Castelnuovo-Mumford regularity of ideal powers

Ngo Viet Trung

Institute of Mathematics
Vietnam Academy of Science and Technology

Tehran, November 2015

Local cohomology

Let S be a noetherian ring and $\mathfrak m$ an ideal of S. Let M be finitely generated S-module M. Let $\Gamma_{\mathfrak m}(M):=\{v\in M|\ \mathfrak m^t v=0\ \text{for some}\ t\gg 0\}.$

Local cohomology

Let S be a noetherian ring and \mathfrak{m} an ideal of S.

Let M be finitely generated S-module M.

Let $\Gamma_{\mathfrak{m}}(M) := \{ v \in M | \ \mathfrak{m}^t v = 0 \text{ for some } t \gg 0 \}.$

Grothendieck: The local cohomology $H_{\mathfrak{m}}^{i}(.)$, $i \geq 0$, are the right derived modules of $\Gamma_{\mathfrak{m}}(M)$.

Local cohomology

Let S be a noetherian ring and \mathfrak{m} an ideal of S.

Let M be finitely generated S-module M.

Let $\Gamma_{\mathfrak{m}}(M) := \{ v \in M | \ \mathfrak{m}^t v = 0 \text{ for some } t \gg 0 \}.$

Grothendieck: The local cohomology $H_{\mathfrak{m}}^{i}(.)$, $i \geq 0$, are the right derived modules of $\Gamma_{\mathfrak{m}}(M)$.

The vanishing of $H_m^i(M)$ can be used to classify modules.

Example. If S is a local ring with maximal ideal \mathfrak{m} , then M is Cohen-Macaulay iff $H^i_{\mathfrak{m}}(M)=0$ for $i<\dim M$.

Graded case

Let R be a finitely generated graded algebra over a field and \mathfrak{m} the maximal graded ideal of R.

Let M be a finitely generated graded S-module M.

Then $H^i_{\mathfrak{m}}(M)$ is a graded module with $H^i_{\mathfrak{m}}(M)_t=0$ for $t\gg 0$.

Graded case

Let R be a finitely generated graded algebra over a field and \mathfrak{m} the maximal graded ideal of R.

Let M be a finitely generated graded S-module M.

Then $H^i_{\mathfrak{m}}(M)$ is a graded module with $H^i_{\mathfrak{m}}(M)_t=0$ for $t\gg 0$.

The graded local cohomology is related to the sheaf cohomology in Algebraic Geometry.

Grothendieck-Serre correspondence:

Let X = Proj R and \tilde{M} the coherent sheaf associated with M.

Let $H^i(X, \tilde{M}(t))$ denote the sheaf cohomology of $\tilde{M}(t)$, $t \in \mathbb{Z}$.

There are an exact sequence

$$H_{\mathfrak{m}}^{0}(M)_{t} \to M_{t} \to H^{0}(X, \tilde{M}(t)) \to H_{\mathfrak{m}}^{1}(M)_{t} \to 0$$

and the isomorphisms $H^i(X, \tilde{M}(t)) \cong H^{i+1}_{\mathfrak{m}}(M)_t$ for i > 0.

Mumford: \tilde{M} is called s-regular if $M_t \to H^0(X, \tilde{M}(t))$ is surjective and $H^i(X, \tilde{M}(t-i)) = 0$ for all t > s and $i \ge 1$.

Mumford: \tilde{M} is called s-regular if $M_t \to H^0(X, \tilde{M}(t))$ is surjective and $H^i(X, \tilde{M}(t-i)) = 0$ for all t > s and $i \ge 1$.

For every graded module E we set

$$a(E) := \begin{cases} \sup\{t | E_t \neq 0\} \text{ if } E \neq 0, \\ -\infty \text{ if } E = 0, \end{cases}$$

which can be understood as the largest non-vanishing degree of E.

Mumford: \tilde{M} is called s-regular if $M_t \to H^0(X, \tilde{M}(t))$ is surjective and $H^i(X, \tilde{M}(t-i)) = 0$ for all t > s and $i \ge 1$.

For every graded module E we set

$$a(E) := egin{cases} \sup\{t | \ E_t
eq 0\} \ \text{if} \ E
eq 0, \ -\infty \ \text{if} \ E = 0, \end{cases}$$

which can be understood as the largest non-vanishing degree of E.

Let $a_i(M) := a(H^i_{\mathfrak{m}}(M))$ and define the geometric regularity as $\operatorname{g-reg}(M) := \max\{a_i(M) + i | i > 0\}.$

Mumford: \tilde{M} is called s-regular if $M_t \to H^0(X, \tilde{M}(t))$ is surjective and $H^i(X, \tilde{M}(t-i)) = 0$ for all t > s and $i \ge 1$.

For every graded module E we set

$$a(E) := \begin{cases} \sup\{t | E_t \neq 0\} \text{ if } E \neq 0, \\ -\infty \text{ if } E = 0, \end{cases}$$

which can be understood as the largest non-vanishing degree of *E*.

Let $a_i(M) := a(H^i_{\mathfrak{m}}(M))$ and define the geometric regularity as $\operatorname{g-reg}(M) := \max\{a_i(M) + i | i > 0\}.$

Geometric meaning: \tilde{M} is s-regular iff s > g-reg(M).

Algebraic regularity

The algebraic regularity is defined slightly different:

```
\operatorname{reg}(M) := \max\{a_i(M) + i|\ i \geq 0\} \ \ (\text{geometric:}\ i > 0).
```

Algebraic regularity

The algebraic regularity is defined slightly different:

$$\operatorname{reg}(M) := \max\{a_i(M) + i|\ i \geq 0\} \ \ (\operatorname{geometric}:\ i > 0).$$

In general, $reg(M) \ge g-reg(M)$.

But reg(M) captures better the structure of M.

Algebraic regularity

The algebraic regularity is defined slightly different:

$$reg(M) := max\{a_i(M) + i | i \ge 0\}$$
 (geometric: $i > 0$).

In general, $reg(M) \ge g-reg(M)$.

But reg(M) captures better the structure of M.

Let R be a factor ring of a polynomial ring S.

Consider a minimal graded free resolution of M over S:

$$0 \to F_s \to \cdots \to F_1 \to F_0 \to M \to 0$$

Let $b_i(M)$ denote the maximum degree of the generators of F_i .

Eisenbud-Goto 1984: $reg(M) = max\{b_i(M) - i | i = 0, ..., s\}.$

Regularity of ideal powers

Let S be a polynomial ring over a field and I a homogeneous ideal of S.

Problem: Is is true that $reg(I^n) \le n reg(I)$ for all n?

Regularity of ideal powers

Let S be a polynomial ring over a field and I a homogeneous ideal of S.

Problem: Is is true that $reg(I^n) \le n reg(I)$ for all n?

Geramita-Gimigliano-Pitteloud 1995, Chandler 1997: Yes if $\dim S/I \le 1$.

Regularity of ideal powers

Let S be a polynomial ring over a field and I a homogeneous ideal of S.

Problem: Is is true that $reg(I^n) \le n reg(I)$ for all n?

Geramita-Gimigliano-Pitteloud 1995, Chandler 1997: Yes if $\dim S/I \leq 1$.

Sturmfels 2000: There exist monomial ideals I such that $reg(I^2) > 2 reg(I)$.

Linear bounds

Modified problem: Does there exists a linear bound for $reg(I^n)$?

Linear bounds

Modified problem: Does there exists a linear bound for $reg(I^n)$?

This problem was inspired by a result in algebraic geometry.

Bertram-Ein-Lazarsfeld 1991:

Let $X \subset \mathbb{P}^s$ be a smooth variety and let \mathcal{I}_X be the ideal sheaf of the embedding of X. Let d_X denote the minimum degree d such that X is a scheme-theoretic intersection of hypersurfaces of degree at most d. There is a number e such that

$$H^i(\mathbb{P}^s,\mathcal{I}_X^n(t))=0$$
 for all $n>0,\ t\geq nd_X+e,\ i\geq 1.$

Linear bounds

Modified problem: Does there exists a linear bound for $reg(I^n)$?

This problem was inspired by a result in algebraic geometry.

Bertram-Ein-Lazarsfeld 1991:

Let $X \subset \mathbb{P}^s$ be a smooth variety and let \mathcal{I}_X be the ideal sheaf of the embedding of X. Let d_X denote the minimum degree d such that X is a scheme-theoretic intersection of hypersurfaces of degree at most d. There is a number e such that

$$H^i(\mathbb{P}^s,\mathcal{I}_X^n(t))=0$$
 for all $n>0,\ t\geq nd_X+e,\ i\geq 1.$

Swanson 1997: Yes, there exists a number D such that $reg(I^n) \le nD$ for all n > 0.

Asymptotic behaviour

It turns out that $reg(I^n)$ is asymptotically a linear function.

Cutkosky-Herzog-Trung 1999, Kodiyalam 2000: There exist numbers d, e, n_0 such that $reg(I^n) = nd + e$ for all $n \ge n_0$.

Asymptotic behaviour

It turns out that $reg(I^n)$ is asymptotically a linear function.

Cutkosky-Herzog-Trung 1999, Kodiyalam 2000: There exist numbers d, e, n_0 such that $reg(I^n) = nd + e$ for all $n \ge n_0$.

The slope d can be described explicitly.

Kodiyalam 2000: $d = \min\{\delta | I_{\leq \delta}I^{n-1} = I^n \text{ for some } n > 0\}$ where $I_{\leq \delta}$ denotes the ideal generated by forms of I of degree $\leq \delta$.

Asymptotic behaviour

It turns out that $reg(I^n)$ is asymptotically a linear function.

Cutkosky-Herzog-Trung 1999, Kodiyalam 2000: There exist numbers d, e, n_0 such that $reg(I^n) = nd + e$ for all $n \ge n_0$.

The slope d can be described explicitly.

Kodiyalam 2000: $d = \min\{\delta | I_{\leq \delta}I^{n-1} = I^n \text{ for some } n > 0\}$ where $I_{\leq \delta}$ denotes the ideal generated by forms of I of degree $\leq \delta$.

Geometric meaning: If I is the defining ideal of a projective variety X, then d is the minimum degree such that X is a scheme-theoretic intersection of hypersurfaces of degree at most d.

Bigraded Rees algebra

Basic idea: to consider the Rees algebra $S[It] = \bigoplus_{n \geq 0} I^n t^n \subseteq S[t]$. Then use the bigrading deg $ft^n = (\deg f, n)$ for $f \in I^n$.

Bigraded Rees algebra

Basic idea: to consider the Rees algebra $S[It] = \bigoplus_{n \geq 0} I^n t^n \subseteq S[t]$. Then use the bigrading deg $ft^n = (\deg f, n)$ for $f \in I^n$.

If $S = k[x_1, ..., x_r]$ and $I = (f_1, ..., f_s)$, there is a presentation $S[It] = k[x_1, ..., x_r, y_1, ..., y_s]/Q$, where $k[x_1, ..., x_r, y_1, ..., y_s]$ is a bigraded polynomial ring with deg $x_i = (1, 0)$, deg $y_j = (\deg f_j, 1)$, and Q is a bihomogeneous ideal.

Bigraded Rees algebra

Basic idea: to consider the Rees algebra $S[It] = \bigoplus_{n \geq 0} I^n t^n \subseteq S[t]$. Then use the bigrading deg $ft^n = (\deg f, n)$ for $f \in I^n$.

If $S = k[x_1,...,x_r]$ and $I = (f_1,...,f_s)$, there is a presentation $S[It] = k[x_1,...,x_r,y_1,...,y_s]/Q$, where $k[x_1,...,x_r,y_1,...,y_s]$ is a bigraded polynomial ring with $\deg x_i = (1,0)$, $\deg y_j = (\deg f_j,1)$, and Q is a bihomogeneous ideal.

The asymptotic linearity of $\operatorname{reg}(I^n)$ follows from the fact that S[It] has a minimal bigraded resolution over $k[x_1,..,x_r,y_1,..,y_s]$, which provides resolutions for all I_n .

Problem: What about the geometric regularity $g-reg(I^n)$?

Problem: What about the geometric regularity $g-reg(I^n)$?

Let $\tilde{I}:=\bigcup_{t\geq 0}I:\mathfrak{m}^t$, which is called the saturation of I. Then $\operatorname{reg}(\tilde{I})=\operatorname{g-reg}(I).$

Problem: What about the geometric regularity $g-reg(I^n)$?

Let $\tilde{I}:=\bigcup_{t\geq 0}I:\mathfrak{m}^t$, which is called the saturation of I. Then $\operatorname{reg}(\tilde{I})=\operatorname{g-reg}(I).$

So one might use $\bigoplus_{n\geq 0} \tilde{I^n} t^n$ to study $\operatorname{reg}(\tilde{I^n}) = \operatorname{g-reg}(I^n)$. However, $\bigoplus_{n\geq 0} \tilde{I^n} t^n$ is in general not finitely generated.

Problem: What about the geometric regularity $g-reg(I^n)$?

Let $\tilde{I}:=\bigcup_{t\geq 0}I:\mathfrak{m}^t$, which is called the saturation of I. Then $\operatorname{reg}(\tilde{I})=\operatorname{g-reg}(I).$

So one might use $\bigoplus_{n\geq 0} \tilde{I^n} t^n$ to study $\operatorname{reg}(\tilde{I^n}) = \operatorname{g-reg}(I^n)$. However, $\bigoplus_{n\geq 0} \tilde{I^n} t^n$ is in general not finitely generated.

Cutkosky-Herzog-Trung 1999: $\lim_{n\to\infty} \operatorname{reg}(\tilde{I^n})/n$ can be a rational number. Hence $\operatorname{reg}(\tilde{I^n})$ isn't a linear function for $n\gg 0$.

Problem: What about the geometric regularity $g-reg(I^n)$?

Let $\tilde{I}:=\bigcup_{t\geq 0}I:\mathfrak{m}^t$, which is called the saturation of I. Then $\operatorname{reg}(\tilde{I})=\operatorname{g-reg}(I).$

So one might use $\bigoplus_{n\geq 0} \tilde{I^n} t^n$ to study $\operatorname{reg}(\tilde{I^n}) = \operatorname{g-reg}(I^n)$. However, $\bigoplus_{n\geq 0} \tilde{I^n} t^n$ is in general not finitely generated.

Cutkosky-Herzog-Trung 1999: $\lim_{n\to\infty} \operatorname{reg}(\tilde{I}^n)/n$ can be a rational number. Hence $\operatorname{reg}(\tilde{I}^n)$ isn't a linear function for $n\gg 0$.

Cutkosky-Ein-Lazarsfeld 2001: $\lim_{n\to\infty} \operatorname{reg}(\tilde{I}^n)/n$ exists and equals the Seshadri constant.

We know $reg(I^n) = dn + e$ for $n \ge n_0$, where d is well-determined. But what about e and n_0 ?

We know $reg(I^n) = dn + e$ for $n \ge n_0$, where d is well-determined. But what about e and n_0 ?

Eisenbud-Harris 2010, Eisenbud-Ulrich 2012: study the case $\dim S/I=0$ and I is generated by forms of the same degree.

We know $reg(I^n) = dn + e$ for $n \ge n_0$, where d is well-determined. But what about e and n_0 ?

Eisenbud-Harris 2010, Eisenbud-Ulrich 2012: study the case $\dim S/I = 0$ and I is generated by forms of the same degree.

If dim S/I = 0, S/I has finite length, and reg(I) = a(S/I) + 1, where a(S/I) denotes the largest non-vanishing degree of S/I.

We know $reg(I^n) = dn + e$ for $n \ge n_0$, where d is well-determined. But what about e and n_0 ?

Eisenbud-Harris 2010, Eisenbud-Ulrich 2012: study the case $\dim S/I=0$ and I is generated by forms of the same degree.

If dim S/I = 0, S/I has finite length, and reg(I) = a(S/I) + 1, where a(S/I) denotes the largest non-vanishing degree of S/I.

If I is generated by forms of degree d, one can modify the bigrading of S[It] by letting deg $ft^n = (\deg f - nd, n)$ for all $f \in I^n$. Then S[It] is standard bigraded, i.e. it is generated by forms of degree (1,0) and (0,1).

Regularity of standard graded algebras

To study n_0 we need to extend the notion of regularity.

Regularity of standard graded algebras

To study n_0 we need to extend the notion of regularity.

Let R be a standard graded algebra (not neccessarily over a field). For every finitely generated graded R-module M one define

$$reg(M) := max\{a(H^i_{R_+}(M)) + i| \ i \ge 0\},$$

where R_+ denotes the ideal generated by the homogeneous elements of positive degree.

Regularity of standard graded algebras

To study n_0 we need to extend the notion of regularity.

Let R be a standard graded algebra (not neccessarily over a field). For every finitely generated graded R-module M one define

$$\operatorname{reg}(M) := \max \{ a(H^i_{R_+}(M)) + i | \ i \geq 0 \},$$

where R_+ denotes the ideal generated by the homogeneous elements of positive degree.

The Rees algebra S[It] is a standard graded algebra over S with $S[It]_n = I^n t^n$ for $n \ge 0$. Hence one can define $\operatorname{reg}(S[It])$.

Estimate for n_0

Let n_0 be the minimal number s. t. $reg(I^n) = dn + e$ for $n \ge n_0$.

Eisenbud-Ulrich 2012: Assume that dim S/I = 0 and I is generated by forms of the same degree. Then $n_0 \le \text{reg}(S[It])$.

Estimate for n_0

Let n_0 be the minimal number s. t. $reg(I^n) = dn + e$ for $n \ge n_0$.

Eisenbud-Ulrich 2012: Assume that dim S/I = 0 and I is generated by forms of the same degree. Then $n_0 \le \text{reg}(S[It])$.

Trung (to be published): Assume that I is generated by forms of the same degree with dim S/I arbitrary. Then

$$n_0 \leq \max \left\{ \operatorname{reg} \left(S[It]/(x_1,..,x_i) S[It] \right) | i = 0,..,r \right\},$$
 where $x_1,...,x_r$ are generic variables.

Assume that I is generated by forms of degree d. Then $k[I_d]$ is a homogeneous ring, and S[It] is a standard graded algebra over $k[I_d]$ by the first degree of the standard bigrading.

Assume that I is generated by forms of degree d. Then $k[I_d]$ is a homogeneous ring, and S[It] is a standard graded algebra over $k[I_d]$ by the first degree of the standard bigrading.

For every relevant homogeneous prime ideal P of $k[I_d]$, we have the homogeneous localization $S[It]_{(P)}$, which is a standard graded algebra over $k[I_d]_{(P)}$. Hence we can define $\operatorname{reg}(S[It]_{(P)})$.

Assume that I is generated by forms of degree d. Then $k[I_d]$ is a homogeneous ring, and S[It] is a standard graded algebra over $k[I_d]$ by the first degree of the standard bigrading.

For every relevant homogeneous prime ideal P of $k[I_d]$, we have the homogeneous localization $S[It]_{(P)}$, which is a standard graded algebra over $k[I_d]_{(P)}$. Hence we can define $\operatorname{reg}(S[It]_{(P)})$.

Eisenbud-Harris 2010 (dim R/I = 0), **Chardin 2013** (dim R/I arbitrary): e is the maximum of $reg(S[It]_{(P)})$.

Assume that I is generated by forms of degree d. Then $k[I_d]$ is a homogeneous ring, and S[It] is a standard graded algebra over $k[I_d]$ by the first degree of the standard bigrading.

For every relevant homogeneous prime ideal P of $k[I_d]$, we have the homogeneous localization $S[It]_{(P)}$, which is a standard graded algebra over $k[I_d]_{(P)}$. Hence we can define $\operatorname{reg}(S[It]_{(P)})$.

Eisenbud-Harris 2010 (dim R/I = 0), **Chardin 2013** (dim R/I arbitrary): e is the maximum of $reg(S[It]_{(P)})$.

Geometric meaning: e is the maximum of the regularity of the fibers of the linear projection $\operatorname{Proj} S[It] \to \mathbb{P}^{s-1}$.

Let $e_n := \text{reg}(I^n) - nd$, where d is the slope of the asymptotic linear function $\text{reg}(I^n)$. One calls e_n the regularity defect of I^n .

Let $e_n := \text{reg}(I^n) - nd$, where d is the slope of the asymptotic linear function $\text{reg}(I^n)$. One calls e_n the regularity defect of I^n .

Eisenbud-Harris 2010: Let dim S/I=0 and I be generated by forms of degree d. Then $\{e_n\}$ is a non-increasing sequence.

Let $e_n := \text{reg}(I^n) - nd$, where d is the slope of the asymptotic linear function $\text{reg}(I^n)$. One calls e_n the regularity defect of I^n .

Eisenbud-Harris 2010: Let dim S/I=0 and I be generated by forms of degree d. Then $\{e_n\}$ is a non-increasing sequence.

Eisenbud-Ulrich 2012: Is $\{e_n - e_{n+1}\}$ a non-increasing sequence?

Let $e_n := \text{reg}(I^n) - nd$, where d is the slope of the asymptotic linear function $\text{reg}(I^n)$. One calls e_n the regularity defect of I^n .

Eisenbud-Harris 2010: Let dim S/I=0 and I be generated by forms of degree d. Then $\{e_n\}$ is a non-increasing sequence.

Eisenbud-Ulrich 2012: Is $\{e_n-e_{n+1}\}$ a non-increasing sequence?

Berlekamp 2012: The answer is no.