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Definition of infinite-dimensional vector bundle

Theorem (Serre’1955)
Finite dimensional vector bundles on the affine scheme Spec(R)
correspond 1-1 to finitely generated projective R-modules.

Drinfeld’2006
V. Drinfeld. Infinite-dimensional vector bundles in algebraic geometry:
an introduction. The Unity of Mathematics, Birkhäuser, Boston 2006,
263-304.

What is the correct definition of an (infinite-dimensional) vector
bundle on a scheme X?
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Proposed answers

Drinfeld’2006
Let X be a scheme. A quasi-coherent sheaf of OX -modules F

is a vector bundle on X if for each open affine subset Spec(R)⊆ X ,
the R-module of sections Γ(Spec(R),F) is projective.

’Slightly different definition’ [Drinfeld’06,
E.-Guil-Prest-Trlifaj]
Replace ’projective’ by ’flat Mittag-Leffler’ above.
Then F is called the Drinfeld vector bundle.

Gillespie’2007
Replace ’projective’ by ’flat’.
Then F is the flat quasi-coherent sheaf.
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The classes of modules involved

• P the class of all projective modules
( = direct summands of free modules = the modules P such that
the functor HomR(P,−) is exact).

• F the class of all flat modules ( = direct limits of free modules =
the modules F such that the functor F ⊗R− is exact).

• L the class of all Mittag-Leffler modules, i.e., the modules M such
that the canonical map

M⊗R ∏
i∈I

Mi →∏
i∈I

M⊗R Mi

is monic, for each family of R-modules (Mi | i ∈ I).

• D = F ∩L the class of all flat Mittag-Leffler modules.
(“projective modules with a human face”)
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Drinfeld’s main adventages for considering Flat
Mittag-Leffler modules

• “Unlike projectivity, the property of M being a flat Mittag–Leffler
module is a first-order property (in the sense of mathematical
logic) of R(N)⊗R M viewed as a module over EndRR(N)”.

• AC is not needed to prove that a vector space over a field is a flat
Mittag–Leffler module.
**but**
without AC, projectivity is not equivalent to being a direct
summand of a free module.
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Some well-known facts

• P ⊆D ⊆ F .

• If any two of these classes coincide, then all coincide.
This happens iff R is a right perfect ring
(i.e., R has dcc on principal left ideals).

• [Kaplansky’1958] The class P is classifiable:
Each module in P is a direct sum of countably generated
modules.

• The class F is not classifiable in case R is not right perfect
(e.g., F = all torsion-free groups in case R = Z).
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The ’sandwich’ class D

Theorem (Raynaud-Gruson’1971)
Let R be a ring and M a module. Then the following are equivalent:

• M is a flat Mittag-Leffler module (i.e., M ∈D).

• Every finite (or countable) subset of M is contained in a countably
generated projective submodule wich is pure in M.

Example (Azumaya-Facchini’1989)
D is the class of ℵ1-free groups for R = Z.
(A group is ℵ1-free if each of its countable subgroups is free).
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Closure properties

The classes P , D , and F are resolving classes closed under direct
summands and transfinite extensions.

Definition
Let C be a class in a Grothendieck category.
M is a transfinite extension of objects in C
in case there is a continuous increasing chain (Mα| α≤ λ) of
subobjects of M such that M = Mλ, and for each α < λ

Mα+1/Mα is isomorphic to an element of C .

Moreover, D and F are closed under pure submodules.
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Quasi-coherent sheaves via compatible systems
Theorem (Enochs, E.’2005)
There is an equivalence between the category Qco(X), and the
category of certain representations of the quiver QX = (V ,E), where

V are all open affine subsets of X , and there is an arrow
u→ v iff v ⊆ u.

We identify qc sheaves on X with compatible systems
of R(v)-modules, M = (M(v)| v ∈ V ), where R(v) = OX (v), and
systems of R(u)-morphisms M(u)→M(v) for u→ v ∈ E , satisfying

• R(v)⊗R(u) M(u)→M(v) is an isomorphism (u→ v ∈ E) and
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Particular instances

Vector bundles: M = (M(v)| v ∈ V ) consists of projective modules.

Drinfeld vector bundles: M consists of flat Mittag-Leffler modules.

Flat quasi-coherent sheaves: M consists of flat modules.
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Model Categories

Definition (Quillen)
A model category C has three classes of morphisms called fibrations,
cofibrations and weak equivalences:

1 2-out-of-3: if two of f , g, fg are weak equivalences, then so does
the third.

2 Retracts: the classes are closed under retracts.

3 Lifting Properties: each trivial cofibration (resp. cofibration) has
the left lifting property with respect to fibrations (resp. trivial
fibrations).

4 Factorizations:

f = β(f )α(f )

{
β(f ) triv. fib.
α(f ) cof. f = δ(f )γ(f )

{
δ(f ) fib.
γ(f ) triv. cof.
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Application of Model Categories

A : abelian category,

NOTATION

Ch(A) category of unbounded complexes.
D(A) derived category

The basic idea of [Quillen’1967] applied to A

Rather than working in the derived category D(A) directly,

consider model structures M on the category Ch(A) compatible with
all short exact sequences of A and where weak equivalences are the
homology isomorphisms.

Then we can identify D(A) and Ho(M ).
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Model structures in Ch(A)

Conclusion
It is important to construct model structures on the category of
complexes.

• Many results constructing model structures in Ch(A).

Model structures ⇔ Cotorsion pairs
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General definitions

A : Grothendieck category.

Definition

• For a class of objects C , let C⊥ = Ker Ext1(C ,−) and
⊥C = Ker Ext1(−,C ).

• (C ,C⊥) is a cotorsion pair if ⊥(C⊥) = C .

• Cotorsion pair cogenerated by X :
(⊥(X⊥),X⊥

)
.

• Complete cotorsion pairs: (C ,C⊥) is complete if for each
M ∈ A there exist short exact sequences

0−→ L−→ D −→M −→ 0

and
0−→M −→ L′ −→ D′ −→ 0

with D,D′ ∈ C and L,L′ ∈ C⊥.
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Hovey’s Theorem

Theorem (Hovey, 2002)

Let F , W and C be classes in A such that:

1 W is thick, that is, it is closed under retracts, and whenever two
out of three entries in a short exact sequence are in W , so is the
third.

2 (C ,F ∩W ) and (C ∩W ,F ) are complete cotorsion pairs (e.g. if
they are cogenerated by a set).

The there is a unique model structure on A such that C is the class of
cofibrant objects, F is the class of fibrant objects and W is the class
of trivial objects.
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Complexes in A

• Given a complex (X ,d)

. . .
dn+2−→ Xn+1

dn+1−→ Xn
dn−→ Xn−1→ . . .

we shall denote
• ZnX = Ker dn (n+1th-syzygy);
• BnX = Im dn+1;
• HnX = ZnX

BnX (nth-homology).

• The Hom-complex: Hom(X ,Y )
• Hom(X ,Y )n = ∏k∈Z Hom(Xk ,Yk+n)
• (fdH

n )k = fk dY
k+n− (−1)ndX

k fk−1.

• Exact complexes: E .
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Definition (Gillespie’04)

Let (C ,C⊥) be a cotorsion pair in A .

• An exact complex E in C(A) is a C⊥-complex if ZnE ∈ C⊥, for
each n ∈ Z.
C̃⊥ denote the class of all C⊥-complexes.

• A complex M = (Mn) in C(A) is a dg-C complex if each M→ E

is nullhomotopic for any complex E ∈ C̃⊥ and Mn ∈ C , for each
n ∈ Z.
dg C̃ denote the class of all dg-C complexes of objects in A .

• Dually we can define the classes C̃ and dg C̃⊥ of C -complexes
and dg-C⊥ complexes of objects in A .
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Notation and assumptions

• QX = (V ,E) a quiver associated to a scheme X ,

• κ an infinite cardinal such that κ≥ |V | for all v ∈ V .

• For each v ∈ V , Sv a class of ≤ κ–presented R(v)–modules,
Fv = ⊥(S⊥v ) is resolving, and

• C be the class of all qc sheaves M such that M(v) ∈ Fv for each
v ∈ V .

• Assume that C contains a generator for Qco(X).
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Theorem (Hovey’02,E.-Guil-Prest-Trlifaj)
Let X be a scheme.

There is an abelian model category structure on C(Qco(X))
in which the weak equivalences are the homology isomorphisms,
the cofibrations (resp. trivial cofibrations)
are the monomorphism with cokernels in dg C̃ (resp. C̃ ),
and the fibrations (resp. trivial fibrations)

are the epimorphisms whose kernels are in dg C̃⊥ (resp. C̃⊥).

Moreover, if every M ∈ Sv is a flat R(v)-module,
and M⊗R(v) N ∈ Sv for all M,N ∈ Sv ,
then the model category structure is monoidal.

Comments to the proof: Key point is to use the Hill Lemma to make
compatible all the individual filtrations,
first at the level of qc sheaves and then at the level of complexes of qc .
(The Hill Lemma was primarily used as a preparatory tool for
applications of Shelah’s Singular Compactness Theorem).
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First application: Locally projective model structure on C(Qco(X)).

Corollary (Enochs-E.-García Rozas’08; Sv = {R(v)})

If X is a scheme having enough vector bundles then there is a
monoidal model category structure on C(Qco(X)) such that
weak equivalences are homology isomorphisms, and cofibrations are
monomorphisms whose cokernels are dg-locally projective complexes
of vector bundles.

Corollary (Gillespie’07; Sv = a representative set of
≤ supv∈V |R(v)|-generated flat modules)
If X is a scheme having enough flats then there is a monoidal model
category structure on C(Qco(X)) such that weak equivalences are
homology isomorphisms, and cofibrations are monomorphisms whose
cokernels are dg-flat complexes of qc-sheaves.

Further cases
[E.-Guil-Prest-Trlifaj] ’Restricted’ Drinfeld vector bundles, etc.
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Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)
A class of modules C is deconstructible in case there is a cardinal κ

such that each M ∈ C is a transfinite extension of ≤ κ-presented
modules in C .

The crucial question: Is there a subset S ⊆D such that
D = ⊥(S⊥)? Equivalently: Is D deconstructible?

Theorem (Herbera-Trlifaj)
Let R be a ring. Then the following conditions are equivalent:

• The class D is deconstructible.

• R is a right perfect ring.

Theorem
The homotopy theory tools above apply to vector bundles and flat qc
sheaves, but not to Drinfeld vector bundles.
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Precovering classes
Definition (Enochs)
A class F is precovering if for each M there is a morphism
ϕ : F →M, such that F ∈ F and every diagram

F
ϕ // M

F ′

can be completed commutatively, with F ′ ∈ F .

Each class of the form ⊥E is precovering provided it is deconstructible.
In particular the classes P and F are precovering.

Theorem (Eklof-Shelah’03,E.-Guil-Prest-Trlifaj)
The class D ( = all ℵ1-free abelian groups) is not precovering for
R = Z.
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