Relative homological algebra in categories of representations of quivers
A general overview of the Theory of Covers and Envelopes

Sergio Estrada
Universidad de Murcia
sestrada@um.es
Murcia, SPAIN
• R. Baer, Abelian groups which are direct summands of every containing group, *Bull. Amer. Math. Soc.* **46** (1940), 800-806.
• R. Baer, Abelian groups which are direct summands of every containing group, *Bull. Amer. Math. Soc.* 46 (1940), 800-806.

• R. Baer, Abelian groups which are direct summands of every containing group, *Bull. Amer. Math. Soc.* 46 (1940), 800-806.

• R. Baer, Abelian groups which are direct summands of every containing group, *Bull. Amer. Math. Soc.* 46 (1940), 800-806.

• R. Baer, Abelian groups which are direct summands of every containing group, *Bull. Amer. Math. Soc.* 46 (1940), 800-806.

From sixties to eighties:

- Fuchs and Warfield introduce the pure-injective envelopes.
- Enochs defines the torsion-free covers.
From sixties to eighties:

- Fuchs and Warfield introduce the pure-injective envelopes.
- Enochs defines the torsion-free covers.

General definition of covers and envelopes with respect to a certain class \mathcal{F}:
A abelian category and \mathcal{F} a class of objects closed under isomorphisms.

Definition

An \mathcal{F}-precover of M is a morphism

$\phi : F \to M$ such that $F \in \mathcal{F}$ and every diagram
A abelian category and \mathcal{F} a class of objects closed under isomorphisms.

Definition

An \mathcal{F}-precover of M is a morphism $\varphi: F \to M$ such that $F \in \mathcal{F}$ and every diagram
A abelian category and \mathcal{F} a class of objects closed under isomorphisms.

Definition

An \mathcal{F}-precover of M is a morphism $\varphi : F \to M$ such that $F \in \mathcal{F}$ and every diagram
A abelian category and \mathcal{F} a class of objects closed under isomorphisms.

Definition

An \mathcal{F}-precover of M is a morphism $\varphi : F \to M$ such that $F \in \mathcal{F}$ and every diagram
An \(\mathcal{F} \)-precover of \(M \) is a morphism
\[\varphi : F \to M \] such that \(F \in \mathcal{F} \) and every diagram

\[\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\end{array} \]
An abelian category and \(\mathcal{F} \) a class of objects closed under isomorphisms.

Definition

An \(\mathcal{F} \)-precover of \(M \) is a morphism \(\varphi : F \to M \) such that \(F \in \mathcal{F} \) and every diagram

\[
\begin{array}{ccc}
F' & \xrightarrow{\varphi} & F \\
\downarrow \varphi' & & \downarrow \\
F & & M
\end{array}
\]

can be completed commutatively, with \(F' \in \mathcal{F} \).

If \(\varphi \circ f = \varphi \Rightarrow f \) is an automorphism, \(\varphi \) is an \(\mathcal{F} \)-cover.

\(\mathcal{F} \)-(pre)envelopes are defined in a dual manner.

\(\mathcal{F} \): the class of flat modules, \(\mathcal{F} \)-cover = flat cover.

\(\mathcal{E} \): the class of injective modules, \(\mathcal{E} \)-envelope = injective envelope.
A abelian category and \mathcal{F} a class of objects closed under isomorphisms.

Definition

An \mathcal{F}-precover of M is a morphism $\varphi: F \to M$ such that $F \in \mathcal{F}$ and every diagram

$$
\begin{array}{c}
F' \\
\downarrow f \\
F \\
\end{array}
\xrightarrow{\varphi'}
\begin{array}{c}
M \\
\varphi \\
\end{array}
$$

can be completed commutatively, with $F' \in \mathcal{F}$.
A abelian category and \(\mathcal{F} \) a class of objects closed under isomorphisms.

Definition

An \(\mathcal{F} \)-precover of \(M \) is a morphism \(\varphi : F \to M \) such that \(F \in \mathcal{F} \) and every diagram

\[
\begin{array}{c}
F \\
\downarrow f \\
F'
\end{array}
\xrightarrow{\varphi} \begin{array}{c}
M \\
\downarrow \varphi' \\
\end{array}
\]

\(\Rightarrow \)

can be completed commutatively, with \(F' \in \mathcal{F} \).

If \(\varphi \circ f = \varphi \Rightarrow f \) is an automorphism, \(\varphi \) is an \(\mathcal{F} \)-cover.
A abelian category and \mathcal{F} a class of objects closed under isomorphisms.

Definition

An \mathcal{F}-precover of M is a morphism $\varphi : F \to M$ such that $F \in \mathcal{F}$ and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\downarrow f & & \downarrow \\
F' & \xrightarrow{\varphi'} & &
\end{array}
\]

can be completed commutatively, with $F' \in \mathcal{F}$.

If $\varphi \circ f = \varphi \Rightarrow f$ is an automorphism, φ is an \mathcal{F}-cover.

\mathcal{F}-(pre)envelopes are defined in a dual manner.

\mathcal{F}: the class of flat modules, \mathcal{F}-cover=flat cover.

\mathcal{E}: the class of injective modules, \mathcal{E}-envelope=injective envelope.
Flat cover conjecture: “Every module over an associative ring has a flat cover”.

It was known to be true:

- For modules over a left perfect ring.
- For modules over a Prüfer domain, torsion-free=flat.

Flat cover conjecture: “Every module over an associative ring has a flat cover”.

It was known to be true:

- For modules over a left perfect ring.
- For modules over a Prüfer domain, torsion-free=flat.

Before of the later resolution to the conjecture, the most significant advance was obtained by:

Positive solution to the conjecture:

Enochs’ proof:

L. Salce, Cotorsion theories for abelian groups, Symposia Mathematica, Vol. 23 (1979), 11-32.

Categories without enough projectives: sheaves of O_X-modules over a topological space, quasi-coherent sheaves on a scheme.

Categories without enough projectives: sheaves of O_X-modules over a topological space, quasi-coherent sheaves on a scheme.

Quasi-coherent sheaves?

- Existence theorems of covers in categories without enough projectives.

- $\mathcal{Qco}(X)$ is locally κ-presentable.
For a given \mathcal{F} in \mathcal{A},

$$\mathcal{F}^\perp = \{ C \in \text{Ob}(\mathcal{A}) : \text{Ext}^1(F, C) = 0, \forall F \in \mathcal{F} \}.$$

Analogously $\perp \mathcal{F}$ will denote

$$\perp \mathcal{F} = \{ G \in \text{Ob}(\mathcal{A}) : \text{Ext}^1(G, D) = 0, \forall D \in \mathcal{F} \}.$$

The pair $(\mathcal{F}, \mathcal{F}^\perp)$ is cogenerated by a set T if:

$$C \in \mathcal{F}^\perp \iff \text{Ext}^1(F, C) = 0 \ \forall F \in T.$$

Definition

(\mathcal{F}, C) is a cotorsion theory if

$\mathcal{F}^\perp = C$ and $\perp C = \mathcal{F}$.
1. The pair of classes

$$(\mathcal{Proj}, R\text{-Mod}) \text{ and } (R\text{-Mod}, \text{Inj})$$

are cotorsion theories, \mathcal{Proj} the class of projective modules and Inj the class of injective modules. $(R\text{-Mod}, \text{Inj})$ is cogenerated by the set $\{R/I: I \leq_R R\}$.

2. The pair $(\mathcal{F}, \mathcal{C})$ composed by flat modules and cotorsion modules (flat cotorsion theory).
Theorem

Let \mathcal{A} be a Grothendieck category and \mathcal{F} a class of objects of \mathcal{A} closed under direct sums, extensions and well ordered direct limits. $(\mathcal{F}, \mathcal{F}^\perp)$ cogenerated by a set $\Rightarrow \forall M \in \text{Ob}(\mathcal{A})$ there exists an \mathcal{F}-cover and an \mathcal{F}^\perp-envelope.
Proof: Every object in a Grothendieck category is small.

Lemma

There exists an ordinal number λ such that $\forall \lambda' \geq \lambda$ and for every well ordered inductive system $(E_\alpha, f_{\beta\alpha})$, $\alpha < \lambda'$ of injective objects of C, $\lim_{\alpha < \lambda'} E_\alpha$ is also injective $\forall \lambda' \geq \lambda$.

Proposition

For every object $M \in \text{Ob}(C)$ there exists an ordinal number λ such that $\forall \lambda' \geq \lambda$

$$\text{Ext}^n(M, \lim_{\alpha < \lambda'} M_\alpha) \cong \lim_{\alpha < \lambda'} \text{Ext}^n(M, M_\alpha),$$

for every w. o. inductive system $(M_\alpha, f_{\beta\alpha})$, $\alpha < \lambda'$ in C.
There is another proof without using homological methods, by means of “The Small Object Argument”

by using a more general version which appears in

So in any case everything reduces to prove that the pair \((\mathcal{F}, \mathcal{F}^\perp)\) is cogenerated by a set.
Lemma (Eklof)

Let \mathcal{A} be an abelian category with direct limits and A, C objects of \mathcal{A}. Let us suppose that

1. $A = \bigcup_{\alpha<\lambda} A_\alpha$ for an ordinal number λ
2. $\text{Ext}^1(A_0, C) = 0$ and $\text{Ext}^1(A_{\alpha+1}/A_\alpha, C) = 0$ for every $\alpha < \lambda$.

Then $\text{Ext}^1(A, C) = 0$.

Proposition

Let $F \in \mathcal{F}$ and $x \in F$. Suppose there exists a cardinal \aleph and $S \subseteq F$ such that

1. $x \in S$, $|S| \leq \aleph$
2. $S, F/S \in \mathcal{F}$.

Then the pair $(\mathcal{F}, \mathcal{F}^\perp)$ is cogenerated by a set.
Representations of quivers

A quiver Q is a directed graph.

A path p of Q is a sequence of arrows. If $t(p) = i(q)$ we get the path qp.

$P(Q)_v$, (left) path tree associated to Q with root in v: is a quiver whose vertices are the paths p of Q beginning in v and the arrows the pairs (p, ap).

A representation by modules of Q is a functor $X : Q \to R$-Mod. A morphism between X and Y is a natural transformation.

$(Q, R$-Mod$)$ is the family of representations by modules of a quiver Q, it is a Grothendieck category with enough projectives.
RQ (path algebra of Q) is the free R-module whose base are the paths p of Q, and

$$q \cdot p = \begin{cases}
q p & \text{if } t(p) = i(q) \\
0 & \text{in other case}
\end{cases}$$

If Q has a finite number of vertices, RQ has identity

$$1 = v_1 + \cdots + v_n,$$

if not is a ring with local units.

The categories $(Q, R\text{-Mod})$ and $RQ\text{-Mod}$ are equivalent.
Quasi-coherent \mathcal{R}-modules

$Q = (V, E)$ is a quiver.
\mathcal{R} is a representation of Q in the category of rings, that is, for each $v \in V$ we have a ring $\mathcal{R}(v)$ and for an arrow $a : v \to w \in E$ a homomorphism of rings

$$\mathcal{R}(a) : \mathcal{R}(v) \to \mathcal{R}(w).$$

An \mathcal{R}-module M is an $\mathcal{R}(v)$-module $M(v)$ for $v \in V$ and an $\mathcal{R}(v)$-morphism $M(a) : M(v) \to M(w)$ for an arrow $a : v \to w$.
M is quasi-coherent if for each edge a the morphism

$$\mathcal{R}(w) \otimes_{\mathcal{R}(v)} M(v) \to M(w)$$

is an $\mathcal{R}(w)$-isomorphism.

The category of quasi-coherent \mathcal{R}-modules is cocomplete with exact direct limits and abelian if $\mathcal{R}(w)$ is a flat $\mathcal{R}(v)$-module for $v \to w$.
Consider quasi-coherent sheaves over \((X, \mathcal{O}_X)\).

If \(\mathcal{U}\) are the affine opens \(U \subseteq X\), a quasi-coherent sheaf over \((X, \mathcal{O}_X)\)
(or a quasi-coherent \(\mathcal{O}_X\)-module) is uniquely determined by
Consider quasi-coherent sheaves over \((X, O_X)\).
If \(\mathcal{U}\) are the affine opens \(U \subseteq X\), a quasi-coherent sheaf over \((X, O_X)\) (or a quasi-coherent \(O_X\)-module) is uniquely determined by

- An \(O(U)\)-module \(M_U\) for each \(U\)

\[\text{Maps } M_U \to M_V \text{ if } V \subseteq U, V, U \in U\]

\[\text{The compatibility condition, if } W \subseteq V \subseteq U, (W, V, U) \in U, \text{ then } M_U \circ @ R M_V - M_W \text{ is commutative.}\]
Consider quasi-coherent sheaves over \((X, O_X)\).

If \(\mathcal{U}\) are the affine opens \(U \subseteq X\), a quasi-coherent sheaf over \((X, O_X)\) (or a quasi-coherent \(O_X\)-module) is uniquely determined by:

- An \(O(U)\)-module \(M_U\) for each \(U\)
- Maps \(M_U \rightarrow M_V\) if \(V \subseteq U\), \(V, U \in \mathcal{U}\) satisfying

\[
\begin{align*}
\text{i) } & \quad & O(V) \otimes O(U) M_U & \rightarrow M_V \\
\text{ii) } & \quad & \text{The compatibility condition, if } W \subseteq V \subseteq U, \quad (W, V, U \in \mathcal{U}), \text{ then } M_U \otimes O(W) & \rightarrow M_V - M_W \text{ is commutative.}
\end{align*}
\]
Consider quasi-coherent sheaves over \((X, O_X)\).
If \(\mathcal{U}\) are the affine opens \(U \subseteq X\), a quasi-coherent sheaf over \((X, O_X)\) (or a quasi-coherent \(O_X\)-module) is uniquely determined by

- An \(O(U)\)-module \(M_U\) for each \(U\)
- Maps \(M_U \rightarrow M_V\) if \(V \subseteq U, V, U \in \mathcal{U}\) satisfying

i) \(O(V) \otimes_{O(U)} M_U \rightarrow M_V\) is an isomorphism \(\forall V \subseteq U\)
Consider quasi-coherent sheaves over \((X, O_X)\).
If \(\mathcal{U}\) are the affine opens \(U \subseteq X\), a quasi-coherent sheaf over \((X, O_X)\)
(or a quasi-coherent \(O_X\)-module) is uniquely determined by
- An \(O(U)\)-module \(M_U\) for each \(U\)
- Maps \(M_U \to M_V\) if \(V \subseteq U\), \(V, U \in \mathcal{U}\) satisfying
 i) \(O(V) \otimes_{O(U)} M_U \to M_V\) is an isomorphism \(\forall V \subseteq U\)
 ii) The compatibility condition,
if \(W \subseteq V \subseteq U\), \((W, V, U \in \mathcal{U})\), then

\[
\begin{array}{ccc}
M_U & \longrightarrow & M_V \\
\downarrow & & \downarrow \\
M_V & \longrightarrow & M_W
\end{array}
\]

is commutative.
Proposition

For M a right R-module and N a left R-module, the tensor product $M \otimes_R N$ is the \mathbb{Z}-module

$$(\mathbb{Z}(v) = \mathbb{Z}, \forall v \in V \text{ and } \mathbb{Z}(a) = id_{\mathbb{Z}} \text{ for all } a \in E)$$

such that

$$M \otimes_R N(v) = M(v) \otimes_R N(v),$$

with $M \otimes_R N(a)$ the obvious map.

$\diamond R F$ is flat $\overset{\text{def}}{\iff} \quad - \otimes_R F$ is exact.

$\diamond F$ will denote the class of all flat quasi-coherent R-modules.

Proposition

\(Q = (V, E) \) is a quiver, and \(M \) a quasi-coherent \(R \)-module over \(Q \).
Let \(\kappa \) be an infinite cardinal such that \(\kappa \geq |\mathcal{R}(v)| \) \(\forall v \in V \) and \(\kappa \geq |E|, |V| \).
Let \(X_v \subseteq M(v) \) be subsets with \(|X_v| \leq \kappa \) \(\forall v \in V \).
There exits a quasi-coherent submodule \(M' \subseteq M \) with
\begin{enumerate}
 \item \(M'(v) \subseteq M(v) \) pure, \(\forall v \in V \)
 \item \(X_v \subseteq M'(v), \forall v \in V \) and
 \item \(|M'| \leq \kappa \).
\end{enumerate}
Corollary (Gabber)

The category of quasi-coherent \(\mathcal{R} \)-modules is locally \(\kappa \)-presentable.

Theorem

Every quasi-coherent \(\mathcal{R} \)-module has a flat cover and a cotorsion envelope.

Corollary

For a given scheme \((X, O_X) \), every quasi-coherent sheaf on \(O_X \) admits a flat cover and a cotorsion envelope.
Gorenstein categories

\(\mathcal{A} \) Grothendieck category.

Definition

\[X \in Ob(\mathcal{A}) \]

\[pd \ X \leq n \Leftrightarrow Ext^i(X, -) = 0 \text{ for } i \geq n + 1. \]

\[FPD(\mathcal{A}) = \sup\{pd \ X : \forall X, \ pd \ X < \infty\} \]

\[FID(\mathcal{A}) = \sup\{id \ X : \forall X, \ id \ X < \infty\}. \]

Definition

We will say that \(\mathcal{A} \) is a Gorenstein category if the following hold:

1) For any object \(L \) of \(\mathcal{A} \), \(pd \ L < \infty \) if and only if \(id \ L < \infty \).

2) \(FPD(\mathcal{A}) < \infty \) and \(FID(\mathcal{A}) < \infty \).

3) \(\mathcal{A} \) has a generator \(L \) such that \(pd \ L < \infty \).
Definition

E is Gorenstein injective if there exists an exact complex

\[\cdots \rightarrow E_{-1} \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \]

such that \(E = \text{Ker} \ (E_0 \rightarrow E_1) \) *and it is*

\(\text{Hom}(U, -) \)-exact for all injective *U.*

Dually we define Gorenstein projective objects.

Definition

Gpd(X) = *n* *if the first syzygy of* X *that is Gorenstein projective is the* *n*-th one *and* Gpd(X) = \(\infty \) *if there is no such syzygy.*

\[\text{glGpd}(\mathcal{A}) = \sup \{ \text{Gpd}(X) : X \in \text{Ob}(\mathcal{A}) \} \]

Then also define Gid(Y) and glGid(\mathcal{A}).
\[\mathcal{L} = \{ X \in \text{Ob}(\mathcal{A}) : \text{id} X < \infty \} \]

Theorem

If \((\mathcal{A}, \mathcal{L})\) is a Gorenstein category then

1. \((\mathcal{L}, \mathcal{L}^\perp)\) is a cotorsion theory.
2. \(\mathcal{L}^\perp\) is the class of Gorenstein injective objects of \(\mathcal{A}\).
3. *For Each* \(M \in \text{Ob}(\mathcal{A})\) *has a special* \(\mathcal{L}\)-*precover and a special* \(\mathcal{L}^\perp\)-*preenvelope (so \((\mathcal{L}, \mathcal{L}^\perp)\) *is a complete and hereditary cotorsion theory*).

If \(\text{FID}(\mathcal{A}) = n\) then \(\text{Gid}(Y) \leq n\) for all objects \(Y\) of \(\mathcal{A}\).
Theorem

If \((\mathcal{A}, \mathcal{L})\) be a Gorenstein category of dimension at most \(n\) having enough projectives. Then for an object \(C\) of \(\mathcal{A}\) the following are equivalent:

1) \(C\) is an \(n\)-th syzygy.
2) \(C \in \perp \mathcal{L}\).
3) \(C\) is Gorenstein projective.

As a consequence we get that \(\text{gl}\text{Gpd}(\mathcal{A}) \leq n\) and that \((\perp \mathcal{L}, \mathcal{L})\) is a complete hereditary cotorsion pair.
A Grothendieck category with enough projectives.

Theorem

Let \mathcal{A} be a Grothendieck category with enough projectives. Then the following are equivalent:

1) \mathcal{A} is Gorenstein.
2) $\text{glGpd}(\mathcal{A}) < \infty$ and $\text{glGid}(\mathcal{A}) < \infty$.

Moreover, if (1) (or (2)) holds we have

$$\text{FID}(\mathcal{A}) = \text{FPD}(\mathcal{A}) = \text{glGpd}(\mathcal{A}) = \text{glGid}(\mathcal{A}).$$
Gext^i functors

A Gorenstein category.

- For a given Y there exists a \textit{Gorenstein injective resolution}, that is an exact sequence

$$0 \to Y \to G_0 \to G_1 \to \cdots$$

such that $\text{Hom}(-, G)$ leaves the sequence exact, for all Gorenstein injective G.

- We define right derived functors $\text{Gext}^i(X, Y), i \geq 0$ of Hom by using Gorenstein injective resolutions of Y.
A Gorenstein category with $gl\text{Gid}(\mathcal{A}) = n$.

Tate cohomology functors $\hat{\text{Ext}}^i(X, Y), i \in \mathbb{Z}$

- The n-th cosyzygy of Y, G, is Gorenstein injective, so there exists

 $$E : \cdots \to E^{-1} \to E^0 \to E^1 \to \cdots$$

 with $G = \text{Ker}(E^0 \to E^1)$, such that

 $$\text{Hom}(U, E)$$

 is exact, U injective.

- E is unique up to homotopy

 $$\hat{\text{Ext}}^i(X, Y) \overset{\text{def}}{=} i\text{-th cohomology groups of } \text{Hom}(X, E)$$

Proposition

If \(\mathcal{A} \) is a Gorenstein category of dimension at most \(n \) then for all objects \(X \) and \(Y \) of \(\mathcal{A} \) there exist natural exact sequences

\[
0 \to \text{Gext}^1(X, Y) \to \text{Ext}^1(X, Y) \to \text{Ext}^1(X, Y) \to \text{Gext}^2(X, Y) \to \cdots \to \text{Gext}^n(X, Y) \to \text{Ext}^n(X, Y) \to \text{Ext}^n(X, Y) \to 0.
\]
$X \subseteq \mathbb{P}^n(A)$ closed subscheme.
X locally Gorenstein scheme (so $\mathcal{R}(\nu)$ is Gorenstein ring, i.e.,
commutative noetherian and $\text{id } \mathcal{R}(\nu) < \infty, \forall \nu$).

Theorem

$\mathcal{Qco}(X)$ is a Gorenstein category.
Projective and injective model structure on Gorenstein categories

Theorem

(Hovey). If \((\mathcal{A}, \mathcal{L})\) is a Gorenstein category then there is a cofibrantly generated model structure on \(\mathcal{A}\) with \(\mathcal{L}\) the full subcategory of trivial objects and such that the fibrant objects are the Gorenstein injective objects.

If \(\mathcal{A}\) has enough projectives then there is a cofibrantly generated model structure on \(\mathcal{A}\) with \(\mathcal{L}\) the trivial objects and such that the cofibrant objects are the Gorenstein projective objects.