)| = |H| − |CH(h)|, for every i ∈ {1, ..., k} and h = φ(g1), where φ : ΓG → ΓH.

Therefore we have the following equalities

p̂(p̂u − 1) = |Z(H)| \ (\frac{|H|}{|Z(H)|} − 1)

p̂na1(p̂a1 − 1) = |CH(hi)| \ (\frac{|H|}{|CH(hi)|} − 1)

for each i ∈ {1, ..., k}. Thus |Z(H)| divides the great common divisors of the left hand side of two latter equalities which is p̂(p̂u − 1).

□
A class of groups arising in the proof of our main result is the class of AC-groups; as we mentioned, a group \(G \) is called an AC-group whenever the centralizer of every non-central element is abelian. AC-groups was studied by many people (e.g., \([10]\)). It is easy to see that \(C_G(x) \cap C_G(y) = Z(G) \) for any two non-central elements \(x, y \in G \) with distinct centralizers. This implies that \[
\mathcal{C}(G) = \{ C_G(x)/Z(G) \mid x \in G \setminus Z(G) \}
\]
is a partition of \(G/Z(G) \); where by a partition for a group \(H \) we mean a collection \(\mathcal{C} \) of proper subgroups of \(H \) such that \(H = \bigcup_{S \in \mathcal{C}} S \) and \(S \cap T = 1 \) for any two distinct \(S, T \in \mathcal{C} \). Each element of \(\mathcal{C} \) is called a component of the partition. If each component is abelian, we call \(\mathcal{C} \) an abelian partition. Thus \(\mathcal{C}(G) \) is an abelian partition for \(G/Z(G) \). The size of \(\mathcal{C}(G) \) is an invariant of the non-commuting graph \(\Gamma_G \), called the clique number; where by definition the clique number of a finite graph is the maximum number of vertices which are pairwise adjacent. The clique number of the non-commuting graph \(\Gamma_H \) of a non-abelian group \(H \) will be denoted by \(\omega(H) \). Thus \(\omega(H) \) is simply the maximum number of pairwise non-commuting elements in the group.

Lemma 2.5. Suppose that \(G \) is a finite non-abelian AC-group such that \(G/Z(G) \) is a \(p \)-group. Then \(\omega(G) \equiv 1 \mod p \).

Proof. Since \(G \) is an AC-group, \(\omega = \omega(G) = |\mathcal{C}(G)| \), where \[
\mathcal{C}(G) = \{ C_G(x) \mid x \in G \setminus Z(G) \}.
\]
On the other hand, \(C_G(x) \cap C_G(y) = Z(G) \) for any two non-central elements \(x, y \in G \) such that \(C_G(x) \neq C_G(y) \). Therefore
\[
|G| = -(|\omega - 1|Z(G)| + \sum_{S \in \mathcal{C}(G)} |S|).
\]
This completes the proof. \(\square\)

Lemma 2.6. \(\text{[Mann 2]: Lemma 39.8, p. 354]}\) Suppose \(C \) is a subgroup of group \(G \) and let \(a \in G \) be such that \(CC^a = C^aC \). Then \(CC^a = C[C, a] \).

Proof. We have
\[
CC^a = \bigcup_{c \in C} Cc^a = \bigcup_{c \in C} Cc^{-1}a = \bigcup_{c \in C} C[c, a] \subseteq C[C, a].
\]
Thus \(CC^a \subseteq C[C, a] \). Since all the generators \([c, a] = c^{-1}a^c (c \in C) \) of \([C, a] \) belongs to \(CC^a \), we have \(C[C, a] \subseteq CC^a \), since by hypothesis \(CC^a \) is a group. This completes the proof. \(\square\)

In the following proposition we will use this property of any AC-groups \(G \); for any two commuting non-central elements \(x \) and \(y \) of \(G \), we have \(C_G(x) = C_G(y) \).

Proposition 2.7. Let \(G \) be a nilpotent AC-group of nilpotency class greater than 2, then the set \(\mathcal{C} \) of all centralizers of non-central elements of \(G \) has exactly one normal member \(T \) in \(G \). In particular, \(T \) is a characteristic subgroup of \(G \). Moreover, the latter normal subgroup \(T \) has the maximum order among all members of \(\mathcal{C} \).

Proof. Let \(x \) be any element of \(Z_2(G) \setminus Z(G) \). Then \(C_G(x) \) is a normal subgroup of \(G \) containing \(G' \); for the map \(\phi \) defined on \(G \) by \(g^0 = [x, g] \) for all \(g \in G \) is a group homomorphism and its image is contained in \(Z(G) \) and its kernel is \(C_G(x) \).
Since G is of nilpotency class greater than 2, there exists an element $g \in G \setminus Z(G)$. Since $[Z_2(G), G'] = 1$, the remark preceding the proposition implies that

$$C_G(x) = C_G(g) \text{ for all } x \in Z_2(G) \setminus Z(G).$$

Now suppose that $N = C_G(y)$ is a normal centralizer of G for some non-central element y. Then there exists an element $t \in (N \cap Z_2(G)) \setminus Z(G)$, since $Z(G) \leq N$. Thus $gt = ty$, it follows from \triangle that $C_G(t) = C_G(g) = C_G(y)$. Hence, we have so far proved that C has exactly one normal member in G. This implies that $C_G(x)$ is a characteristic subgroup of G.

Now, we prove $C_G(x)$ has the maximum order among all members of C. Suppose that $C = C_G(h)$ for some $h \in G \setminus Z(G)$. We may assume that C is not normal in G. Thus there exists an element $a \in N_G(N_C(C)) \setminus N_C(C)$, since C is nilpotent.

Then $C^a \neq C$, and C^a is a subgroup of $N_G(C)$. Let $A = CC^a$. By Lemma 2.6, we have

$$CC_G(x) \supseteq CG'Z(G) \supseteq C[C,a]Z(G) = CC^aZ(G) = CC^a = A.$$

It follows that

$$\frac{|C||C_G(x)|}{|Z(G)|} = |CC_G(x)| \geq |A| = |CC^a| = \frac{|C|^2}{|Z(G)|}.$$

Thus $|C_G(x)| \geq |C|$. This completes the proof.

The proof of existence of unique normal centralizer is due to Rocke [9, Lemma 3.8]; the argument to prove the existence of a normal centralizer of maximal order is due to Mann [2, Theorem 39.7, p. 354]. He has proved among all abelian subgroups of maximal order in a metabelian p-group, there exists a normal subgroup. The latter was first proved by Gillam [4].

Lemma 2.8. Let P be of nilpotency class 2. Then $a_i \leq r$ for every i.

Proof. Since P is of nilpotency class 2, for every $x \in P \setminus Z(P)$ with class size p^{a_i}, the conjugacy class of x is contained in $xp^r \subseteq xZ(P)$. Hence $p^{a_i} \leq p^r$. This completes the proof.

Now we will need the following two well known results about Frobenius groups.

Proposition 2.9. (1) (see e.g., Theorem 6.7 of [6]) Let N be a normal subgroup of a finite group G, and suppose that $C_G(n) \subseteq N$ for every non-identity element $n \in N$. Then N is complemented in G, and if $1 < N < G$, then G is a Frobenius group with kernel N.

(2) (see e.g., Lemma 6.1 of [6]) Let H be a Frobenius group with the kernel F and a complement K, then $|K|$ divides $|F| - 1$.

Lemma 2.10. Let $H = KF$ be a Frobenius group with the kernel F and a complement K. Suppose $1 \subset F_1 \subset F$ is a normal subgroup of H. Then $H_1 =KF_1$ is a Frobenius group with the kernel F_1 and a complement K.

Proof. For every non-identity element f_1 of F_1,

$$C_{H_1}(f_1) = C_H(f_1) \cap H_1 \subseteq F \cap H_1 = F \cap F_1K = F_1,$$

by the Dedekind modular law. Therefore H_1 is a Frobenius group with the kernel F_1. It is clear that K is a complement for F_1 in H_1.

\[\square\]
3. Proof of the Main Result

In this section we prove our main result, Theorem 1.2.

We argue by induction on the order of P. If $|P| = p^3$, then $|P| = |G|$ by Proposition 3.20 of [1]. If P is not an AC-group, there exists a non-central element $x \in P$ such that $C_P(x)$ is non-abelian. If $y = \phi(x)$, then $\Gamma_{C_P(x)} \cong \Gamma_{C_G(y)}$. Now induction hypothesis implies that $|C_P(x)| = |C_G(y)|$ and since $|P| - |C_P(x)| = |G| - |C_G(y)|$, we have $|P| = |G|$. Thus, we may assume that P is an AC-group and so G is also an AC-group. By Proposition 3.14 of [1], we may assume that G is solvable. Therefore by the classification of non-abelian solvable AC-groups in [10], G is isomorphic to one the following groups H_i ($i = 1, \ldots, 5$):

1. H_1 is non-nilpotent and it has an abelian normal subgroup N of prime index and $\omega(H_1) = |N : Z(H_1)| + 1$.
2. $H_2/Z(H_2)$ is a Frobenius group with the Frobenius kernel and complement $F/Z(H_2)$ and $K/Z(H_2)$, respectively and F and K are abelian subgroups of H_2 and $\omega(H_2) = |F : Z(H_2)| + 1$.
3. $H_3/Z(H_3) \cong S_4$ and V is a non-nilpotent subgroup of H_3 such that $V/Z(H_3)$ is the Klein 4-group of $H_3/Z(H_3)$ and $\omega(H_3) = 13$, where S_4 is the symmetric group of 4 letters.
4. $H_4 = A \times Q$, where A is an abelian subgroup and Q is an AC-group of prime power order.
5. $H_5/Z(H_5)$ is a Frobenius group with the Frobenius kernel and complement $F/Z(H_5)$ and $K/Z(H_5)$, respectively and K is an abelian subgroup of H. $Z(F) = Z(H_5)$, and $F/Z(H_5)$ is of prime power order and $\omega(H_5) = |F : Z(H_5)| + \omega(F)$.

By Lemmas 3.11 and 3.12 of [1] and Lemma 2.3, we may assume that G is isomorphic to either H_1 or H_5. Suppose that $G \cong H_1$. Then, obviously $\Gamma_P \cong \Gamma_{H_1}$. Since N is abelian, there exists $h \in H_1 \setminus Z(H_1)$ such that $C_{H_1}(h) = N$. As P is an AC-p-group, it follows from Lemma 2.5 that

$$\omega(P) \equiv 1 \mod p.$$

Since $\Gamma_P \cong \Gamma_{H_1}$, we have

$$\omega(H_1) = |C_{H_1}(h) : Z(H_1)| + 1 \equiv 1 \mod p,$$

and so $p \not| C_{H_1}(h) : Z(H_1))$. On the other hand Lemma 2.1(1) implies that, $|C_{H_1}(h)|$ divides $(p^\alpha - 1)(p^\beta - |Z(H_1)|)$, where g_1 maps to h under a graph isomorphism from Γ_P to Γ_{H_1}. Thus p divides $|Z(H_1)|$ and so $p^2 \not| C_{H_1}(h)$). This follows that p^2 divides $|Z(H_1)|$. By continuing this latter process, one obtains that p^r divides $|Z(H_1)|$ and so $|Z(H_1)| \geq |Z(F)|$. Now, let $y \in H_1 \setminus C_{H_1}(h)$ such that $H_1 = C_{H_1}(h)C_{H_1}(y)$ and

$$|H_1||Z(H_1)| = |C_{H_1}(h)||C_{H_1}(y)| \leq \max\{|C_{H_1}(h)|^2, |C_{H_1}(y)|^2\}.$$

Now, Lemma 2.1(2) implies that $|P| = |H_1|$.

Thus, it remains to deal with the case $G \cong H_5$. Let $H = H_5$ and note that $\Gamma_P \cong \Gamma_{H_1}$. We need to introduce some new notation for the group H. Since $F/Z(F)$ is a q-group for some prime q, we set $|F| = bq^\alpha$, for some positive integer b such that $\gcd(b, q) = 1$ and therefore $|Z(H)| = bq^\alpha$ and $|C_F(f_i)| = |C_H(f_i)| = bq^\alpha$ for some $f_i \in F \setminus Z(F)$. (Recall that $Z(F) = Z(H)$ in this case) Since F is nilpotent and non-abelian, we have $1 \leq \omega < \ell_i < \kappa$. Since $\gcd(|K|/|Z(H)|, |F/Z(H)|) = 1$, we have $|C_H(h)| = |K| = ar^\omega$ for some $h \in H \setminus F$ and for some positive integer a.

It is clear that $b \mid a$ and $\gcd(a, q) = 1$. Therefore $|H| = ap^\kappa$. Suppose that under a graph isomorphism from Γ_H to Γ_P, h maps to g_i for some integer $1 \leq t \leq k$ and f_i maps to g_i, where $1 \leq i \leq k$ and $i \neq t$. Here note that f_i is not defined. Suppose further that $\beta = a_t$.

We need to prove the following (a), (b), (c) and (d).

(a) $p \neq q$.

(b) if p^t divides a, for some integer l, then p^t divides b and p^{t+1} does not divide a. This simply means that the largest p-power part of a and b are the same and p^r is the largest p-power possibly dividing a.

(c) Γ_P is a regular graph so that there exists integers ν and α such that $\nu_1 = \nu$ and $a_i = \alpha$ for all $1 \leq i \leq k$ and $i \neq t$.

(d) $\nu \leq 2\omega$ and $\kappa \leq 3\omega$.

Proof of (a) Suppose $p = q$. Since $\Gamma_P \cong \Gamma_H$, $aq^\alpha p^{n-\omega} - 1 = p^{n-\beta}(p^{\beta} - 1)$ and $bp^\alpha p^{n-\omega} - 1 = p^\beta(p^{n-a_1-r} - 1)$. Therefore $n - \beta = \omega = r$, a contradiction.

Proof of (b) Since $\Gamma_P \cong \Gamma_H$, we have

$$\frac{(a - b)q^\omega}{p^\beta(p^{n-\beta-r} - 1)}.$$

Thus $p^{\beta} \mid a - b$. This proves the first part of (b) for all $l \in \{1, \ldots, r\}$. Now, suppose $t > r$ and p^t divides a and p^{t+1} divides b. Equation (3) shows $p^{t+1} \mid b$. Now let $i \in \{1, \ldots, k\}$ such that $i \neq t$. Then by the graph isomorphism, we have

$$p^{n-a_i} - p^{n-a_1} = aq^\omega - bq^\nu.$$

(*)

Since $r + 1 \geq n - a_1$ and $r + 1 \geq n - a_i$, it follows from (*) that p^{t+1} divides b, a contradiction. Now Equation (3) implies that $p^{t+1} \mid a$ and since b divides a, the proof of part (b) follows.

Proof of (c) Suppose Γ_P is not regular. Therefore F has two centralizers $C_H(f_1)$ and $C_P(f_2)$ of order bq^ν_1 and bq^ν_2, respectively, where $\nu_1 \neq \nu_2$. We may assume that the conjugacy class of f_1 in F is of minimum size among all conjugacy classes of non-central elements of F. We distinguish two cases to reach a contradiction.

(I) Suppose that $\nu_1 - \nu_2 \leq \omega$.

(4) $p^{n-a_2} - p^r = bq^\nu_2 - bq^\nu$

(5) $p^{n-a_1} - p^{n-a_2} = bq^\nu_1 - bq^\nu_2$

Now it follows from Equations (4), (5) and part (b) that

$$p^{n-a_2-r}|q^{\nu_1 - \nu_2} - 1 \leq q^\omega - 1 \leq p^{n-a_2-r} - 2,$$

a contradiction.

(II) Suppose that $\nu_1 - \nu_2 > \omega$.

We claim that the nilpotency class of F is greater than 2. If not, then Lemma 2.8 implies that $\kappa - \nu_2 \leq \omega$.

Since $\nu_1 - \nu_2 > \omega$, κ is a contradiction. Therefore the nilpotency class of F is greater than 2. Since H is an AC-group, F is also an AC-group. Therefore every maximal abelian subgroup of F is centralizer of non-central element of F.

By Proposition 2.7, F has a characteristic centralizer $C_F(f_j)$ of order $bq^\nu_j = bq^{\nu_1}$ having the maximum order among the proper centralizers. Thus $\nu_j = \nu_1$ and so $a_1 = a_j$. Since F is normal subgroup of H, $C_F(f_j)$ is normal in H. Since $H/Z(H)$ is Frobenius group, by Lemma 2.10 $K/Z(H)C_F(f_j)/Z(H)$ is a Frobenius group with the kernel $C_F(f_j)/Z(H)$ and a complement $K/Z(H)$. Thus

$$\frac{a}{b}q^{\alpha_1 - \omega} - 1.$$ \hfill \(\heartsuit\)

By the graph isomorphism, we have

$$bq^\nu(q^{\nu_1 - \omega} - 1) = p^\nu(p^n - a_{11} - r - 1),$$

$$bq^{\nu_1} \left(\frac{a}{b}q^{\kappa - \nu_1} - 1\right) = p^{n-a_{11}}(p^{\alpha_1} - 1).$$

Since $\gcd(\frac{a}{b}, p) = 1$, Equations \heartsuit and (6) imply that $\frac{a}{b}q^\omega|p^{n-a_{11} - r} - 1$. Equation (7) imply that $p^{n-a_{11} - r}|\frac{a}{b}q^{\kappa - \nu_1} - 1$ and by the conjugacy class equation $\kappa - \nu_1 \leq \omega$. Therefore $\frac{a}{b}q^\omega < \frac{a}{b}q^\omega$, a contradiction.

Proof of (d) Since Γ_F is regular and F is an AC-group, we have $\omega(F) = \frac{p^{\kappa}}{p^{\omega} - 1}$. Therefore $\nu - \omega$ divides $\kappa - \omega$. Now, by considering the conjugacy class equation of F, we find that $\nu - \omega \leq \omega$ and $\kappa \leq 3\omega$.

Now we have two different possibilities on the centralizer orders of H:

(I) $bq^\nu > aq^\omega$. Since $\Gamma_P \cong \Gamma_H$, we have

$$p^{n-\alpha} - p^{n-\beta} = bq^\nu - aq^\omega,$$

where $\beta = a_1$. It follows from the latter equation, Lemma 2.4 and parts (b),(d) that

$$p^{n-\beta-r}|q^{\nu-\omega} - \frac{a}{b} < q^\omega|p^n - 1 < p^{n-\beta-r},$$

a contradiction.

(II) $aq^\omega > bq^\nu$.

Since $\Gamma_P \cong \Gamma_H$, we have

$$aq^\omega - bq^\nu = p^{n-\beta} - p^{n-\alpha}.$$

We consider two cases:

(i) $u < n - \alpha - r$. Since $u | n - \alpha - r$, $2u \leq n - \alpha - r$. Since $H/Z(H)$ is a Frobenius group, $\frac{|K/Z(H)|}{a/b}$ divides $|F/Z(F)| - 1$. Now it follows from parts (b) and (d), Lemma 2.4(1) and Equation (8), we have

$$p^{n-\alpha-r}\left|\frac{a}{b} - q^{\nu-\omega} \leq q^\kappa - \omega - 1 - q^{\nu-\omega} < q^{2\omega}(p^u - 1)^2 < p^{2u},$$

a contradiction.

(ii) $u = n - \alpha - r$. Since $u | n - \beta - r$, $n - \beta - r \geq 2u$. By the graph isomorphism

$$p^n - p^{n-\beta} = aq^\omega(q^{\kappa-\omega} - 1).$$

This latter equation, Lemma 2.4 and parts (b) and (d) imply that

$$p^{n-\beta-r}|q^{\kappa-\omega} - 1 < q^{2\omega}|(p^u - 1)^2 < p^{2u},$$

a contradiction.
This completes the proof. □

REFERENCES

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran; School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran.
E-mail address: a.abdollahi@math.ui.ac.ir

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran; School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran.
E-mail address: s.akbari@sharif.edu

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.
E-mail address: hr_dorbidi@yahoo.com

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran.
E-mail address: hamidshahverdi@gmail.com