2011 Institute for Research in Fundamental Sciences - IPM

Model category structures arising from Drinfeld vector bundles

based on a joint work with P. Guil, M. Prest and J. Trlifaj

Sergio Estrada Universidad de Murcia

sestrada@um.es Murcia, SPAIN

Outline

Motivation: Drinfeld's question

Infinite-dimensional vector bundles on a scheme

2 The classes of modules involved

Closure properties Quasi-coherent sheaves via compatible systems Particular instances

3 Model category structures on $Ch(\mathfrak{Q}co(X))$

Model Categories Cotorsion pairs Distinguished classes of complexes General Theorem Main applications Deconstructibility, and the case of Drinfeld vector bundles

Definition of infinite-dimensional vector bundle

Theorem (Serre'1955)

Finite dimensional vector bundles on the affine scheme Spec(R) correspond 1-1 to finitely generated projective *R*-modules.

Definition of infinite-dimensional vector bundle

Theorem (Serre'1955)

Finite dimensional vector bundles on the affine scheme Spec(R) correspond 1-1 to finitely generated projective *R*-modules.

Drinfeld'2006

V. Drinfeld. *Infinite-dimensional vector bundles in algebraic geometry: an introduction.* The Unity of Mathematics, Birkhäuser, Boston 2006, 263-304.

Definition of infinite-dimensional vector bundle

Theorem (Serre'1955)

Finite dimensional vector bundles on the affine scheme Spec(R) correspond 1-1 to finitely generated projective *R*-modules.

Drinfeld'2006

V. Drinfeld. *Infinite-dimensional vector bundles in algebraic geometry: an introduction.* The Unity of Mathematics, Birkhäuser, Boston 2006, 263-304.

What is the correct definition of an (infinite-dimensional) vector bundle on a scheme X?

Drinfeld'2006

Let X be a scheme. A quasi-coherent sheaf of \mathcal{O}_X -modules \mathfrak{F}

Drinfeld'2006

Let *X* be a scheme. A quasi-coherent sheaf of O_X -modules \mathfrak{F} is a vector bundle on *X* if for each open affine subset $Spec(R) \subseteq X$,

Drinfeld'2006

Let *X* be a scheme. A quasi-coherent sheaf of O_X -modules \mathfrak{F} is a vector bundle on *X* if for each open affine subset $Spec(R) \subseteq X$, the *R*-module of sections $\Gamma(Spec(R),\mathfrak{F})$ is projective.

Drinfeld'2006

Let *X* be a scheme. A quasi-coherent sheaf of O_X -modules \mathfrak{F} is a vector bundle on *X* if for each open affine subset $Spec(R) \subseteq X$, the *R*-module of sections $\Gamma(Spec(R),\mathfrak{F})$ is projective.

'Slightly different definition' [Drinfeld'06, E.-Guil-Prest-Trlifaj]

Drinfeld'2006

Let *X* be a scheme. A quasi-coherent sheaf of O_X -modules \mathfrak{F} is a vector bundle on *X* if for each open affine subset $Spec(R) \subseteq X$, the *R*-module of sections $\Gamma(Spec(R),\mathfrak{F})$ is projective.

'Slightly different definition' [Drinfeld'06, E.-Guil-Prest-Trlifaj]

Replace 'projective' by 'flat Mittag-Leffler' above. Then $\mathfrak F$ is called the Drinfeld vector bundle.

Drinfeld'2006

Let *X* be a scheme. A quasi-coherent sheaf of O_X -modules \mathfrak{F} is a vector bundle on *X* if for each open affine subset $Spec(R) \subseteq X$, the *R*-module of sections $\Gamma(Spec(R),\mathfrak{F})$ is projective.

'Slightly different definition' [Drinfeld'06, E.-Guil-Prest-Trlifaj]

Replace 'projective' by 'flat Mittag-Leffler' above. Then \mathfrak{F} is called the Drinfeld vector bundle.

Gillespie'2007

Drinfeld'2006

Let *X* be a scheme. A quasi-coherent sheaf of O_X -modules \mathfrak{F} is a vector bundle on *X* if for each open affine subset $Spec(R) \subseteq X$, the *R*-module of sections $\Gamma(Spec(R),\mathfrak{F})$ is projective.

'Slightly different definition' [Drinfeld'06, E.-Guil-Prest-Trlifaj]

Replace 'projective' by 'flat Mittag-Leffler' above. Then \mathfrak{F} is called the Drinfeld vector bundle.

Gillespie'2007

Replace 'projective' by 'flat'. Then \mathfrak{F} is the flat quasi-coherent sheaf.

- \mathcal{P} the class of all projective modules
 - (= direct summands of free modules = the modules *P* such that the functor $\text{Hom}_{R}(P, -)$ is exact).

- P the class of all projective modules

 (= direct summands of free modules = the modules P such that
 the functor Hom_R(P, -) is exact).
- *𝔅* the class of all flat modules (= direct limits of free modules = the modules *𝔅* such that the functor *𝔅* ⊗_{*𝔅*} − is exact).

- *P* the class of all projective modules
 (= direct summands of free modules = the modules *P* such that
 - the functor $\operatorname{Hom}_{R}(P, -)$ is exact).
- \mathcal{F} the class of all flat modules (= direct limits of free modules = the modules *F* such that the functor $F \otimes_R -$ is exact).
- *L* the class of all Mittag-Leffler modules, i.e., the modules *M* such that the canonical map

$$M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i$$

is monic, for each family of *R*-modules $(M_i | i \in I)$.

- \mathcal{P} the class of all projective modules (= direct summands of free modules = the modules *P* such that
 - the functor $\operatorname{Hom}_{R}(P, -)$ is exact).
- *𝔅* the class of all flat modules (= direct limits of free modules = the modules *𝔅* such that the functor *𝔅* ⊗_{*𝔅*} − is exact).
- *L* the class of all Mittag-Leffler modules, i.e., the modules *M* such that the canonical map

$$M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i$$

is monic, for each family of *R*-modules $(M_i | i \in I)$.

• $\mathcal{D} = \mathcal{F} \cap \mathcal{L}$ the class of all flat Mittag-Leffler modules.

- \mathcal{P} the class of all projective modules (= direct summands of free modules = the modules *P* such that
 - the functor $\operatorname{Hom}_{R}(P, -)$ is exact).
- \mathcal{F} the class of all flat modules (= direct limits of free modules = the modules *F* such that the functor $F \otimes_R -$ is exact).
- *L* the class of all Mittag-Leffler modules, i.e., the modules *M* such that the canonical map

$$M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i$$

is monic, for each family of *R*-modules $(M_i | i \in I)$.

• $\mathcal{D} = \mathcal{F} \cap \mathcal{L}$ the class of all flat Mittag-Leffler modules. ("projective modules with a human face")

 "Unlike projectivity, the property of *M* being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of *R*^(ℕ) ⊗_{*R*} *M* viewed as a module over End_{*R*}*R*^(ℕ)".

 "Unlike projectivity, the property of *M* being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of *R*^(ℕ) ⊗_R *M* viewed as a module over End_R*R*^(ℕ)".

• AC is not needed to prove that a vector space over a field is a flat Mittag–Leffler module.

 "Unlike projectivity, the property of *M* being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of *R*^(ℕ) ⊗_R *M* viewed as a module over End_R*R*^(ℕ)".

 AC is not needed to prove that a vector space over a field is a flat Mittag–Leffler module.
 but

 "Unlike projectivity, the property of *M* being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of *R*^(ℕ) ⊗_R *M* viewed as a module over End_R*R*^(ℕ)".

 AC is not needed to prove that a vector space over a field is a flat Mittag–Leffler module.
 but

without AC, projectivity is not equivalent to being a direct summand of a free module.

- $\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F}$.
- If any two of these classes coincide, then all coincide.

- $\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F}$.
- If any two of these classes coincide, then all coincide.
 This happens iff *R* is a right perfect ring
 (i.e., *R* has dcc on principal left ideals).

- $\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F}$.
- If any two of these classes coincide, then all coincide. This happens iff *R* is a right perfect ring (i.e., *R* has dcc on principal left ideals).
- [Kaplansky'1958] The class *P* is classifiable: Each module in *P* is a direct sum of countably generated modules.

- $\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F}$.
- If any two of these classes coincide, then all coincide. This happens iff *R* is a right perfect ring (i.e., *R* has dcc on principal left ideals).
- [Kaplansky'1958] The class \mathcal{P} is classifiable: Each module in \mathcal{P} is a direct sum of countably generated modules.
- The class *F* is not classifiable in case *R* is not right perfect (e.g., *F* = all torsion-free groups in case *R* = ℤ).

The 'sandwich' class ${\mathcal D}$

Theorem (Raynaud-Gruson'1971)

Let R be a ring and M a module. Then the following are equivalent:

- *M* is a flat Mittag-Leffler module (i.e., $M \in \mathcal{D}$).
- Every finite (or countable) subset of M is contained in a countably generated projective submodule wich is pure in M.

The 'sandwich' class ${\mathcal D}$

Theorem (Raynaud-Gruson'1971)

Let R be a ring and M a module. Then the following are equivalent:

- *M* is a flat Mittag-Leffler module (i.e., $M \in \mathcal{D}$).
- Every finite (or countable) subset of M is contained in a countably generated projective submodule wich is pure in M.

Example (Azumaya-Facchini'1989)

 \mathcal{D} is the class of \aleph_1 -free groups for $R = \mathbb{Z}$. (A group is \aleph_1 -free if each of its countable subgroups is free).

The classes \mathcal{P}, \mathcal{D} , and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

The classes \mathcal{P} , \mathcal{D} , and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let C be a class in a Grothendieck category. *M* is a transfinite extension of objects in C

The classes \mathcal{P} , \mathcal{D} , and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let *C* be a class in a Grothendieck category. *M* is a transfinite extension of objects in *C* in case there is a continuous increasing chain $(M_{\alpha} | \alpha \leq \lambda)$ of subobjects of *M* such that $M = M_{\lambda}$, and for each $\alpha < \lambda$

The classes \mathcal{P} , \mathcal{D} , and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let C be a class in a Grothendieck category. M is a transfinite extension of objects in Cin case there is a continuous increasing chain $(M_{\alpha} | \alpha \leq \lambda)$ of subobjects of M such that $M = M_{\lambda}$, and for each $\alpha < \lambda$ $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

The classes \mathcal{P} , \mathcal{D} , and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let *C* be a class in a Grothendieck category. *M* is a transfinite extension of objects in *C* in case there is a continuous increasing chain $(M_{\alpha} | \alpha \leq \lambda)$ of subobjects of *M* such that $M = M_{\lambda}$, and for each $\alpha < \lambda$ $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of *C*.

Moreover, $\mathcal D$ and $\mathcal F$ are closed under pure submodules.

Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where

Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of R(v)-modules, $\mathcal{M} = (M(v)| v \in V)$, where $R(v) = \mathcal{O}_X(v)$, and systems of R(u)-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of R(v)-modules, $\mathcal{M} = (M(v)| v \in V)$, where $R(v) = \mathcal{O}_X(v)$, and systems of R(u)-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

• $R(v) \otimes_{R(u)} M(u) \rightarrow M(v)$ is an isomorphism $(u \rightarrow v \in E)$ and

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of R(v)-modules, $\mathcal{M} = (M(v)| v \in V)$, where $R(v) = O_X(v)$, and systems of R(u)-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \rightarrow M(v)$ is an isomorphism $(u \rightarrow v \in E)$ and
- if $w \subseteq v \subseteq u$ in V, then

$$M(u) \longrightarrow M(v)$$

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of R(v)-modules, $\mathcal{M} = (M(v)| v \in V)$, where $R(v) = O_X(v)$, and systems of R(u)-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \rightarrow M(v)$ is an isomorphism $(u \rightarrow v \in E)$ and
- if $w \subseteq v \subseteq u$ in *V*, then

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011 Slide 10

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathfrak{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of R(v)-modules, $\mathcal{M} = (M(v)| v \in V)$, where $R(v) = O_X(v)$, and systems of R(u)-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \rightarrow M(v)$ is an isomorphism $(u \rightarrow v \in E)$ and
- if $w \subseteq v \subseteq u$ in V, then

is commutative.

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011 Slide 10

Particular instances

Vector bundles: $\mathcal{M} = (M(v) | v \in V)$ consists of projective modules.

Particular instances

Vector bundles: $\mathcal{M} = (M(v) | v \in V)$ consists of projective modules.

Drinfeld vector bundles: \mathcal{M} consists of flat Mittag-Leffler modules.

Particular instances

Vector bundles: $\mathcal{M} = (M(v) | v \in V)$ consists of projective modules.

Drinfeld vector bundles: \mathcal{M} consists of flat Mittag-Leffler modules.

Flat quasi-coherent sheaves: \mathcal{M} consists of flat modules.

Definition (Quillen)

Definition (Quillen)

A model category C has three classes of morphisms called **fibrations**, cofibrations and weak equivalences:

1 2-out-of-3: if two of f, g, fg are weak equivalences, then so does the third.

Definition (Quillen)

- **1 2-out-of-3**: if two of f, g, fg are weak equivalences, then so does the third.
- 2 Retracts: the classes are closed under retracts.

Definition (Quillen)

- **1 2-out-of-3**: if two of f, g, fg are weak equivalences, then so does the third.
- 2 Retracts: the classes are closed under retracts.
- 6 Lifting Properties: each trivial cofibration (resp. cofibration) has the left lifting property with respect to fibrations (resp. trivial fibrations).

Definition (Quillen)

- **1 2-out-of-3**: if two of f, g, fg are weak equivalences, then so does the third.
- 2 Retracts: the classes are closed under retracts.
- 6 Lifting Properties: each trivial cofibration (resp. cofibration) has the left lifting property with respect to fibrations (resp. trivial fibrations).
- 4 Factorizations:

$$f = \beta(f)\alpha(f) \begin{cases} \beta(f) \text{ triv. fib.} \\ \alpha(f) \text{ cof.} \end{cases} f = \delta(f)\gamma(f) \begin{cases} \delta(f) \text{ fib.} \\ \gamma(f) \text{ triv. cof.} \end{cases}$$

 \mathcal{A} : abelian category,

 \mathcal{A} : abelian category,

NOTATION

 $\operatorname{Ch}(\mathcal{A})$ category of unbounded complexes. $\mathcal{D}(\mathcal{A})$ derived category

 \mathcal{A} : abelian category,

NOTATION

 $\operatorname{Ch}(\mathcal{A})$ category of unbounded complexes. $\mathcal{D}(\mathcal{A})$ derived category

The basic idea of [Quillen'1967] applied to $\mathcal A$

Rather than working in the derived category $\mathcal{D}(\mathcal{A})$ directly,

 \mathcal{A} : abelian category,

NOTATION

 $\operatorname{Ch}(\mathcal{A})$ category of unbounded complexes. $\mathcal{D}(\mathcal{A})$ derived category

The basic idea of [Quillen'1967] applied to ${\mathcal A}$

Rather than working in the derived category $\mathcal{D}(\mathcal{A})$ directly,

consider model structures \mathcal{M} on the category $Ch(\mathcal{A})$ compatible with all short exact sequences of \mathcal{A} and where weak equivalences are the homology isomorphisms.

 \mathcal{A} : abelian category,

NOTATION

 $\operatorname{Ch}(\mathcal{A})$ category of unbounded complexes. $\mathcal{D}(\mathcal{A})$ derived category

The basic idea of [Quillen'1967] applied to ${\mathcal A}$

Rather than working in the derived category $\mathcal{D}(\mathcal{A})$ directly,

consider model structures \mathcal{M} on the category $Ch(\mathcal{A})$ compatible with all short exact sequences of \mathcal{A} and where weak equivalences are the homology isomorphisms.

Then we can identify $\mathcal{D}(\mathcal{A})$ and $\operatorname{Ho}(\mathcal{M})$.

Model structures in $Ch(\mathcal{A})$

Conclusion

It is important to construct model structures on the category of complexes.

Model structures in $Ch(\mathcal{A})$

Conclusion

It is important to construct model structures on the category of complexes.

• Many results constructing model structures in $Ch(\mathcal{A})$.

Model structures \Leftrightarrow C

 \Leftrightarrow Cotorsion pairs

 \mathcal{A} : Grothendieck category.

Definition

 \mathcal{A} : Grothendieck category.

Definition

• For a class of objects C, let $C^{\perp} = \operatorname{Ker} \operatorname{Ext}^{1}(C, -)$ and ${}^{\perp}C = \operatorname{Ker} \operatorname{Ext}^{1}(-, C)$.

 \mathcal{A} : Grothendieck category.

Definition

- For a class of objects C, let $C^{\perp} = \operatorname{Ker} \operatorname{Ext}^{1}(C, -)$ and ${}^{\perp}C = \operatorname{Ker} \operatorname{Ext}^{1}(-, C)$.
- $(\mathcal{C}, \mathcal{C}^{\perp})$ is a cotorsion pair if $^{\perp}(\mathcal{C}^{\perp}) = \mathcal{C}$.

 \mathcal{A} : Grothendieck category.

Definition

- For a class of objects C, let $C^{\perp} = \operatorname{Ker} \operatorname{Ext}^{1}(C, -)$ and ${}^{\perp}C = \operatorname{Ker} \operatorname{Ext}^{1}(-, C)$.
- $(\mathcal{C}, \mathcal{C}^{\perp})$ is a cotorsion pair if ${}^{\perp}(\mathcal{C}^{\perp}) = \mathcal{C}$.
- Cotorsion pair cogenerated by \mathcal{X} : $(^{\perp}(\mathcal{X}^{\perp}), \mathcal{X}^{\perp})$.

 \mathcal{A} : Grothendieck category.

Definition

- For a class of objects C, let $C^{\perp} = \operatorname{Ker} \operatorname{Ext}^{1}(C, -)$ and ${}^{\perp}C = \operatorname{Ker} \operatorname{Ext}^{1}(-, C)$.
- $(\mathcal{C}, \mathcal{C}^{\perp})$ is a cotorsion pair if ${}^{\perp}(\mathcal{C}^{\perp}) = \mathcal{C}$.
- Cotorsion pair cogenerated by \mathcal{X} : $(^{\perp}(\mathcal{X}^{\perp}), \mathcal{X}^{\perp})$.
- Complete cotorsion pairs: (C, C[⊥]) is complete if for each M ∈ A there exist short exact sequences

$$0 \longrightarrow L \longrightarrow D \longrightarrow M \longrightarrow 0$$

and

$$0 \longrightarrow M \longrightarrow L' \longrightarrow D' \longrightarrow 0$$

with
$$D, D' \in \mathcal{C}$$
 and $L, L' \in \mathcal{C}^{\perp}$.

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011 Slide 15

Hovey's Theorem

Theorem (Hovey, 2002)

Let \mathcal{F} , \mathcal{W} and \mathcal{C} be classes in \mathcal{A} such that:

- W is thick, that is, it is closed under retracts, and whenever two out of three entries in a short exact sequence are in W, so is the third.
- ② (C, F ∩ W) and (C ∩ W, F) are complete cotorsion pairs (e.g. if they are cogenerated by a set).

The there is a unique model structure on \mathcal{A} such that \mathcal{C} is the class of cofibrant objects, \mathcal{F} is the class of fibrant objects and \mathcal{W} is the class of trivial objects.

Complexes in $\mathcal A$

• Given a complex (*X*, *d*)

$$\ldots \xrightarrow{d_{n+2}} X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \to \ldots$$

we shall denote

•
$$Z_n X = \text{Ker } d_n (n+1 \text{th-syzygy});$$

•
$$B_n X = \operatorname{Im}_{n+1} d_{n+1};$$

•
$$H_n X = \frac{Z_n X}{B_n X}$$
 (*nth*-homology).

Complexes in $\mathcal A$

• Given a complex (X, d)

$$\ldots \xrightarrow{d_{n+2}} X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \to \ldots$$

we shall denote

•
$$Z_n X = \text{Ker } d_n (n+1 \text{th-syzygy});$$

•
$$B_n X = \operatorname{Im} d_{n+1};$$

•
$$H_n X = \frac{Z_n X}{B_n X}$$
 (*nth*-homology).

• The Hom-complex: Hom(X, Y)

•
$$Hom(X,Y)_n = \prod_{k \in \mathbb{Z}} Hom(X_k,Y_{k+n})$$

•
$$(fd_n^H)_k = f_k d_{k+n}^Y - (-1)^n d_k^X f_{k-1}.$$

Complexes in \mathcal{A}

Given a complex (X, d)•

$$\ldots \xrightarrow{d_{n+2}} X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \to \ldots$$

we shall denote

• $Z_n X = \text{Ker } d_n (n + 1 th - syzygy);$

•
$$B_n X = \operatorname{Im} d_{n+1};$$

•
$$H_n X = \frac{Z_n X}{B_n X}$$
 (*nth*-homology).

• The Hom-complex: Hom(X, Y)

- $Hom(X, Y)_n = \prod_{k \in \mathbb{Z}} Hom(X_k, Y_{k+n})$ $(fd_n^H)_k = f_k d_{k+n}^Y (-1)^n d_k^X f_{k-1}.$
- Exact complexes: \mathcal{E} .

Let $(\mathcal{C}, \mathcal{C}^{\perp})$ be a cotorsion pair in \mathcal{A} .

An exact complex *E* in C(A) is a C[⊥]-complex if Z_nE ∈ C[⊥], for each n ∈ Z.

- An exact complex E in $\mathbb{C}(\mathcal{A})$ is a \mathcal{C}^{\perp} -complex if $Z_n E \in \mathcal{C}^{\perp}$, for each $n \in \mathbb{Z}$.
 - \mathcal{C}^{\perp} denote the class of all \mathcal{C}^{\perp} -complexes.

- An exact complex *E* in C(A) is a C[⊥]-complex if Z_nE ∈ C[⊥], for each n ∈ Z.
 C[⊥] denote the class of all C[⊥]-complexes.
- A complex *M* = (*Mⁿ*) in C(*A*) is a *dg*-*C* complex if each *M* → *E* is nullhomotopic for any complex *E* ∈ C[⊥] and *Mⁿ* ∈ *C*, for each *n* ∈ Z.

- An exact complex *E* in C(A) is a C[⊥]-complex if Z_nE ∈ C[⊥], for each n ∈ Z.
 C[⊥] denote the class of all C[⊥]-complexes.
- A complex M = (Mⁿ) in C(A) is a dg-C complex if each M → E is nullhomotopic for any complex E ∈ C[⊥] and Mⁿ ∈ C, for each n ∈ Z.
 dg C denote the class of all dg-C complexes of objects in A.
Definition (Gillespie'04)

Let $(\mathcal{C}, \mathcal{C}^{\perp})$ be a cotorsion pair in \mathcal{A} .

- An exact complex *E* in C(A) is a C[⊥]-complex if Z_nE ∈ C[⊥], for each n ∈ Z.
 C[⊥] denote the class of all C[⊥]-complexes.
- A complex M = (Mⁿ) in C(A) is a dg-C complex if each M → E is nullhomotopic for any complex E ∈ C[⊥] and Mⁿ ∈ C, for each n ∈ Z.
 dg C denote the class of all dg-C complexes of objects in A.
- Dually we can define the classes C̃ and dg C̃[⊥] of C-complexes and dg-C[⊥] complexes of objects in A.

• $Q_X = (V, E)$ a quiver associated to a scheme X,

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \ge |V|$ for all $v \in V$.

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \ge |V|$ for all $v \in V$.
- For each $v \in V$, S_v a class of $\leq \kappa$ -presented R(v)-modules,

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \ge |V|$ for all $v \in V$.
- For each v ∈ V, S_v a class of ≤ κ–presented R(v)–modules,

 F_v = [⊥](S[⊥]_v) is resolving, and

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \ge |V|$ for all $v \in V$.
- C be the class of all qc sheaves M such that M(v) ∈ F_v for each v ∈ V.

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \ge |V|$ for all $v \in V$.
- C be the class of all qc sheaves M such that M(v) ∈ F_v for each v ∈ V.
- Assume that C contains a generator for $\mathfrak{Q}co(X)$.

Slide 20

Theorem (Hovey'02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms,

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the monomorphism with cokernels in dg \widetilde{C} (resp. \widetilde{C}),

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the **monomorphism with cokernels in dg** \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the **monomorphism with cokernels in dg** \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Moreover, if every $M \in S_v$ is a flat R(v)-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$,

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the monomorphism with cokernels in dg \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Moreover, if every $M \in S_v$ is a flat R(v)-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then **the model category structure is monoidal.**

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the monomorphism with cokernels in dg \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Moreover, if every $M \in S_v$ is a flat R(v)-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then **the model category structure is monoidal.**

Comments to the proof:

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the monomorphism with cokernels in dg \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Moreover, if every $M \in S_v$ is a flat R(v)-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then **the model category structure is monoidal.**

Comments to the proof: Key point is to use the **Hill Lemma** to make compatible all the individual filtrations,

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the **monomorphism with cokernels in dg** \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Moreover, if every $M \in S_v$ is a flat R(v)-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then **the model category structure is monoidal.**

Comments to the proof: Key point is to use the **Hill Lemma** to make compatible all the individual filtrations,

first at the level of qc sheaves and then at the level of complexes of qc .

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathfrak{Q}co(X))$ in which the **weak equivalences** are the homology isomorphisms, the **cofibrations** (resp. **trivial cofibrations**) are the monomorphism with cokernels in dg \widetilde{C} (resp. \widetilde{C}), and the **fibrations** (resp. **trivial fibrations**)

are the epimorphisms whose kernels are in dg C^{\perp} (resp. C^{\perp}).

Moreover, if every $M \in S_v$ is a flat R(v)-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then **the model category structure is monoidal.**

Comments to the proof: Key point is to use the **Hill Lemma** to make compatible all the individual filtrations,

first at the level of qc sheaves and then at the level of complexes of qc . (The Hill Lemma was primarily used as a preparatory tool for applications of Shelah's Singular Compactness Theorem).

Corollary (Enochs-E.-García Rozas'08; $S_v = \{R(v)\}$)

Corollary (Enochs-E.-García Rozas'08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that

Corollary (Enochs-E.-García Rozas'08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Enochs-E.-García Rozas'08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie'07; $S_v =$ a representative set of $\leq sup_{v \in V} |R(v)|$ -generated flat modules)

Corollary (Enochs-E.-García Rozas'08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie'07; $S_v =$ a representative set of $\leq sup_{v \in V} |R(v)|$ -generated flat modules)

If X is a scheme having enough flats then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-flat complexes of qc-sheaves.

Corollary (Enochs-E.-García Rozas'08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie'07; $S_v =$ a representative set of $\leq sup_{v \in V} |R(v)|$ -generated flat modules)

If X is a scheme having enough flats then there is a monoidal model category structure on $\mathbb{C}(\mathfrak{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-flat complexes of qc-sheaves.

Further cases

[E.-Guil-Prest-Trlifaj] 'Restricted' Drinfeld vector bundles, etc.

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

The crucial question: Is there a subset $S \subseteq D$ such that $D = {}^{\perp}(S^{\perp})$?

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

The crucial question: Is there a subset $S \subseteq D$ such that $D = {}^{\perp}(S^{\perp})$? Equivalently: Is D deconstructible?

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = {}^{\perp}(S^{\perp})$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = {}^{\perp}(S^{\perp})$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

• The class \mathcal{D} is deconstructible.

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = {}^{\perp}(S^{\perp})$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

- The class \mathcal{D} is deconstructible.
- R is a right perfect ring.

Definition (Eklof)

A class of modules C is deconstructible in case there is a cardinal κ such that each $M \in C$ is a transfinite extension of $\leq \kappa$ -presented modules in C.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = {}^{\perp}(S^{\perp})$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

- The class \mathcal{D} is deconstructible.
- R is a right perfect ring.

Theorem

The homotopy theory tools above apply to vector bundles and flat qc sheaves, but **not** to Drinfeld vector bundles.

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

$$F \xrightarrow{\phi} M$$

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

can be completed commutatively, with $F' \in \mathcal{F}$.

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form ${}^{\perp}\mathcal{E}$ is precovering provided it is deconstructible.

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $^{\perp}\mathcal{E}$ is precovering provided it is deconstructible. In particular the classes \mathcal{P} and \mathcal{F} are precovering.
Precovering classes

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $^{\perp}\mathcal{E}$ is precovering provided it is deconstructible. In particular the classes \mathcal{P} and \mathcal{F} are precovering.

Theorem (Eklof-Shelah'03,E.-Guil-Prest-Trlifaj)

Precovering classes

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi: F \to M$, such that $F \in \mathcal{F}$ and every diagram

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $^{\perp}\mathcal{E}$ is precovering provided it is deconstructible. In particular the classes \mathcal{P} and \mathcal{F} are precovering.

Theorem (Eklof-Shelah'03, E.-Guil-Prest-Trlifaj)

The class \mathcal{D} (= all \aleph_1 -free abelian groups) is not precovering for

 $R = \mathbb{Z}$. Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011 Slide 23