# Combinatorial Optimization: a Bridge between Combinatorics and Algebra

Ngo Viet Trung

Institute of Mathematics Vietnamese Academy of Science and Technology

Tehran, November 2015

#### Main Theme

Correspondence of Hypergraphs in Combinatorics and Squarefree Monomial Ideals in Algebra

**Tool: Combinatorial Optimization** 

#### Main Theme

Correspondence of Hypergraphs in Combinatorics and Squarefree Monomial Ideals in Algebra

**Tool: Combinatorial Optimization** 

This bridge is too big. I am a passenger passing the bridge a few times and could see only a glimpse of its magnificence.

#### Hypergraphs

A hypergraph  $\Gamma$  is a collection of subsets of a set V with no inclusions among them. One may view the elements of V as vertices and the subsets of  $\Gamma$  as edges of the hypergraph.

#### Hypergraphs

A hypergraph  $\Gamma$  is a collection of subsets of a set V with no inclusions among them. One may view the elements of V as vertices and the subsets of  $\Gamma$  as edges of the hypergraph.

**Example**: If every edges has two vertices, then  $\Gamma$  is a graph.

#### Hypergraphs

A hypergraph  $\Gamma$  is a collection of subsets of a set V with no inclusions among them. One may view the elements of V as vertices and the subsets of  $\Gamma$  as edges of the hypergraph.

**Example**: If every edges has two vertices, then  $\Gamma$  is a graph.

Hypergraphs play an impotant role in Combinatorics and in dealing with real discrete problems.

**Example**: Social networks.

#### Matrix presentation

Let 
$$V = \{1, ..., n\}$$
 and  $\Gamma = \{F_1, ..., F_m\}$ .

We may identify  $F_i$  with the incidence vector  $\mathbf{a}_i = (\alpha_{i1}, ..., \alpha_{in})$  (column vector), where

$$\alpha_{ij} = \begin{cases} 1 & \text{if } j \in F_i, \\ 0 & \text{if } j \notin F_i. \end{cases}$$

#### Matrix presentation

Let 
$$V = \{1, ..., n\}$$
 and  $\Gamma = \{F_1, ..., F_m\}$ .

We may identify  $F_i$  with the incidence vector  $\mathbf{a}_i = (\alpha_{i1}, ..., \alpha_{in})$  (column vector), where

$$\alpha_{ij} = \begin{cases} 1 & \text{if } j \in F_i, \\ 0 & \text{if } j \notin F_i. \end{cases}$$

Then  $\Gamma$  is uniquely determined by the incidence matrix

$$\mathsf{M}=(\mathsf{a}_1,...,\mathsf{a}_m).$$

This matrix presentation allows us to use tool of Combinatorial Optimization to study hypergraphs.

A (vertex) cover of  $\Gamma$  is a subset  $G \subseteq V$  such that G meets every edge, i.e.  $G \cap F_i \neq \emptyset$  for all i.

A (vertex) cover of  $\Gamma$  is a subset  $G \subseteq V$  such that G meets every edge, i.e.  $G \cap F_i \neq \emptyset$  for all i.

The covering number of  $\Gamma$  is defined as  $\tau(\Gamma) := \min\{|G| \mid G \text{ is a cover of } \Gamma\}.$ 

A (vertex) cover of  $\Gamma$  is a subset  $G \subseteq V$  such that G meets every edge, i.e.  $G \cap F_i \neq \emptyset$  for all i.

The covering number of  $\Gamma$  is defined as

$$\tau(\Gamma) := \min\{|G| \mid G \text{ is a cover of } \Gamma\}.$$

Let  ${f b}$  be the incidence vector of G and  ${f 1}_n:=(1,...,1)\in {\Bbb N}^n$ . Then  $|G|={f 1}_n\cdot {f b}.$   $G\cap F_i\neq\emptyset$  iff  ${f a}_i\cdot {f b}\geq 1.$ 

A (vertex) cover of  $\Gamma$  is a subset  $G \subseteq V$  such that G meets every edge, i.e.  $G \cap F_i \neq \emptyset$  for all i.

The covering number of  $\Gamma$  is defined as

$$\tau(\Gamma) := \min\{|G| \mid G \text{ is a cover of } \Gamma\}.$$

Let  ${f b}$  be the incidence vector of G and  ${f 1}_n:=(1,...,1)\in {\Bbb N}^n$ . Then  $|G|={f 1}_n\cdot {f b}$ .  $G\cap F_i
eq \emptyset$  iff  ${f a}_i\cdot {f b}\geq 1$ .

**Proposition**:  $\tau(\Gamma) = \min\{\mathbf{1}_n \cdot \mathbf{b} | \mathbf{b} \in \mathbb{N}^n, \mathbf{M}^T \cdot \mathbf{b} \geq \mathbf{1}_m\}.$ 

A matching of  $\Gamma$  is a family S of disjoint edges.

A matching of  $\Gamma$  is a family S of disjoint edges.

The matching number of  $\Gamma$  is defined as  $\nu(\Gamma) := \max\{|S||\ S \text{ is a matching of } \Gamma\}.$ 

A matching of  $\Gamma$  is a family S of disjoint edges.

The matching number of  $\Gamma$  is defined as  $\nu(\Gamma) := \max\{|S|| S \text{ is a matching of } \Gamma\}.$ 

Let **c** be the incidence vector of the index set  $\{i | F_i \in S\}$ . Then  $|S| = \mathbf{1}_m \cdot \mathbf{c}$ ,

The edges of S are disjoint iff  $\sum_{F_i \in S} \mathbf{a}_i \leq \mathbf{1}_n$  iff  $\mathbf{M} \cdot \mathbf{c} \leq \mathbf{1}_n$ .



A matching of  $\Gamma$  is a family S of disjoint edges.

The matching number of  $\Gamma$  is defined as

$$\nu(\Gamma) := \max\{|S|| \ S \text{ is a matching of } \Gamma\}.$$

Let **c** be the incidence vector of the index set  $\{i | F_i \in S\}$ . Then

$$|S|=\mathbf{1}_m\cdot\mathbf{c},$$

The edges of S are disjoint iff  $\sum_{F_i \in S} \mathbf{a}_i \leq \mathbf{1}_n$  iff  $\mathbf{M} \cdot \mathbf{c} \leq \mathbf{1}_n$ .

**Proposition**:  $\nu(\Gamma) = \max\{\mathbf{1}_m \cdot \mathbf{c} | \mathbf{c} \in \mathbb{N}^m, \mathbf{M} \cdot \mathbf{c} \leq \mathbf{1}_n\}.$ 



Let 
$$\Gamma = \big\{\{1,2\},\{1,3\},\{2,3\}\big\}$$
:



 $\Gamma$  has three minimal covers  $\{1,2\},\{1,3\},\{2,3\}$ , hence  $\tau(\Gamma)=2$ .

 $\Gamma$  has three maximal matchings of one edge  $\{1,2\},\{1,3\},\{2,3\},$  hence  $\nu(\Gamma)=1.$ 

## König property

Every cover meets the edge of a matching at different vertices:

$$\nu(\Gamma) \leq \tau(\Gamma)$$
.

## König property

Every cover meets the edge of a matching at different vertices:

$$\nu(\Gamma) \leq \tau(\Gamma)$$
.

Another point of view:

$$\nu(\Gamma) \leq \max\{\mathbf{1}_m \cdot \mathbf{c} | \mathbf{c} \in \mathbb{R}_+^m, \mathbf{M} \cdot \mathbf{c} \leq \mathbf{1}_n\}$$
  
=  $\min\{\mathbf{1}_n \cdot \mathbf{b} | \mathbf{b} \in \mathbb{R}_+^n, \mathbf{M}^T \cdot \mathbf{b} \geq \mathbf{1}_m\} \leq \tau(\Gamma).$ 

where the middle equality follows from the duality of Linear Programming.

## König property

Every cover meets the edge of a matching at different vertices:

$$\nu(\Gamma) \leq \tau(\Gamma)$$
.

Another point of view:

$$\nu(\Gamma) \leq \max\{\mathbf{1}_m \cdot \mathbf{c} | \mathbf{c} \in \mathbb{R}_+^m, \mathbf{M} \cdot \mathbf{c} \leq \mathbf{1}_n\}$$
  
=  $\min\{\mathbf{1}_n \cdot \mathbf{b} | \mathbf{b} \in \mathbb{R}_+^n, \mathbf{M}^T \cdot \mathbf{b} \geq \mathbf{1}_m\} \leq \tau(\Gamma).$ 

where the middle equality follows from the duality of Linear Programming.

If  $\nu(\Gamma) = \tau(\Gamma)$ , one says that  $\Gamma$  has the König property.

König: Bipartite graphs have this property.

## **Expanding Hypergraphs**

To construct new hypergraphs one can expand a vertex v to k vertices as follows:

- 1. Replacing v by k new vertices  $v_1, ..., v_k$ ,
- 2. Replacing every edge F containing v by k new edges  $(F \setminus v) \cup v_1, ..., (F \setminus v) \cup v_k$ .

## **Expanding Hypergraphs**

To construct new hypergraphs one can expand a vertex v to k vertices as follows:

- 1. Replacing v by k new vertices  $v_1, ..., v_k$ ,
- 2. Replacing every edge F containing v by k new edges  $(F \setminus v) \cup v_1, ..., (F \setminus v) \cup v_k$ .

For  $\mathbf{a} = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ , we define  $\Gamma_{\mathbf{a}}$  as the hypergraph obtained from  $\Gamma$  by expanding every vertex i to  $\alpha_i$  vertices, i = 1, ..., n.

Let 
$$\Gamma = \{\{1,2\}, \{1,3\}, \{2,3\}\}$$
 and  $\mathbf{a} = (2,1,1)$ .

Then  $\Gamma_a$  is obtained by expanding the vertex 1 to two vertices  $1_1, 1_2$ :



Set 
$$\nu(\mathbf{a}) := \nu(\Gamma_{\mathbf{a}})$$
 and  $\tau(\mathbf{a}) := \tau(\Gamma_{\mathbf{a}})$ .

Set 
$$\nu(\mathbf{a}) := \nu(\Gamma_{\mathbf{a}})$$
 and  $\tau(\mathbf{a}) := \tau(\Gamma_{\mathbf{a}})$ .  
**Lemma**. For all  $\mathbf{a} \in \mathbb{N}^m$  we have 
$$\nu(\mathbf{a}) = \max\{\mathbf{1}_m \cdot \mathbf{c} | \mathbf{c} \in \mathbb{N}^m, \mathbf{M} \cdot \mathbf{c} \leqslant \mathbf{a}\},$$

$$\tau(\mathbf{a}) = \min\{\mathbf{a} \cdot \mathbf{b} | \mathbf{b} \in \mathbb{N}^n, \mathbf{M}^T \cdot \mathbf{b} > \mathbf{1}_m\}.$$

Set 
$$\nu(\mathbf{a}) := \nu(\Gamma_{\mathbf{a}})$$
 and  $\tau(\mathbf{a}) := \tau(\Gamma_{\mathbf{a}})$ .

**Lemma**. For all  $\mathbf{a} \in \mathbb{N}^m$  we have

$$\nu(\mathbf{a}) = \max\{\mathbf{1}_m \cdot \mathbf{c} | \mathbf{c} \in \mathbb{N}^m, \mathbf{M} \cdot \mathbf{c} \leqslant \mathbf{a}\},$$
  
$$\tau(\mathbf{a}) = \min\{\mathbf{a} \cdot \mathbf{b} | \mathbf{b} \in \mathbb{N}^n, \mathbf{M}^T \cdot \mathbf{b} \ge \mathbf{1}_m\}.$$

The fractional covering and matching numbers is defined by

$$\nu^*(\mathbf{a}) := \max\{\mathbf{1}_m \cdot \mathbf{c} | \ \mathbf{c} \in \mathbb{R}_+^m, \mathbf{M} \cdot \mathbf{c} \leqslant \mathbf{a}\},$$
  
$$\tau^*(\mathbf{a}) := \min\{\mathbf{a} \cdot \mathbf{b} | \ \mathbf{b} \in \mathbb{R}_+^n, \mathbf{M}^T \cdot \mathbf{b} \geq \mathbf{1}_m\}.$$

Set 
$$\nu(\mathbf{a}) := \nu(\Gamma_{\mathbf{a}})$$
 and  $\tau(\mathbf{a}) := \tau(\Gamma_{\mathbf{a}})$ .

**Lemma**. For all  $\mathbf{a} \in \mathbb{N}^m$  we have

$$\nu(\mathbf{a}) = \max\{\mathbf{1}_m \cdot \mathbf{c} | \mathbf{c} \in \mathbb{N}^m, \mathbf{M} \cdot \mathbf{c} \leqslant \mathbf{a}\},$$
  
$$\tau(\mathbf{a}) = \min\{\mathbf{a} \cdot \mathbf{b} | \mathbf{b} \in \mathbb{N}^n, \mathbf{M}^T \cdot \mathbf{b} \ge \mathbf{1}_m\}.$$

The fractional covering and matching numbers is defined by

$$\nu^*(\mathbf{a}) := \max\{\mathbf{1}_m \cdot \mathbf{c} | \ \mathbf{c} \in \mathbb{R}_+^m, \mathbf{M} \cdot \mathbf{c} \leqslant \mathbf{a}\},$$
  
$$\tau^*(\mathbf{a}) := \min\{\mathbf{a} \cdot \mathbf{b} | \ \mathbf{b} \in \mathbb{R}_+^n, \mathbf{M}^T \cdot \mathbf{b} \geq \mathbf{1}_m\}.$$

**Proposition**: 
$$\nu(\mathbf{a}) \leq \nu^*(\mathbf{a}) = \tau^*(\mathbf{a}) \leq \tau(\mathbf{a})$$
.

#### Squarefree momomial ideals

Let  $K[X] = K[x_1, ..., x_n]$  be a polynomial ring over a field K. For  $\mathbf{a} = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ , set  $x^{\mathbf{a}} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ .

We call  $x^{\mathbf{a}}$  squarefree if  $x^{\mathbf{a}}$  is not divided by any square. In this case,  $\mathbf{a} \in \{0,1\}^n$ , and we may associate with  $\mathbf{a}$  the set  $F = \{i | \alpha_i = 1\}$ .

#### Squarefree momomial ideals

Let  $K[X] = K[x_1, ..., x_n]$  be a polynomial ring over a field K. For  $\mathbf{a} = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ , set  $x^{\mathbf{a}} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ .

We call  $x^{\mathbf{a}}$  squarefree if  $x^{\mathbf{a}}$  is not divided by any square. In this case,  $\mathbf{a} \in \{0,1\}^n$ , and we may associate with  $\mathbf{a}$  the set  $F = \{i \mid \alpha_i = 1\}$ .

Let  $I=(x^{\mathbf{a}_1},...,x^{\mathbf{a}_m})$  be a squarefree monomials, i.e.  $x^{\mathbf{a}_1},...,x^{\mathbf{a}_m}$  are squarefree. Let  $F_1,...,F_m$  be the sets associated with  $\mathbf{a}_1,...,\mathbf{a}_m$ . Then I is determined by the hypergraph  $\Gamma=\{F_1,...,F_m\}$ . We call I the edge ideal of  $\Gamma$ .

#### Squarefree momomial ideals

Let  $K[X] = K[x_1, ..., x_n]$  be a polynomial ring over a field K. For  $\mathbf{a} = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$ , set  $x^{\mathbf{a}} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ .

We call  $x^{\mathbf{a}}$  squarefree if  $x^{\mathbf{a}}$  is not divided by any square. In this case,  $\mathbf{a} \in \{0,1\}^n$ , and we may associate with  $\mathbf{a}$  the set  $F = \{i \mid \alpha_i = 1\}$ .

Let  $I=(x^{\mathbf{a}_1},...,x^{\mathbf{a}_m})$  be a squarefree monomials, i.e.  $x^{\mathbf{a}_1},...,x^{\mathbf{a}_m}$  are squarefree. Let  $F_1,...,F_m$  be the sets associated with  $\mathbf{a}_1,...,\mathbf{a}_m$ . Then I is determined by the hypergraph  $\Gamma=\{F_1,...,F_m\}$ . We call I the edge ideal of  $\Gamma$ .

This gives a correspondence between squarefree ideals and hypergraphs.

Let 
$$I = (x_1x_2, x_1x_3, x_2x_3) = (x^{\mathbf{a}_1}, x^{\mathbf{a}_2}, x^{\mathbf{a}_3}),$$
  
where  $\mathbf{a}_1 = (1, 1, 0), \ \mathbf{a}_2 = (1, 0, 1), \ \mathbf{a}_3 = (0, 1, 1).$ 

Let 
$$I = (x_1x_2, x_1x_3, x_2x_3) = (x^{\mathbf{a}_1}, x^{\mathbf{a}_2}, x^{\mathbf{a}_3}),$$
  
where  $\mathbf{a}_1 = (1, 1, 0), \ \mathbf{a}_2 = (1, 0, 1), \ \mathbf{a}_3 = (0, 1, 1).$ 

Then  $F_1 = \{1, 2\}, F_2 = \{1, 3\}, F_3 = \{2, 3\}.$ 

Let 
$$I = (x_1x_2, x_1x_3, x_2x_3) = (x^{\mathbf{a}_1}, x^{\mathbf{a}_2}, x^{\mathbf{a}_3}),$$
  
where  $\mathbf{a}_1 = (1, 1, 0), \ \mathbf{a}_2 = (1, 0, 1), \ \mathbf{a}_3 = (0, 1, 1).$ 

Then  $F_1 = \{1, 2\}, F_2 = \{1, 3\}, F_3 = \{2, 3\}.$ Hence I is the edge ideal of the graph  $\Gamma = \{F_1, F_2, F_3\}$ :



## Symbolic powers

Let I be the edge ideal of a hypergraph  $\Gamma$ .

Let  $C_1, ..., C_s$  be the minimal covers of  $\Gamma$ . Then I has the decomposition

$$I = P_1 \cap \cdots \cap P_s$$

where  $P_j := (x_i | i \in C_j), j = 1, ..., s$ .

## Symbolic powers

Let I be the edge ideal of a hypergraph  $\Gamma$ .

Let  $C_1, ..., C_s$  be the minimal covers of  $\Gamma$ . Then I has the decomposition

$$I = P_1 \cap \cdots \cap P_s$$

where  $P_j := (x_i | i \in C_j), j = 1, ..., s$ .

The k-th symbolic power of I is the ideal

$$I^{(k)}:=P_1^k\cap\cdots\cap P_s^k.$$

This notion has its origin in Algebraic Geometry.

## Symbolic powers

Let I be the edge ideal of a hypergraph  $\Gamma$ .

Let  $C_1, ..., C_s$  be the minimal covers of  $\Gamma$ . Then I has the decomposition

$$I = P_1 \cap \cdots \cap P_s$$

where  $P_j := (x_i | i \in C_j), j = 1, ..., s$ .

The k-th symbolic power of I is the ideal

$$I^{(k)}:=P_1^k\cap\cdots\cap P_s^k.$$

This notion has its origin in Algebraic Geometry.

We always have  $I^k \subseteq I^{(k)}$ .

# Mengerian hypergraph

**Problem**: When  $I^k = I^{(k)}$  for all  $k \ge 1$ ?

# Mengerian hypergraph

**Problem**: When  $I^k = I^{(k)}$  for all  $k \ge 1$ ?

There are the following membership criteria:

**Lemma**:  $x^{\mathbf{a}} \in I^k$  iff  $\nu(\mathbf{a}) \geq k$ .

**Lemma**:  $x^{\mathbf{a}} \in I^{(k)}$  iff  $\tau(\mathbf{a}) \geq k$ .

# Mengerian hypergraph

**Problem**: When  $I^k = I^{(k)}$  for all  $k \ge 1$ ?

There are the following membership criteria:

**Lemma**:  $x^{\mathbf{a}} \in I^k$  iff  $\nu(\mathbf{a}) \geq k$ .

**Lemma**:  $x^{\mathbf{a}} \in I^{(k)}$  iff  $\tau(\mathbf{a}) \geq k$ .

One calls  $\Gamma$  Mengerian if  $\nu(\mathbf{a}) = \tau(\mathbf{a}) \ \forall \ \mathbf{a} \in \mathbb{N}^n$ .

#### Herzog-Hibi-Tr-Zheng:

 $I^k = I^{(k)}$  for all  $k \ge 1$  iff  $\Gamma$  is a Mengerian hypergraph.

#### Integral closures

Let I be an ideal in a ring R. The integral closure of I is defined as the ideal

$$\bar{I} := \{ f \in R | \exists f^d + g_1 y^{d-1} + \dots + g_d = 0, g_j \in I^j \}.$$

This notion has its origin also in Algebraic Geometry.

#### Integral closures

Let I be an ideal in a ring R. The integral closure of I is defined as the ideal

$$\bar{I} := \{ f \in R | \exists f^d + g_1 y^{d-1} + \dots + g_d = 0, g_j \in I^j \}.$$

This notion has its origin also in Algebraic Geometry.

For a squarefree monomial ideal I, we have  $I^k \subseteq \overline{I^k} \subseteq I^{(k)}$ .

Problem: When do we have equality in the above inequalities?



# Fulkersonian hypergraph

Recall that  $\nu(\mathbf{a}) \leq \nu^*(\mathbf{a}) = \tau^*(\mathbf{a}) \leq \tau(\mathbf{a})$ .

**Lemma**.  $x^{\mathbf{a}} \in \overline{I^k}$  iff  $\tau^*(\mathbf{a}) \geq k$ .

# Fulkersonian hypergraph

Recall that  $\nu(\mathbf{a}) \leq \nu^*(\mathbf{a}) = \tau^*(\mathbf{a}) \leq \tau(\mathbf{a})$ .

**Lemma**.  $x^{\mathbf{a}} \in \overline{I^k}$  iff  $\tau^*(\mathbf{a}) \geq k$ .

One calls  $\Gamma$  Fulkersonian if  $\tau^*(\mathbf{a}) = \tau(\mathbf{a}) \ \forall \ \mathbf{a} \in \mathbb{N}^n$ .

**Tr**:  $\overline{I^k} = I^{(k)}$  for all  $k \ge 1$  iff  $\Gamma$  is Fulkersonian.

One may expect that

$$I^k = \overline{I^k}$$
 for all  $k \ge 1$  iff  $\nu(\mathbf{a}) = \tau^*(\mathbf{a}) \ \forall \ \mathbf{a} \in \mathbb{N}^n$ ?

# Fulkersonian hypergraph

Recall that  $\nu(\mathbf{a}) \leq \nu^*(\mathbf{a}) = \tau^*(\mathbf{a}) \leq \tau(\mathbf{a})$ .

**Lemma**.  $x^{\mathbf{a}} \in \overline{I^k}$  iff  $\tau^*(\mathbf{a}) \geq k$ .

One calls  $\Gamma$  Fulkersonian if  $\tau^*(\mathbf{a}) = \tau(\mathbf{a}) \ \forall \ \mathbf{a} \in \mathbb{N}^n$ .

**Tr**:  $\overline{I^k} = I^{(k)}$  for all  $k \ge 1$  iff  $\Gamma$  is Fulkersonian.

One may expect that

$$I^k = \overline{I^k}$$
 for all  $k \ge 1$  iff  $\nu(\mathbf{a}) = \tau^*(\mathbf{a}) \ \forall \ \mathbf{a} \in \mathbb{N}^n$ ?

This is not true. So what is the condition for  $I^k = \overline{I^k}$ .

### Integer round-down property

Let  $\lfloor \nu^*(\mathbf{a}) \rfloor$  denote the integer round-down of  $\nu^*(\mathbf{a})$ . Then  $\nu(\mathbf{a}) \leq \lfloor \nu^*(\mathbf{a}) \rfloor \leq \nu^*(\mathbf{a})$ .

**Lemma**:  $x^{\mathbf{a}} \in \overline{I^k}$  iff  $\tau^*(\mathbf{a}) \geq k$  iff  $\lfloor \nu^*(\mathbf{a}) \rfloor \geq k$ .

### Integer round-down property

Let  $\lfloor \nu^*(\mathbf{a}) \rfloor$  denote the integer round-down of  $\nu^*(\mathbf{a})$ . Then  $\nu(\mathbf{a}) \leq \lfloor \nu^*(\mathbf{a}) \rfloor \leq \nu^*(\mathbf{a})$ .

**Lemma**:  $x^{\mathbf{a}} \in \overline{I^k}$  iff  $\tau^*(\mathbf{a}) \ge k$  iff  $\lfloor \nu^*(\mathbf{a}) \rfloor \ge k$ .

We say that  $\Gamma$  has the integer round-down property if  $\nu(\mathbf{a}) = \lfloor \nu^*(\mathbf{a}) \rfloor$  for all  $\mathbf{a} \in \mathbb{N}^n$ .

**Tr**:  $I^k = \overline{I^k}$  for all  $k \ge 1$  iff  $\Gamma$  has the integer round-down property.

#### **Applications**

**Combinatorics**: The above classes of hypergraphs were studied already in the 70' by Berge, Fulkerson, Lovasz, Schrijver, Seymour, Trotter, etc.

**Algebra**: The corresponding properties of monomial ideals have been studied only since the 90'.

#### **Applications**

**Combinatorics**: The above classes of hypergraphs were studied already in the 70' by Berge, Fulkerson, Lovasz, Schrijver, Seymour, Trotter, etc.

**Algebra**: The corresponding properties of monomial ideals have been studied only since the 90'.

#### Consequences of the relationship:

- 1. Several new results on monomial ideals can be recovered by earlier results on hypergraphs.
- 2. New classes of monomial ideals or hypergraphs can be discovered by means of combinatorics or algebra, respectively.