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Abstract

Let G be a directed graph and λ be a positive integer. By a

nowhere-zero λ-flow, we mean an edge assignment using the

set {1, . . . , λ − 1} such that at each vertex the sum of the

values of all outgoing edges equals to the sum of values of all

incoming edges modulo λ. Given a graph G, let Λ = Λ(G)

denote the smallest integer Λ for which G has a nowhere-zero

Λ-flow, in some orientation of E(G). Let m and n (m,n ≥ 2)

be two natural numbers. It was proved that Λ(Km,n) ≤ 3 and

Λ(K2l) = 3, (l ≥ 3). In this paper we present a short proof for

these results. Moreover, we show that is Λ(Km1,...,mk
) ≤ 3 if

mi ∈ N, for i = 1, 2, . . . , k and k ≥ 3.

∗Key Words: Nowhere-zero λ-flow, Minimum flow number, Complete multi-

partite graphs
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1 Introduction

Given a graph G(V,E) with vertex set V (G) and edge set E(G),

where multiple edges are allowed, let (D, f) be an ordered pair where

D is an orientation of E(G) and f : E(G)→ Z be an integer-valued

function called a flow. An oriented edge of G is called an arc. For a

vertex v ∈ V (G), let E+(v) = {all arcs of D(G) with their tails at

v} and E−(v) = {all arcs of D(G) with their heads at v}.
A λ-flow of a graph G is a flow f such that |f(e)| < λ for every edge

e ∈ E(G) and for every vertex v ∈ V (G)∑
e∈E+(v)

f(e) ≡
∑

e∈E−(v)

f(e) (mod λ).

A nowhere-zero λ-flow of a graph G is an ordered pair (D, f) such

that for every edge e ∈ E(G), f(e) ∈ {1, . . . , λ − 1} and for every

vertex v ∈ V (G),∑
e∈N+

D(v)

f(e) ≡
∑

e∈N−
D (v)

f(e) (mod λ).

The biwheel on n vertices which is obtained by joining a cycle on

n − 2 vertices and K2 and is shown by Bn. The complete graph of

order n and the complete k-partite graph with part sizes m1, . . . ,mk

are denoted by Kn and Km1,...,mk
, respectively. Also, the cycle with

n vertices is denoted by Cn.

The join G ∨ H of disjoint graphs G and H is the graph obtained

from G ∪H by joining each vertex of G to each vertex of H. Let G

be a graph and H and K be two subgraphs of G such that the edges

of H and K partition the edges of G. Then we write G = H ⊕K.

A problem of interest about flows is the following: Given a graph G,

what is the smallest integer λ for which G has a nowhere-zero λ-flow,

i.e., an integer λ for which G admits a nowhere-zero λ-flow, but it

does not admit a (λ− 1)-flow. Let Λ = Λ(G) denote this minimum

λ. In this paper, we show that if G admits a nowhere-zero 3-flow,
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then

Λ(G ∨K2) = 3, Λ(K2l) = 3 (l ≥ 3), Λ(Km,n) ≤ 3 (m,n ≥ 2),

Λ(Km1,...,mk
) ≤ 3 (k ≥ 3), Λ(Bn) ≤ 3 (n ≥ 5).

In [4], it was shown that Λ(Kn) and Λ(Km,n) do not exceed 3. In

the next section, we present a short proof for K2n. In Section 3, we

present a short proof for Km,n and then we extend this result to the

complete multipartite graphs. For more information on nowhere-zero

λ-flows, the interested reader is referred to [1], [3], [5] and [7].

The following theorem characterizes all graphs which admit a

nowhere-zero 2-flow see [6, p. 308].

Theorem A. A graph has a nowhere-zero 2-flow if and only if it

is an even graph.

2 The Minimum Flow Number of the Com-

plete Graphs

In this section, we investigate the problem of minimum nowhere-zero

λ-flow for the complete graph K2n. Since K2n+1 is an even graph by

Theorem A, Λ(K2n+1) = 2

Theorem 1. Λ(K2n) = 3 for n ≥ 3.

Proof. Since the degree of each vertex of K2n is odd, Λ(K2n) ≥ 3.

Partition the vertices of K2n into two sets X and Y such that |X| =
|Y | = n, and consider the subgraph of K2n induced by all edges with

one endpoint in X and the other in Y . Choose three 1-factors of

these edges, say M1,M2 and M3. Now, orient the edges of M1 with

tails in X all labeled by 2, while orient the edges of M2 and M3 with

tails in Y having label 1.
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Let H = K2n\
3⋃

i=1

Mi. Clearly, H is a (2n − 4)-regular graph and

by Theorem A, it admits a nowhere-zero 2-flow. Thus K2n has a

nowhere-zero 3-flow. �

The above proof shows that exactly n edges are labeled by 2. Indeed,

this is a nowhere-zero 3-flow using the minimum number of edges

labeled by 2. The proof follows here.

Theorem 2. In every nowhere-zero 3-flow of K2n, at least n arcs

will be labeled by 2.

Proof. By contradiction, suppose that no more than n−1 arcs are

labeled by 2.

Then, by pigeonhole principle, there exists at least one vertex with

no incident arc with label 2. Since K2n is (2n − 1)-regular, then it

is not possible to maintain the proper flow at this vertex using only

the label 1. �

3 The Minimum Flow Number of the Com-

plete Multipartite Graphs

In this section, we investigate the problem of minimum nowhere-

zero λ-flow for the complete bipartite Km,n and also the complete

multipartite graph Km1,...,mk
.

In order to prove our main theorem, here we present a few lemmas

which will be used frequently in the proof of the main theorem.

Lemma 1. Let G be a graph. If G belongs to the following set

{K2,2,K2,3,K3,3,K1,1,1,K1,1,2,K1,1,3,K1,2,2,K1,2,3,K1,3,3,K1,1,1,1,2} ,

then Λ(G) ≤ 3.
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Proof. If G ∈ {K2,2,K1,1,1,K1,1,3,K1,3,3}, then by Theorem A,

Λ(G) = 2. Here we show a nowhere-zero 3-flow for the remaining

graphs:

Figure 1: Some small graphs with minimum nowhere-zero 3-flow

�

Lemma 2. Let m,n ≥ 2 be two natural numbers. Then we have,

Λ(Km,n) ≤ 3.

Proof. If m,n ≤ 3, then by Lemma 1 we are done. Without loss

of generality, assume that m ≥ 4. We proceed using induction on

m + n. We have Km,n = K2,n ⊕Km−2,n. By induction hypothesis,

Λ(K2,n) ≤ 3 and Λ(Km−2,n) ≤ 3. Therefore, Λ(Km,n) ≤ 3. �

Remark 1. By Theorem A, if m,n ≥ 2 and at least one of them

is odd, then Λ(Km,n) = 3

Lemma 3. Λ(K1,r,n) ≤ 3, for r, n ∈ N.
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Proof. We proceed by induction on r + n. If r, n ≤ 3, then

by Lemma 1, we are done. Now, assume n ≥ 4. Notice that

K1,r,n = K1,r,2 ⊕ K1+r,n−2. By induction hypothesis and using

Lemma 2 we find that Λ(K1,r,2) ≤ 3 and Λ(K1+r,n−2) ≤ 3. There-

fore, Λ(K1,r,n) ≤ 3. �

Now, we are in a position to prove our main result.

Theorem 3. Let mi ∈ N, for i = 1, . . . , k and k ≥ 3. Then

Λ(Km1,...,mk
) ≤ 3.

Proof. We break the proof into the following:

Case 1: Assume mi ≥ 2 for all i. For i 6= j, 1 ≤ i, j ≤ k, the

edges with endpoints in sets of size mi and mj form a Kmi,mj . By

Lemma 2, Λ(Kmi,mj ) ≤ 3. The proof of this case is now complete.

Case 2: Now, suppose mi = 1 for some i, 1 ≤ i ≤ k. Without

loss of generality, assume that m1 = · · · = mr = 1, mr+1, . . . ,mk ≥
2. Note that in this case r ≥ 1. Our proof now is divided into the

following four subcases.

Case 2.1: Consider the case in which r ≥ 3, r 6= 4. The

sets m1, through mr can be viewed as the complete graph Kr. By

Theorem A, Λ(K2n+1) = 2 and by Theorem 1, Λ(Kr) ≤ 3. Notice

that Km1,...,mk
= Kr ⊕ Kr,mr+1,mr+2,...,mk

. By Case 1, we conclude

that Λ(Km1,...,mk
) ≤ 3.

Case 2.2: Consider the case r = 4. Clearly, K4 has no

nowhere-zero 3-flow. In the following we prove that K1,1,1,1,m5 has a

nowhere-zero 3-flow.

By induction onm5, we prove that Λ(K1,1,1,1,m5) ≤ 3. The casem5 =

2 follows from Lemma 1. The case m5 = 3 follows from Theorem

A. Since for m5 ≥ 4 we have K1,1,1,1,m5 = K1,1,1,1,2 ⊕ K4,m5−2, by

induction hypothesis and Lemma 2, Λ(K1,1,1,1,m5) ≤ 3.

Obviously, we have K1,1,1,1,m5,m6,...,mk
= K1,1,1,1,m5⊕K4+m5,m6,...,mk

.
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Following Case 1 and the above result, we find that

Λ(K1,1,1,1,m5,m6,...,mk
) ≤ 3.

Case 2.3: Consider the case r = 1. We further break the case

into the following:

If k = 3, then by Lemma 3, we are done. If k ≥ 4, then we write

K1,m2,m3,...,mk
= K1,m2,m3⊕K1+m2+m3,m4,m5,...,mk

. The above can be

handled similarly by Lemmas 2, 3 and Case 1.

Case 2.4: Let r = 2. If k = 3, then by Lemma 3, we are done.

Thus assume that k ≥ 4. Notice that K1,1,m3,...,mk
= K1,1,m3 ⊕

K2+m3,m4,...,mk
. The right hand side of the above can similarly be

handled by Lemmas 2, 3 and Case 1. The proof is now complete. �

Remark 2. If

k∑
i=1
i 6=j

mi is even for every j, 1 ≤ j ≤ k, then since

the complete k-partite graph Km1,...,mk
is an even graph, we obtain

Λ(Km1,...,mk
) = 2.

Corollary 1. Λ(Bn) ≤ 3, for n ≥ 5.

Proof. We have Bn = Cn−2 ⊕ K1,1,n−2. By Lemma 3, we have

Λ(K1,1,n−2) ≤ 3. �

In [2], the authors proved that if G admits a nowhere-zero 3-flow

and if the number vertices of G is even, then Λ(G ∨K2) = 3. The

following corollary shows that the even condition is redundant and

the proof is complete.

Corollary 2. If G admits a nowhere-zero 3-flow, then we have

Λ(G ∨K2) ≤ 3.
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