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Squarefree Monomial Ideals in Algebra
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This bridge is too big. I am a passenger passing the bridge a few
times and could see only a glimpse of its magnificence.
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Hypergraphs

A hypergraph Γ is a collection of subsets of a set V with no
inclusions among them. One may view the elements of V as
vertices and the subsets of Γ as edges of the hypergraph.

Example: If every edges has two vertices, then Γ is a graph.

Hypergraphs play an impotant role in Combinatorics and in dealing
with real discrete problems.

Example: Social networks.
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Matrix presentation

Let V = {1, ..., n} and Γ = {F1, ...,Fm}.

We may identify Fi with the incidence vector ai = (αi1, ..., αin)
(column vector), where

αij =

{
1 if j ∈ Fi ,
0 if j 6∈ Fi .

Then Γ is uniquely determined by the incidence matrix

M = (a1, ..., am).

This matrix presentation allows us to use tool of Combinatorial
Optimization to study hypergraphs.
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Cover

A (vertex) cover of Γ is a subset G ⊆ V such that G meets every
edge, i.e. G ∩ Fi 6= ∅ for all i .

The covering number of Γ is defined as

τ(Γ) := min{|G | | G is a cover of Γ}.

Let b be the incidence vector of G and 1n := (1, ..., 1) ∈ Nn. Then

|G | = 1n · b.
G ∩ Fi 6= ∅ iff ai · b ≥ 1.

Proposition: τ(Γ) = min{1n · b| b ∈ Nn,MT · b ≥ 1m}.
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Matching

A matching of Γ is a family S of disjoint edges.

The matching number of Γ is defined as

ν(Γ) := max{|S || S is a matching of Γ}.

Let c be the incidence vector of the index set {i | Fi ∈ S}. Then

|S | = 1m · c,
The edges of S are disjoint iff

∑
Fi∈S ai ≤ 1n iff M · c ≤ 1n.

Proposition: ν(Γ) = max{1m · c| c ∈ Nm,M · c ≤ 1n}.
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Example

Let Γ =
{
{1, 2}, {1, 3}, {2, 3}

}
:
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Γ has three minimal covers {1, 2}, {1, 3}, {2, 3}, hence τ(Γ) = 2.

Γ has three maximal matchings of one edge {1, 2}, {1, 3}, {2, 3},
hence ν(Γ) = 1.



König property

Every cover meets the edge of a matching at different vertices:

ν(Γ) ≤ τ(Γ).

Another point of view:

ν(Γ) ≤ max{1m · c| c ∈ Rm
+,M · c ≤ 1n}

= min{1n · b| b ∈ Rn
+,M

T · b ≥ 1m} ≤ τ(Γ).

where the middle equality follows from the duality of Linear
Programming.

If ν(Γ) = τ(Γ), one says that Γ has the König property.

König: Bipartite graphs have this property.
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Expanding Hypergraphs

To construct new hypergraphs one can expand a vertex v to k
vertices as follows:

1. Replacing v by k new vertices v1, ..., vk ,

2. Replacing every edge F containing v by k new edges
(F \ v) ∪ v1, ..., (F \ v) ∪ vk .

For a = (α1, ..., αn) ∈ Nn, we define Γa as the hypergraph obtained
from Γ by expanding every vertex i to αi vertices, i = 1, ..., n.
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Example

Let Γ =
{
{1, 2}, {1, 3}, {2, 3}

}
and a = (2, 1, 1).

Then Γa is obtained by expanding the vertex 1 to two vertices
11, 12:
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Fractional covering and matching

Set ν(a) := ν(Γa) and τ(a) := τ(Γa).

Lemma. For all a ∈ Nm we have

ν(a) = max{1m · c| c ∈ Nm,M · c 6 a},
τ(a) = min{a · b| b ∈ Nn,MT · b ≥ 1m}.

The fractional covering and matching numbers is defined by

ν∗(a) := max{1m · c| c ∈ Rm
+,M · c 6 a},

τ∗(a) := min{a · b| b ∈ Rn
+,M

T · b ≥ 1m}.

Proposition: ν(a) ≤ ν∗(a) = τ∗(a) ≤ τ(a).



Fractional covering and matching

Set ν(a) := ν(Γa) and τ(a) := τ(Γa).

Lemma. For all a ∈ Nm we have

ν(a) = max{1m · c| c ∈ Nm,M · c 6 a},
τ(a) = min{a · b| b ∈ Nn,MT · b ≥ 1m}.

The fractional covering and matching numbers is defined by

ν∗(a) := max{1m · c| c ∈ Rm
+,M · c 6 a},

τ∗(a) := min{a · b| b ∈ Rn
+,M

T · b ≥ 1m}.

Proposition: ν(a) ≤ ν∗(a) = τ∗(a) ≤ τ(a).



Fractional covering and matching

Set ν(a) := ν(Γa) and τ(a) := τ(Γa).

Lemma. For all a ∈ Nm we have

ν(a) = max{1m · c| c ∈ Nm,M · c 6 a},
τ(a) = min{a · b| b ∈ Nn,MT · b ≥ 1m}.

The fractional covering and matching numbers is defined by

ν∗(a) := max{1m · c| c ∈ Rm
+,M · c 6 a},

τ∗(a) := min{a · b| b ∈ Rn
+,M

T · b ≥ 1m}.

Proposition: ν(a) ≤ ν∗(a) = τ∗(a) ≤ τ(a).



Fractional covering and matching

Set ν(a) := ν(Γa) and τ(a) := τ(Γa).

Lemma. For all a ∈ Nm we have

ν(a) = max{1m · c| c ∈ Nm,M · c 6 a},
τ(a) = min{a · b| b ∈ Nn,MT · b ≥ 1m}.

The fractional covering and matching numbers is defined by

ν∗(a) := max{1m · c| c ∈ Rm
+,M · c 6 a},

τ∗(a) := min{a · b| b ∈ Rn
+,M

T · b ≥ 1m}.

Proposition: ν(a) ≤ ν∗(a) = τ∗(a) ≤ τ(a).



Squarefree momomial ideals

Let K [X ] = K [x1, ..., xn] be a polynomial ring over a field K .
For a = (α1, ..., αn) ∈ Nn, set xa := xα1

1 · · · xαn
n .

We call xa squarefree if xa is not divided by any square. In this
case, a ∈ {0, 1}n, and we may associate with a the set
F = {i | αi = 1}.

Let I = (xa1 , ..., xam) be a squarefree monomials, i.e. xa1 , ..., xam

are squarefree. Let F1, ...,Fm be the sets associated with a1, ..., am.
Then I is determined by the hypergraph Γ = {F1, ...,Fm}.
We call I the edge ideal of Γ.

This gives a correspondence between squarefree ideals and
hypergraphs.
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Example

Let I = (x1x2, x1x3, x2x3) = (xa1 , xa2 , xa3),
where a1 = (1, 1, 0), a2 = (1, 0, 1), a3 = (0, 1, 1).

Then F1 = {1, 2}, F2 = {1, 3}, F3 = {2, 3}.
Hence I is the edge ideal of the graph Γ = {F1,F2,F3}:
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Symbolic powers

Let I be the edge ideal of a hypergraph Γ.

Let C1, ...,Cs be the minimal covers of Γ.
Then I has the decomposition

I = P1 ∩ · · · ∩ Ps

where Pj := (xi | i ∈ Cj), j = 1, ..., s.

The k-th symbolic power of I is the ideal

I (k) := Pk
1 ∩ · · · ∩ Pk

s .

This notion has its origin in Algebraic Geometry.

We always have I k ⊆ I (k).
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Mengerian hypergraph

Problem: When I k = I (k) for all k ≥ 1?

There are the following membership criteria:

Lemma: xa ∈ I k iff ν(a) ≥ k.

Lemma: xa ∈ I (k) iff τ(a) ≥ k.

One calls Γ Mengerian if ν(a) = τ(a) ∀ a ∈ Nn.

Herzog-Hibi-Tr-Zheng:

I k = I (k) for all k ≥ 1 iff Γ is a Mengerian hypergraph.
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Integral closures

Let I be an ideal in a ring R. The integral closure of I is defined as
the ideal

I := {f ∈ R| ∃ f d + g1y
d−1 + · · ·+ gd = 0, gj ∈ I j}.

This notion has its origin also in Algebraic Geometry.

For a squarefree monomial ideal I , we have I k ⊆ I k ⊆ I (k).

Problem: When do we have equality in the above inequalities?
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Fulkersonian hypergraph

Recall that ν(a) ≤ ν∗(a) = τ∗(a) ≤ τ(a).

Lemma. xa ∈ I k iff τ∗(a) ≥ k.

One calls Γ Fulkersonian if τ∗(a) = τ(a) ∀ a ∈ Nn.

Tr: I k = I (k) for all k ≥ 1 iff Γ is Fulkersonian.

One may expect that

I k = I k for all k ≥ 1 iff ν(a) = τ∗(a) ∀ a ∈ Nn?

This is not true. So what is the condition for I k = I k .
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Integer round-down property

Let bν∗(a)c denote the integer round-down of ν∗(a). Then

ν(a) ≤ bν∗(a)c ≤ ν∗(a).

Lemma: xa ∈ I k iff τ∗(a) ≥ k iff bν∗(a)c ≥ k .

We say that Γ has the integer round-down property if
ν(a) = bν∗(a)c for all a ∈ Nn.

Tr: I k = I k for all k ≥ 1 iff Γ has the integer round-down property.
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Applications

Combinatorics: The above classes of hypergraphs were studied
already in the 70’ by Berge, Fulkerson, Lovasz, Schrijver, Seymour,
Trotter, etc.

Algebra: The corresponding properties of monomial ideals have
been studied only since the 90’.

Consequences of the relationship:

1. Several new results on monomial ideals can be recovered by
earlier results on hypergraphs.
2. New classes of monomial ideals or hypergraphs can be
discovered by means of combinatorics or algebra, respectively.
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