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Local cohomology

Let S be a noetherian ring and m an ideal of S .
Let M be finitely generated S-module M.
Let Γm(M) := {v ∈ M| mtv = 0 for some t � 0}.

Grothendieck: The local cohomology H i
m(.), i ≥ 0, are the right

derived modules of Γm(M).

The vanishing of H i
m(M) can be used to classify modules.

Example. If S is a local ring with maximal ideal m, then M is
Cohen-Macaulay iff H i

m(M) = 0 for i < dimM.
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Graded case

Let R be a finitely generated graded algebra over a field and m the
maximal graded ideal of R.
Let M be a finitely generated graded S-module M.
Then H i

m(M) is a graded module with H i
m(M)t = 0 for t � 0.

The graded local cohomology is related to the sheaf cohomology in
Algebraic Geometry.

Grothendieck-Serre correspondence:
Let X = ProjR and M̃ the coherent sheaf associated with M.
Let H i (X , M̃(t)) denote the sheaf cohomology of M̃(t), t ∈ Z.
There are an exact sequence

→ H0
m(M)t → Mt → H0(X , M̃(t))→ H1

m(M)t → 0

and the isomorphisms H i (X , M̃(t)) ∼= H i+1
m (M)t for i > 0.
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Geometric regularity

Mumford: M̃ is called s-regular if Mt → H0(X , M̃(t)) is surjective
and H i (X , M̃(t − i)) = 0 for all t > s and i ≥ 1.

For every graded module E we set

a(E ) :=

{
sup{t| Et 6= 0} if E 6= 0,

−∞ if E = 0,

which can be understood as the largest non-vanishing degree of E .

Let ai (M) := a(H i
m(M)) and define the geometric regularity as

g-reg(M) := max{ai (M) + i | i > 0}.

Geometric meaning: M̃ is s-regular iff s > g-reg(M).



Geometric regularity

Mumford: M̃ is called s-regular if Mt → H0(X , M̃(t)) is surjective
and H i (X , M̃(t − i)) = 0 for all t > s and i ≥ 1.

For every graded module E we set

a(E ) :=

{
sup{t| Et 6= 0} if E 6= 0,

−∞ if E = 0,

which can be understood as the largest non-vanishing degree of E .

Let ai (M) := a(H i
m(M)) and define the geometric regularity as

g-reg(M) := max{ai (M) + i | i > 0}.

Geometric meaning: M̃ is s-regular iff s > g-reg(M).



Geometric regularity

Mumford: M̃ is called s-regular if Mt → H0(X , M̃(t)) is surjective
and H i (X , M̃(t − i)) = 0 for all t > s and i ≥ 1.

For every graded module E we set

a(E ) :=

{
sup{t| Et 6= 0} if E 6= 0,

−∞ if E = 0,

which can be understood as the largest non-vanishing degree of E .

Let ai (M) := a(H i
m(M)) and define the geometric regularity as

g-reg(M) := max{ai (M) + i | i > 0}.

Geometric meaning: M̃ is s-regular iff s > g-reg(M).



Geometric regularity

Mumford: M̃ is called s-regular if Mt → H0(X , M̃(t)) is surjective
and H i (X , M̃(t − i)) = 0 for all t > s and i ≥ 1.

For every graded module E we set

a(E ) :=

{
sup{t| Et 6= 0} if E 6= 0,

−∞ if E = 0,

which can be understood as the largest non-vanishing degree of E .

Let ai (M) := a(H i
m(M)) and define the geometric regularity as

g-reg(M) := max{ai (M) + i | i > 0}.

Geometric meaning: M̃ is s-regular iff s > g-reg(M).



Algebraic regularity

The algebraic regularity is defined slightly different:

reg(M) := max{ai (M) + i | i ≥ 0} (geometric: i > 0).

In general, reg(M) ≥ g-reg(M).
But reg(M) captures better the structure of M.

Let R be a factor ring of a polynomial ring S .
Consider a minimal graded free resolution of M over S :

0→ Fs → · · · → F1 → F0 → M → 0

Let bi (M) denote the maximum degree of the generators of Fi .

Eisenbud-Goto 1984: reg(M) = max{bi (M)− i | i = 0, . . . , s}.
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Regularity of ideal powers

Let S be a polynomial ring over a field and I a homogeneous ideal
of S .

Problem: Is is true that reg(I n) ≤ n reg(I ) for all n?

Geramita-Gimigliano-Pitteloud 1995, Chandler 1997:
Yes if dim S/I ≤ 1.

Sturmfels 2000: There exist monomial ideals I such that
reg(I 2) > 2 reg(I ).
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Linear bounds

Modified problem: Does there exists a linear bound for reg(I n)?

This problem was inspired by a result in algebraic geometry.

Bertram-Ein-Lazarsfeld 1991:

Let X ⊂ Ps be a smooth variety and let IX be the ideal sheaf of
the embedding of X . Let dX denote the minimum degree d such
that X is a scheme-theoretic intersection of hypersurfaces of
degree at most d . There is a number e such that

H i (Ps , InX (t)) = 0 for all n > 0, t ≥ ndX + e, i ≥ 1.

Swanson 1997: Yes, there exists a number D such that
reg(I n) ≤ nD for all n > 0.
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Asymptotic behaviour

It turns out that reg(I n) is asymptotically a linear function.

Cutkosky-Herzog-Trung 1999, Kodiyalam 2000: There exist
numbers d , e, n0 such that reg(I n) = nd + e for all n ≥ n0.

The slope d can be described explicitly.

Kodiyalam 2000: d = min{δ| I≤δI n−1 = I n for some n > 0}
where I≤δ denotes the ideal generated by forms of I of degree ≤ δ.

Geometric meaning: If I is the defining ideal of a projective variety
X , then d is the minimum degree such that X is a
scheme-theoretic intersection of hypersurfaces of degree at most d .
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Bigraded Rees algebra

Basic idea: to consider the Rees algebra S [It] =
⊕

n≥0 I
ntn ⊆ S [t].

Then use the bigrading deg ftn = (deg f , n) for f ∈ I n.

If S = k[x1, ..., xr ] and I = (f1, ..., fs), there is a presentation
S [It] = k[x1, .., xr , y1, .., ys ]/Q, where k[x1, .., xr , y1, .., ys ] is a
bigraded polynomial ring with deg xi = (1, 0), deg yj = (deg fj , 1),
and Q is a bihomogeneous ideal.

The asymptotic linearity of reg(I n) follows from the fact that S [It]
has a minimal bigraded resolution over k[x1, .., xr , y1, .., ys ], which
provides resolutions for all In.
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Saturation of ideal powers

Problem: What about the geometric regularity g-reg(I n)?

Let Ĩ :=
⋃

t≥0 I : mt , which is called the saturation of I . Then

reg(Ĩ ) = g-reg(I ).

So one might use
⊕

n≥0 Ĩ
ntn to study reg(Ĩ n) = g-reg(I n).

However,
⊕

n≥0 Ĩ
ntn is in general not finitely generated.

Cutkosky-Herzog-Trung 1999: limn→∞ reg(Ĩ n)/n can be a
rational number. Hence reg(Ĩ n) isn’t a linear function for n� 0.

Cutkosky-Ein-Lazarsfeld 2001: limn→∞ reg(Ĩ n)/n exists and
equals the Seshadri constant.
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ntn to study reg(Ĩ n) = g-reg(I n).
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ntn to study reg(Ĩ n) = g-reg(I n).
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The equigenerated zero-dimensional case

We know reg(I n) = dn + e for n ≥ n0, where d is well-determined.
But what about e and n0?

Eisenbud-Harris 2010, Eisenbud-Ulrich 2012: study the case
dim S/I = 0 and I is generated by forms of the same degree.

If dim S/I = 0, S/I has finite length, and reg(I ) = a(S/I ) + 1,
where a(S/I ) denotes the largest non-vanishing degree of S/I .

If I is generated by forms of degree d , one can modify the
bigrading of S [It] by letting deg ftn = (deg f − nd , n) for all f ∈ I n.
Then S [It] is standard bigraded, i.e. it is generated by forms of
degree (1, 0) and (0, 1).
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Regularity of standard graded algebras

To study n0 we need to extend the notion of regularity.

Let R be a standard graded algebra (not neccessarily over a field).
For every finitely generated graded R-module M one define

reg(M) := max{a(H i
R+

(M)) + i | i ≥ 0},
where R+ denotes the ideal generated by the homogeneous
elements of positive degree.

The Rees algebra S [It] is a standard graded algebra over S with
S [It]n = I ntn for n ≥ 0. Hence one can define reg(S [It]).
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Estimate for n0

Let n0 be the minimal number s. t. reg(I n) = dn + e for n ≥ n0.

Eisenbud-Ulrich 2012: Assume that dim S/I = 0 and I is
generated by forms of the same degree. Then n0 ≤ reg(S [It]).

Trung (to be published): Assume that I is generated by forms of
the same degree with dimS/I arbitrary. Then

n0 ≤ max
{

reg
(
S [It]/(x1, .., xi )S [It]

)
| i = 0, .., r

}
,

where x1, ..., xr are generic variables.
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Estimate for e

Assume that I is generated by forms of degree d .
Then k[Id ] is a homogeneous ring, and S [It] is a standard graded
algebra over k[Id ] by the first degree of the standard bigrading.

For every relevant homogeneous prime ideal P of k[Id ], we have
the homogeneous localization S [It](P), which is a standard graded
algebra over k[Id ](P). Hence we can define reg(S [It](P)).

Eisenbud-Harris 2010 (dimR/I = 0), Chardin 2013 (dimR/I
arbitrary): e is the maximum of reg(S [It](P)).

Geometric meaning: e is the maximum of the regularity of the
fibers of the linear projection ProjS [It]→ Ps−1.
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Regularity defects

Let en := reg(I n)− nd , where d is the slope of the asymptotic
linear function reg(I n). One calls en the regularity defect of I n.

Eisenbud-Harris 2010: Let dimS/I = 0 and I be generated by
forms of degree d . Then {en} is a non-increasing sequence.

Eisenbud-Ulrich 2012: Is {en−en+1} a non-increasing sequence?

Berlekamp 2012: The answer is no.
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