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Abstract

Let G be a directed graph and A be a positive integer. By a
nowhere-zero A-flow, we mean an edge assignment using the
set {1,...,A — 1} such that at each vertex the sum of the
values of all outgoing edges equals to the sum of values of all
incoming edges modulo A. Given a graph G, let A = A(G)
denote the smallest integer A for which G has a nowhere-zero
A-flow, in some orientation of E(G). Let m and n (m,n > 2)
be two natural numbers. It was proved that A(K,, ) < 3 and
A(Kg;) =3, (I > 3). In this paper we present a short proof for
these results. Moreover, we show that is A(Kp, . m,) < 3 if
m; € N, fori=1,2,...,k and k > 3.

*Key Words: Nowhere-zero A-flow, Minimum flow number, Complete multi-
partite graphs



1 Introduction

Given a graph G(V, E) with vertex set V(G) and edge set F(G),
where multiple edges are allowed, let (D, f) be an ordered pair where
D is an orientation of F(G) and f : E(G) — Z be an integer-valued
function called a flow. An oriented edge of G is called an arc. For a
vertex v € V(G), let ET(v) = {all arcs of D(G) with their tails at
v} and E~(v) = {all arcs of D(G) with their heads at v}.

A X-flow of a graph G is a flow f such that |f(e)| < A for every edge
e € E(G) and for every vertex v € V(G)

S fE= Y S (med ).

e€ET*(v) e€E~(v)

A nowhere-zero A-flow of a graph G is an ordered pair (D, f) such
that for every edge e € E(G), f(e) € {1,...,A — 1} and for every
vertex v € V(G),

ST ofley= D fle)  (modN).

eENz;(v) e€ENL (v)

The biwheel on n vertices which is obtained by joining a cycle on
n — 2 vertices and Ks and is shown by B,. The complete graph of
order n and the complete k-partite graph with part sizes my, ..., my
are denoted by K,, and Ky, . m,, respectively. Also, the cycle with
n vertices is denoted by C,.

The join G vV H of disjoint graphs G and H is the graph obtained
from G U H by joining each vertex of G to each vertex of H. Let G
be a graph and H and K be two subgraphs of GG such that the edges
of H and K partition the edges of G. Then we write G = H & K.
A problem of interest about flows is the following: Given a graph G,
what is the smallest integer A for which G has a nowhere-zero A\-flow,
i.e., an integer A for which G admits a nowhere-zero A-flow, but it
does not admit a (A — 1)-flow. Let A = A(G) denote this minimum
A. In this paper, we show that if G admits a nowhere-zero 3-flow,



then
AGV Ky) =3, A(Ky)=3 (1>3), A(Knn) <3 (m,n>2),
A EKmy,me) <3 (k>3), A(Bp) <3 (n>5).

In [4], it was shown that A(K,) and A(K,,,) do not exceed 3. In
the next section, we present a short proof for Ks,. In Section 3, we
present a short proof for K, , and then we extend this result to the
complete multipartite graphs. For more information on nowhere-zero
A-flows, the interested reader is referred to [1], [3], [5] and [7].

The following theorem characterizes all graphs which admit a
nowhere-zero 2-flow see [6, p. 308].

Theorem A. A graph has a nowhere-zero 2-flow if and only if it
is an even graph.

2 The Minimum Flow Number of the Com-
plete Graphs

In this section, we investigate the problem of minimum nowhere-zero
A-flow for the complete graph Ko,. Since Ko,41 is an even graph by
Theorem A, A(Kap+1) =2

Theorem 1. A(Ks,) =3 forn > 3.

Proof. Since the degree of each vertex of Ko, is odd, A(Ka2,) > 3.
Partition the vertices of Ky, into two sets X and Y such that |X| =
|Y'| = n, and consider the subgraph of Ko, induced by all edges with
one endpoint in X and the other in Y. Choose three 1-factors of
these edges, say M1, My and Ms. Now, orient the edges of M; with
tails in X all labeled by 2, while orient the edges of My and M3 with
tails in Y having label 1.



3

Let H = Ko\ U M;. Clearly, H is a (2n — 4)-regular graph and
i=1

by Theorem A, it admits a nowhere-zero 2-flow. Thus Kb, has a

nowhere-zero 3-flow. O

The above proof shows that exactly n edges are labeled by 2. Indeed,
this is a nowhere-zero 3-flow using the minimum number of edges
labeled by 2. The proof follows here.

Theorem 2. In every nowhere-zero 3-flow of Kaop, at least n arcs
will be labeled by 2.

Proof. By contradiction, suppose that no more than n — 1 arcs are
labeled by 2.

Then, by pigeonhole principle, there exists at least one vertex with
no incident arc with label 2. Since Ky, is (2n — 1)-regular, then it

is not possible to maintain the proper flow at this vertex using only
the label 1. 0

3 The Minimum Flow Number of the Com-
plete Multipartite Graphs

In this section, we investigate the problem of minimum nowhere-
zero M\-flow for the complete bipartite K,,, and also the complete
multipartite graph K,
In order to prove our main theorem, here we present a few lemmas
which will be used frequently in the proof of the main theorem.

Lemma 1. Let G be a graph. If G belongs to the following set

{Kap2,Ko3, K33, K111, K112, K113, K122, K123, K133, K1,1,1,12},

byt

then A(G) < 3.



Proof. If G € {K2,2;Kl,l,laKl,l,SaKl,?),S}y then by Theorem A,
A(G) = 2. Here we show a nowhere-zero 3-flow for the remaining
graphs:

Figure 1: Some small graphs with minimum nowhere-zero 3-flow

O

Lemma 2. Let m,n > 2 be two natural numbers. Then we have,

A(Kpp) < 3.

Proof. If m,n < 3, then by Lemma 1 we are done. Without loss
of generality, assume that m > 4. We proceed using induction on
m +n. We have K, ,, = Ko, ® K;;,—2,,. By induction hypothesis,
A(K3,) <3 and A(Kyp—2,) < 3. Therefore, A(Kp, ) < 3. O

Remark 1. By Theorem A, if m,n > 2 and at least one of them
is odd, then A(Ky,,) =3

Lemma 3. A(Ky,,) <3, forr,neN.



Proof. We proceed by induction on r + n. If r,n < 3, then
by Lemma 1, we are done. Now, assume n > 4. Notice that
Kirn = Kir2 @ Kiyrn—2. By induction hypothesis and using
Lemma 2 we find that A(Ki,2) < 3 and A(Ki4rn—2) < 3. There-
fore, A(K1,,) < 3. O

Now, we are in a position to prove our main result.

Theorem 3. Let m; € N, fori = 1,...,k and kK > 3. Then
AKmy,..m) < 3.

Proof. We break the proof into the following:

Case 1: Assume m; > 2 for all ¢. For i # j, 1 < i,5 <k, the
edges with endpoints in sets of size m; and m; form a K m;- By
Lemma 2, A(Kyy,; m;) < 3. The proof of this case is now complete.

Case 2: Now, suppose m; = 1 for some i, 1 < ¢ < k. Without
loss of generality, assume that m; =---=m, =1, myy1,...,m >
2. Note that in this case r > 1. Our proof now is divided into the
following four subcases.

Case 2.1: Consider the case in which » > 3, r # 4. The
sets my, through m, can be viewed as the complete graph K,. By
Theorem A, A(K2,+1) = 2 and by Theorem 1, A(K,) < 3. Notice
that Koy, om, = Kr © Ko,y mess,..;mi,- By Case 1, we conclude
that A(Komy..m,.) < 3.

Case 2.2: Consider the case r = 4. Clearly, K4 has no
nowhere-zero 3-flow. In the following we prove that Kj 11 1,m; has a

Lyt

nowhere-zero 3-flow.

By induction on mg, we prove that A(K17171717m5) < 3. The case my5 =
2 follows from Lemma 1. The case ms = 3 follows from Theorem
A. Since for ms > 4 we have Kq11 1,ms = Ki1112® K47m5_2, by

byt syt ty

induction hypothesis and Lemma 2, A(K71,1,1,m5) < 3.

stytyty

ObViOUSl}G we have Kl,l,l,l,m5,m6,...,mk = Kl,l,l,l,m5 @K4+m5,m6,...,mk~



Following Case 1 and the above result, we find that

A(K1,1,1,ms,me,emi) < 3.

Case 2.3: Consider the case r = 1. We further break the case
into the following;:
If £ = 3, then by Lemma 3, we are done. If k > 4, then we write
K1 moms,...ome = K1,mo,ms © Kitmotms,ma,ms,...,m,- Lhe above can be
handled similarly by Lemmas 2, 3 and Case 1.

Case 2.4: Let r = 2. If K = 3, then by Lemma 3, we are done.
Thus assume that £ > 4. Notice that Ki1m,...m, = Ki1,ms @
K5y ma,...my- The right hand side of the above can similarly be
handled by Lemmas 2, 3 and Case 1. The proof is now complete. [

k
Remark 2. If Zmz is even for every j, 1 < j < k, then since
i=1
i
the complete k-partite graph K, . .m
A(Kmlw-»mk) =2

. 1s an even graph, we obtain

Corollary 1. A(By,) <3, forn > 5.

Proof. We have B, = C,,_2 ® Ki1,-2. By Lemma 3, we have
A(Kl,l,n—Z) < 3. |

In [2], the authors proved that if G admits a nowhere-zero 3-flow
and if the number vertices of G is even, then A(G V K3) = 3. The
following corollary shows that the even condition is redundant and
the proof is complete.

Corollary 2. If G admits a nowhere-zero 3-flow, then we have
AGV Ks) < 3.
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