Model category structures arising from Drinfeld vector bundles
based on a joint work with P. Guil, M. Prest and J. Trlifaj

Sergio Estrada
Universidad de Murcia
sestrada@um.es
Murcia, SPAIN
Outline

1 Motivation: Drinfeld’s question
 Infinite-dimensional vector bundles on a scheme

2 The classes of modules involved
 Closure properties
 Quasi-coherent sheaves via compatible systems
 Particular instances

3 Model category structures on \(\text{Ch}(\text{Qco}(X)) \)
 Model Categories
 Cotorsion pairs
 Distinguished classes of complexes
 General Theorem
 Main applications
 Deconstructibility, and the case of Drinfeld vector bundles
Definition of infinite-dimensional vector bundle

Theorem (Serre’1955)

Finite dimensional vector bundles on the affine scheme Spec(\(R\)) correspond 1-1 to finitely generated projective R-modules.
Definition of infinite-dimensional vector bundle

Theorem (Serre’1955)

Finite dimensional vector bundles on the affine scheme Spec(\(R\)) correspond 1-1 to finitely generated projective \(R\)-modules.

Drinfeld’2006

Definition of infinite-dimensional vector bundle

Theorem (Serre’1955)

Finite dimensional vector bundles on the affine scheme Spec(R)* correspond 1-1 to finitely generated projective *R*-modules.*

Drinfeld’2006

What is the correct definition of an (infinite-dimensional) vector bundle on a scheme *X*?
Proposed answers

Drinfeld’2006

Let X be a scheme. A quasi-coherent sheaf of O_X-modules \mathcal{F} is a vector bundle on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

'Slightly different definition' [Drinfeld’06, E.-Guil-Prest-Trlifaj]

Replace 'projective' by 'flat Mittag-Leffler' above.

Then \mathcal{F} is called the Drinfeld vector bundle.

Gillespie’2007

Replace 'projective' by 'flat'.

Then \mathcal{F} is the flat quasi-coherent sheaf.
Proposed answers

Drinfeld’2006

Let X be a scheme. A quasi-coherent sheaf of \mathcal{O}_X-modules \mathcal{F} is a **vector bundle** on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

'Slightly different definition' [Drinfeld’06, E.-Guil-Prest-Trlifaj]

Replace 'projective' by 'flat Mittag-Leffler' above. Then \mathcal{F} is called the Drinfeld vector bundle.

Gillespie’2007

Replace 'projective' by 'flat'. Then \mathcal{F} is the flat quasi-coherent sheaf.
Proposed answers

Drinfeld’2006

Let X be a scheme. A quasi-coherent sheaf of O_X-modules \mathcal{F} is a **vector bundle** on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

'Slightly different definition' [Drinfeld’06, E.-Guil-Prest-Trlifaj]

Replace 'projective' by 'flat Mittag-Leffler' above.

Then F is called the Drinfeld vector bundle.

Gillespie’2007

Replace 'projective' by 'flat'.

Then F is the flat quasi-coherent sheaf.
Proposed answers

Drinfeld’2006
Let X be a scheme. A quasi-coherent sheaf of O_X-modules \mathcal{F} is a vector bundle on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

’Slightly different definition’ [Drinfeld’06, E.-Guil-Prest-Trlifaj]
Proposed answers

Drinfeld’2006

Let X be a scheme. A quasi-coherent sheaf of \mathcal{O}_X-modules \mathcal{F} is a vector bundle on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

’Slightly different definition’ [Drinfeld’06, E.-Guil-Prest-Trlifaj]

Replace ’projective’ by ’flat Mittag-Leffler’ above. Then \mathcal{F} is called the Drinfeld vector bundle.
Proposed answers

Drinfeld’2006

Let X be a scheme. A quasi-coherent sheaf of O_X-modules \mathcal{F} is a *vector bundle* on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

’Slightly different definition’ [Drinfeld’06, E.-Guil-Prest-Trlifaj]

Replace ’projective’ by ’flat Mittag-Leffler’ above. Then \mathcal{F} is called the *Drinfeld vector bundle*.

Gillespie’2007
Proposed answers

Drinfeld’2006
Let X be a scheme. A quasi-coherent sheaf of \mathcal{O}_X-modules \mathcal{F} is a vector bundle on X if for each open affine subset $\text{Spec}(R) \subseteq X$, the R-module of sections $\Gamma(\text{Spec}(R), \mathcal{F})$ is projective.

’Slightly different definition’ [Drinfeld’06, E.-Guil-Prest-Trlifaj]
Replace ’projective’ by ’flat Mittag-Leffler’ above. Then \mathcal{F} is called the Drinfeld vector bundle.

Gillespie’2007
Replace ’projective’ by ’flat’. Then \mathcal{F} is the flat quasi-coherent sheaf.
The classes of modules involved

- \mathcal{P}: the class of all projective modules ($= \text{direct summands of free modules}$ = the modules P such that the functor $\text{Hom}_R(P,-)$ is exact).

- \mathcal{F}: the class of all flat modules ($= \text{direct limits of free modules}$ = the modules F such that the functor $F \otimes_R -$ is exact).

- \mathcal{L}: the class of all Mittag-Leffler modules, i.e., the modules M such that the canonical map $M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i$ is monic, for each family of R-modules $(M_i | i \in I)$.

- $\mathcal{D} = \mathcal{F} \cap \mathcal{L}$: the class of all flat Mittag-Leffler modules. ("projective modules with a human face")
The classes of modules involved

- \(\mathcal{P} \) the class of all \textit{projective} modules

 (= direct summands of free modules = the modules \(P \) such that
 the functor \(\text{Hom}_R(P, -) \) is exact).

- \(\mathcal{F} \) the class of all flat modules

 (= direct limits of free modules = the modules \(F \) such that the functor \(F \otimes_R - \) is exact).

- \(\mathcal{L} \) the class of all Mittag-Leffler modules

 such that the canonical map
 \[M \otimes_R \prod_{i \in I} M_i \rightarrow \prod_{i \in I} M_i \otimes_R M \]
 is monic, for each family of \(R \)-modules \((M_i | i \in I) \).

- \(\mathcal{D} = \mathcal{F} \cap \mathcal{L} \) the class of all flat Mittag-Leffler modules.

("projective modules with a human face")
The classes of modules involved

- \mathcal{P} the class of all projective modules
 (= direct summands of free modules = the modules P such that
 the functor $\text{Hom}_R(P, -)$ is exact).

- \mathcal{F} the class of all flat modules (= direct limits of free modules =
 the modules F such that the functor $F \otimes_R -$ is exact).
The classes of modules involved

- \(\mathcal{P} \) the class of all **projective** modules

 \((= \text{direct summands of free modules} = \text{the modules } P \text{ such that the functor } \text{Hom}_R(P, -) \text{ is exact}) \).

- \(\mathcal{F} \) the class of all **flat** modules

 \((= \text{direct limits of free modules} = \text{the modules } F \text{ such that the functor } F \otimes_R - \text{ is exact}) \).

- \(\mathcal{L} \) the class of all **Mittag-Leffler** modules, i.e., the modules \(M \) such that the canonical map

\[
M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i
\]

is monic, for each family of \(R \)-modules \((M_i | i \in I) \).
The classes of modules involved

- \mathcal{P} the class of all projective modules
 ($= \text{direct summands of free modules} = \text{the modules } P \text{ such that the functor } \text{Hom}_R(P, -) \text{ is exact}$).

- \mathcal{F} the class of all flat modules ($= \text{direct limits of free modules} = \text{the modules } F \text{ such that the functor } F \otimes_R - \text{ is exact}$).

- \mathcal{L} the class of all Mittag-Leffler modules, i.e., the modules M such that the canonical map

 \[M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i \]

 is monic, for each family of R-modules $(M_i \mid i \in I)$.

- $\mathcal{D} = \mathcal{F} \cap \mathcal{L}$ the class of all flat Mittag-Leffler modules.
The classes of modules involved

- \(\mathcal{P} \) the class of all \textit{projective} modules
 \((= \text{direct summands of free modules} = \text{the modules} \ P \ \text{such that the functor} \ \text{Hom}_R(P, -) \ \text{is exact})\).

- \(\mathcal{F} \) the class of all \textit{flat} modules \((= \text{direct limits of free modules} = \text{the modules} \ F \ \text{such that the functor} \ F \otimes_R - \ \text{is exact})\).

- \(\mathcal{L} \) the class of all \textit{Mittag-Leffler} modules, i.e., the modules \(M \) such that
 \[
 M \otimes_R \prod_{i \in I} M_i \to \prod_{i \in I} M \otimes_R M_i
 \]
 is monic, for each family of \(R \)-modules \((M_i | i \in I) \).

- \(\mathcal{D} = \mathcal{F} \cap \mathcal{L} \) the class of all \textit{flat Mittag-Leffler} modules.
 (“projective modules with a human face”)

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011
Slide 5
Drinfeld’s main advantages for considering Flat Mittag-Leffler modules

- “Unlike projectivity, the property of M being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of $R^{(\mathbb{N})} \otimes_R M$ viewed as a module over $\text{End}_R R^{(\mathbb{N})}$.”
Drinfeld’s main advantages for considering Flat Mittag-Leffler modules

- “Unlike projectivity, the property of M being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of $R^{\mathbb{N}} \otimes_R M$ viewed as a module over $\text{End}_R R^{\mathbb{N}}$.”

- AC is not needed to prove that a vector space over a field is a flat Mittag–Leffler module.
Drinfeld’s main advantages for considering Flat Mittag-Leffler modules

• “Unlike projectivity, the property of M being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of $R^{(\mathbb{N})} \otimes_R M$ viewed as a module over $\text{End}_R R^{(\mathbb{N})}$”.

• AC is not needed to prove that a vector space over a field is a flat Mittag–Leffler module.

but
Drinfeld’s main advantages for considering Flat Mittag-Leffler modules

- “Unlike projectivity, the property of M being a flat Mittag–Leffler module is a first-order property (in the sense of mathematical logic) of $R^{(\mathbb{N})} \otimes_R M$ viewed as a module over $\text{End}_RR^{(\mathbb{N})}$”.

- AC is not needed to prove that a vector space over a field is a flat Mittag–Leffler module.

but

without AC, projectivity is not equivalent to being a direct summand of a free module.
Some well-known facts

- \(\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F} \).
Some well-known facts

- $\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F}$.

- If any two of these classes coincide, then all coincide.
Some well-known facts

- \(\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F} \).

- If any two of these classes coincide, then all coincide. This happens iff \(R \) is a right perfect ring (i.e., \(R \) has dcc on principal left ideals).
Some well-known facts

- \(P \subseteq D \subseteq F \).

- If any two of these classes coincide, then all coincide. This happens iff \(R \) is a right perfect ring (i.e., \(R \) has dcc on principal left ideals).

- [Kaplansky’1958] The class \(P \) is classifiable: Each module in \(P \) is a direct sum of countably generated modules.
Some well-known facts

- $\mathcal{P} \subseteq \mathcal{D} \subseteq \mathcal{F}$.

- If any two of these classes coincide, then all coincide. This happens iff R is a right perfect ring (i.e., R has dcc on principal left ideals).

- [Kaplansky’1958] The class \mathcal{P} is classifiable: Each module in \mathcal{P} is a direct sum of countably generated modules.

- The class \mathcal{F} is not classifiable in case R is not right perfect (e.g., $\mathcal{F} = \text{all torsion-free groups in case } R = \mathbb{Z}$).
The ’sandwich’ class \mathcal{D}

Theorem (Raynaud-Gruson’1971)

Let R be a ring and M a module. Then the following are equivalent:

- M is a flat Mittag-Leffler module (i.e., $M \in \mathcal{D}$).
- Every finite (or countable) subset of M is contained in a countably generated projective submodule which is pure in M.

Example (Azumaya-Facchini’1989)

\mathcal{D} is the class of \aleph_1-free groups for $R = \mathbb{Z}$.

(A group is \aleph_1-free if each of its countable subgroups is free).
The ‘sandwich’ class \mathcal{D}

Theorem (Raynaud-Gruson’1971)

Let R be a ring and M a module. Then the following are equivalent:

- M is a flat Mittag-Leffler module (i.e., $M \in \mathcal{D}$).
- Every finite (or countable) subset of M is contained in a countably generated projective submodule which is pure in M.

Example (Azumaya-Facchini’1989)

\mathcal{D} is the class of \aleph_1-free groups for $R = \mathbb{Z}$.

(A group is \aleph_1-free if each of its countable subgroups is free).
Closure properties

The classes \mathcal{P}, \mathcal{D}, and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.
Closure properties

The classes \mathcal{P}, \mathcal{D}, and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let \mathcal{C} be a class in a Grothendieck category. M is a **transfinite extension** of objects in \mathcal{C}.
Closure properties

The classes \mathcal{P}, \mathcal{D}, and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let \mathcal{C} be a class in a Grothendieck category. M is a transfinite extension of objects in \mathcal{C} in case there is a continuous increasing chain $(M_\alpha | \alpha \leq \lambda)$ of subobjects of M such that $M = M_\lambda$, and for each $\alpha < \lambda$
Closure properties

The classes \mathcal{P}, \mathcal{D}, and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let \mathcal{C} be a class in a Grothendieck category. M is a transfinite extension of objects in \mathcal{C} in case there is a continuous increasing chain $(M_\alpha | \alpha \leq \lambda)$ of subobjects of M such that $M = M_\lambda$, and for each $\alpha < \lambda$, $M_{\alpha+1}/M_\alpha$ is isomorphic to an element of \mathcal{C}.
Closure properties

The classes \mathcal{P}, \mathcal{D}, and \mathcal{F} are resolving classes closed under direct summands and transfinite extensions.

Definition

Let \mathcal{C} be a class in a Grothendieck category. M is a transfinite extension of objects in \mathcal{C} in case there is a continuous increasing chain $(M_\alpha | \alpha \leq \lambda)$ of subobjects of M such that $M = M_\lambda$, and for each $\alpha < \lambda$ $M_{\alpha+1}/M_\alpha$ is isomorphic to an element of \mathcal{C}.

Moreover, \mathcal{D} and \mathcal{F} are closed under pure submodules.
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where

1. $R(v) \otimes R(u) M(u) \rightarrow M(v)$ is an isomorphism ($u \rightarrow v \in E$) and
2. if $w \subseteq v \subseteq u$ in V, then $M(u) \rightarrow M(v) \rightarrow M(w)$ is commutative.
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.'2005)

There is an equivalence between the category $\mathcal{QC}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \to v$ iff $v \subseteq u$. We identify qc sheaves on X with compatible systems of $R(v)$-modules, $M = (M(v) | v \in V)$, where $R(v) = O_X(v)$, and systems of $R(u)$-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes R(u) M(u) \to M(v)$ is an isomorphism ($u \to v \in E$) and
- if $w \subseteq v \subseteq u$ in V, then $M(u) \to M(v) \to M(w)$ is commutative.
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Q}co(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

$R(v) \otimes R(u)M(u) \rightarrow M(v)$ is an isomorphism ($u \rightarrow v \in E$) and if $w \subseteq v \subseteq u$ in V, then $M(u) \rightarrow M(v) \rightarrow M(w)$ is commutative.
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \to v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of $R(v)$-modules, $\mathcal{M} = (M(v) \mid v \in V)$, where $R(v) = O_X(v)$, and systems of $R(u)$-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying...
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \rightarrow v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of $R(v)$-modules, $\mathcal{M} = (M(v) \mid v \in V)$, where $R(v) = O_X(v)$, and systems of $R(u)$-morphisms $M(u) \rightarrow M(v)$ for $u \rightarrow v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \rightarrow M(v)$ is an isomorphism ($u \rightarrow v \in E$) and
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \to v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of $R(v)$-modules, $\mathcal{M} = (M(v) \mid v \in V)$, where $R(v) = O_X(v)$, and systems of $R(u)$-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \to M(v)$ is an isomorphism ($u \to v \in E$) and
- if $w \subseteq v \subseteq u$ in V, then

$$M(u) \xrightarrow{} M(v)$$
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \to v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of $R(v)$-modules, $\mathcal{M} = (M(v) \mid v \in V)$, where $R(v) = \mathcal{O}_X(v)$, and systems of $R(u)$-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \to M(v)$ is an isomorphism ($u \to v \in E$) and
- if $w \subseteq v \subseteq u$ in V, then

$$
M(u) \longrightarrow M(v) \\
\downarrow \\
M(w)
$$
Quasi-coherent sheaves via compatible systems

Theorem (Enochs, E.’2005)

There is an equivalence between the category $\mathcal{Qco}(X)$, and the category of certain representations of the quiver $Q_X = (V, E)$, where V are all open affine subsets of X, and there is an arrow $u \to v$ iff $v \subseteq u$.

We identify qc sheaves on X with compatible systems of $R(v)$-modules, $\mathcal{M} = (M(v) \mid v \in V)$, where $R(v) = O_X(v)$, and systems of $R(u)$-morphisms $M(u) \to M(v)$ for $u \to v \in E$, satisfying

- $R(v) \otimes_{R(u)} M(u) \to M(v)$ is an isomorphism ($u \to v \in E$) and
- if $w \subseteq v \subseteq u$ in V, then

\[\begin{array}{c}
M(u) \\
\downarrow \\
M(v) \\
\downarrow \\
M(w)
\end{array}\]

is commutative.
Particular instances

Vector bundles: $\mathcal{M} = (M(v) \mid v \in V)$ consists of projective modules.
Particular instances

Vector bundles: $\mathcal{M} = (M(v) \mid v \in V)$ consists of projective modules.

Drinfeld vector bundles: \mathcal{M} consists of flat Mittag-Leffler modules.
Particular instances

Vector bundles: $\mathcal{M} = (M(v) \mid v \in V)$ consists of projective modules.

Drinfeld vector bundles: \mathcal{M} consists of flat Mittag-Leffler modules.

Flat quasi-coherent sheaves: \mathcal{M} consists of flat modules.
Model Categories
Model Categories

Definition (Quillen)

A model category C has three classes of morphisms called \textit{fibrations}, \textit{cofibrations} and \textit{weak equivalences}:

1. \textbf{2-out-of-3}: if two of f, g, fg are weak equivalences, then so does the third.
2. \textbf{Retracts}: the classes are closed under retracts.
3. \textbf{Lifting Properties}: each trivial cofibration (resp. cofibration) has the left lifting property with respect to fibrations (resp. trivial fibrations).
4. \textbf{Factorizations}: $f = \beta(\alpha(f))$ and $f = \delta(\gamma(f))$.

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011
Slide 12
Model Categories

Definition (Quillen)

A model category C has three classes of morphisms called fibrations, cofibrations and weak equivalences:

1. **2-out-of-3**: if two of f, g, fg are weak equivalences, then so does the third.
Model Categories

Definition (Quillen)

A model category C has three classes of morphisms called fibrations, cofibrations and weak equivalences:

1. **2-out-of-3**: if two of f, g, fg are weak equivalences, then so does the third.

2. **Retracts**: the classes are closed under retracts.
Model Categories

Definition (Quillen)

A model category C has three classes of morphisms called \textbf{fibrations}, \textbf{cofibrations} and \textbf{weak equivalences}:

1. \textbf{2-out-of-3}: if two of f, g, fg are weak equivalences, then so does the third.

2. \textbf{Retracts}: the classes are closed under retracts.

3. \textbf{Lifting Properties}: each trivial cofibration (resp. cofibration) has the left lifting property with respect to fibrations (resp. trivial fibrations).
Model Categories

Definition (Quillen)

A model category C has three classes of morphisms called fibrations, cofibrations and weak equivalences:

1. **2-out-of-3:** if two of f, g, fg are weak equivalences, then so does the third.

2. **Retracts:** the classes are closed under retracts.

3. **Lifting Properties:** each trivial cofibration (resp. cofibration) has the left lifting property with respect to fibrations (resp. trivial fibrations).

4. **Factorizations:**

\[
 f = \beta(f)\alpha(f) \left\{ \begin{array}{l} \beta(f) \text{ triv. fib.} \\ \alpha(f) \text{ cof.} \end{array} \right. \\
 f = \delta(f)\gamma(f) \left\{ \begin{array}{l} \delta(f) \text{ fib.} \\ \gamma(f) \text{ triv. cof.} \end{array} \right.
\]
Application of Model Categories

\mathcal{A}: abelian category,
Application of Model Categories

\(\mathcal{A} \): abelian category,

NOTATION

\[
\text{Ch}(\mathcal{A}) \quad \text{category of unbounded complexes.}
\]

\[
\mathcal{D}(\mathcal{A}) \quad \text{derived category}
\]
Application of Model Categories

\(\mathcal{A} \): abelian category,

NOTATION

\[
\begin{align*}
\text{Ch}(\mathcal{A}) & \text{ category of unbounded complexes.} \\
\mathcal{D}(\mathcal{A}) & \text{ derived category}
\end{align*}
\]

The basic idea of [Quillen’1967] applied to \(\mathcal{A} \)

Rather than working in the derived category \(\mathcal{D}(\mathcal{A}) \) directly,
Application of Model Categories

\(\mathcal{A} \): abelian category,

NOTATION

\[
\begin{align*}
\text{Ch}(\mathcal{A}) & \text{ category of unbounded complexes.} \\
\mathcal{D}(\mathcal{A}) & \text{ derived category}
\end{align*}
\]

The basic idea of [Quillen’1967] applied to \(\mathcal{A} \)

Rather than working in the derived category \(\mathcal{D}(\mathcal{A}) \) directly,

consider model structures \(\mathcal{M} \) on the category \(\text{Ch}(\mathcal{A}) \) compatible with all short exact sequences of \(\mathcal{A} \) and where weak equivalences are the homology isomorphisms.
Application of Model Categories

\[\mathcal{A} : \text{abelian category}, \]

NOTATION

\[
\begin{align*}
\text{Ch}(\mathcal{A}) & \quad \text{category of unbounded complexes.} \\
\mathcal{D}(\mathcal{A}) & \quad \text{derived category}
\end{align*}
\]

The basic idea of [Quillen'1967] applied to \(\mathcal{A} \)

Rather than working in the derived category \(\mathcal{D}(\mathcal{A}) \) directly,

consider model structures \(\mathcal{M} \) on the category \(\text{Ch}(\mathcal{A}) \) compatible with all short exact sequences of \(\mathcal{A} \) and where weak equivalences are the homology isomorphisms.

Then we can identify \(\mathcal{D}(\mathcal{A}) \) and \(\text{Ho}(\mathcal{M}) \).
Model structures in $\text{Ch}(\mathcal{A})$

Conclusion

It is important to construct model structures on the category of complexes.
Model structures in $\text{Ch}(\mathcal{A})$

Conclusion

It is important to construct model structures on the category of complexes.

- Many results constructing model structures in $\text{Ch}(\mathcal{A})$.

```
Model structures $\iff$ Cotorsion pairs
```
General definitions

\(\mathcal{A} \): Grothendieck category.

Definition
General definitions

\(\mathcal{A} \): Grothendieck category.

Definition

- For a class of objects \(C \), let \(C^\perp = \text{Ker} \ Ext^1(C, -) \) and \(\perp C = \text{Ker} \ Ext^1(-, C) \).
General definitions

\(\mathcal{A} \): Grothendieck category.

Definition

- For a class of objects \(C \), let \(C^\perp = \ker \text{Ext}^1(C, -) \) and \(\perp C = \ker \text{Ext}^1(-, C) \).
- \((C, C^\perp) \) is a cotorsion pair if \(\perp(C^\perp) = C \).
General definitions

\(\mathfrak{A} \): Grothendieck category.

Definition

- For a class of objects \(C \), let \(C^\perp = \ker \text{Ext}^1(C, -) \) and \(^\perp C = \ker \text{Ext}^1(-, C) \).
- \((C, C^\perp) \) is a cotorsion pair if \(^\perp (C^\perp) = C \).
- **Cotorsion pair cogenerated by** \(\mathfrak{X} \): \((^\perp (\mathfrak{X}^\perp), \mathfrak{X}^\perp) \).
General definitions

\(\mathcal{A} \): Grothendieck category.

Definition

- For a class of objects \(C \), let \(C^\perp = \ker \text{Ext}^1(C, -) \) and \(^\perp C = \ker \text{Ext}^1(-, C) \).
- \((C, C^\perp) \) is a cotorsion pair if \(^\perp (C^\perp) = C \).
- **Cotorsion pair cogenerated by** \(\mathcal{X} \): \((^\perp (\mathcal{X}^\perp), \mathcal{X}^\perp)\).
- **Complete cotorsion pairs**: \((C, C^\perp) \) is complete if for each \(M \in \mathcal{A} \) there exist short exact sequences
 \[
 0 \longrightarrow L \longrightarrow D \longrightarrow M \longrightarrow 0
 \]
 and
 \[
 0 \longrightarrow M \longrightarrow L' \longrightarrow D' \longrightarrow 0
 \]
 with \(D, D' \in C \) and \(L, L' \in C^\perp \).
Hovey’s Theorem

Theorem (Hovey, 2002)

Let \mathcal{F}, \mathcal{W} and \mathcal{C} be classes in \mathcal{A} such that:

1. \mathcal{W} is thick, that is, it is closed under retracts, and whenever two out of three entries in a short exact sequence are in \mathcal{W}, so is the third.

2. $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are complete cotorsion pairs (e.g. if they are cogenerated by a set).

The there is a unique model structure on \mathcal{A} such that \mathcal{C} is the class of cofibrant objects, \mathcal{F} is the class of fibrant objects and \mathcal{W} is the class of trivial objects.
Complexes in \mathcal{A}

- Given a complex (X, d)

$$
\cdots \xrightarrow{d_{n+2}} X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \xrightarrow{} \cdots
$$

we shall denote

- $Z_nX = \ker d_n$ ($n+1$th-syzygy);
- $B_nX = \text{im } d_{n+1}$;
- $H_nX = \frac{Z_nX}{B_nX}$ (nth-homology).
Complexes in \mathcal{A}

- Given a complex (X,d)

\[\cdots \xrightarrow{d_{n+2}} X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \rightarrow \cdots \]

we shall denote

- $Z_nX = \text{Ker } d_n \ (n+1\text{th-syzygy})$;
- $B_nX = \text{Im } d_{n+1}$;
- $H_nX = \frac{Z_nX}{B_nX} \ (n\text{th-homology})$.

- **The Hom-complex**: $\text{Hom}(X, Y)$
 - $\text{Hom}(X, Y)_n = \prod_{k \in \mathbb{Z}} \text{Hom}(X_k, Y_{k+n})$
 - $(fd^H_n)_k = f_kd_Y^{k+n} - (-1)^n d_X^k f_{k-1}$.

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011
Slide 17
Complexes in \mathcal{A}

- Given a complex (X, d)

 \[\cdots \xrightarrow{d_{n+2}} X_{n+1} \xrightarrow{d_{n+1}} X_n \xrightarrow{d_n} X_{n-1} \xrightarrow{d_{n-1}} \cdots \]

 we shall denote

 - $Z_n X = \text{Ker} \ d_n \ (n + 1\text{-th-syzygy})$;
 - $B_n X = \text{Im} \ d_{n+1}$;
 - $H_n X = \frac{Z_n X}{B_n X} \ (n\text{-th-homology}).$

- **The Hom-complex:** $\text{Hom}(X, Y)$

 - $\text{Hom}(X, Y)_n = \prod_{k \in \mathbb{Z}} \text{Hom}(X_k, Y_{k+n})$
 - $(fd^H_n)_k = f_k d^Y_{k+n} - (-1)^n d^X_k f_{k-1}$.

- **Exact complexes:** \mathcal{E}.
Definition (Gillespie’04)

Let \((\mathcal{C}, \mathcal{C}^\perp)\) be a cotorsion pair in \(\mathcal{A}\).
Definition (Gillespie’04)

Let \((C, C^\perp)\) be a cotorsion pair in \(\mathcal{A}\).

- An exact complex \(E\) in \(\mathcal{C}(\mathcal{A})\) is a \(C^\perp\)-complex if \(Z_nE \in C^\perp\), for each \(n \in \mathbb{Z}\).
Definition (Gillespie’04)

Let $(\mathcal{C}, \mathcal{C}^\perp)$ be a cotorsion pair in \mathcal{A}.

- An exact complex E in $\mathcal{C}(\mathcal{A})$ is a \mathcal{C}^\perp-complex if $Z_nE \in \mathcal{C}^\perp$, for each $n \in \mathbb{Z}$.
- \mathcal{C}^\perp denote the class of all \mathcal{C}^\perp-complexes.
Definition (Gillespie’04)

Let \((\mathcal{C}, \mathcal{C}^\perp)\) be a cotorsion pair in \(\mathcal{A}\).

- An exact complex \(E\) in \(\mathcal{C}(\mathcal{A})\) is a \(\mathcal{C}^\perp\)-complex if \(Z_nE \in \mathcal{C}^\perp\), for each \(n \in \mathbb{Z}\).
 \(\mathcal{C}^\perp\) denote the class of all \(\mathcal{C}^\perp\)-complexes.

- A complex \(M = (M^n)\) in \(\mathcal{C}(\mathcal{A})\) is a \(dg\)-\(\mathcal{C}\) complex if each \(M \to E\) is nullhomotopic for any complex \(E \in \mathcal{C}^\perp\) and \(M^n \in \mathcal{C}\), for each \(n \in \mathbb{Z}\).
Definition (Gillespie’04)

Let \((\mathcal{C}, \mathcal{C}^\perp)\) be a cotorsion pair in \(\mathcal{A}\).

- An exact complex \(E\) in \(\mathcal{C}(\mathcal{A})\) is a \(\mathcal{C}^\perp\)-complex if \(Z_n E \in \mathcal{C}^\perp\), for each \(n \in \mathbb{Z}\).
 \(\mathcal{C}^\perp\) denote the class of all \(\mathcal{C}^\perp\)-complexes.

- A complex \(M = (M^n)\) in \(\mathcal{C}(\mathcal{A})\) is a dg-\(\mathcal{C}\) complex if each \(M \to E\) is nullhomotopic for any complex \(E \in \mathcal{C}^\perp\) and \(M^n \in \mathcal{C}\), for each \(n \in \mathbb{Z}\).
 \(dg \mathcal{C}\) denote the class of all dg-\(\mathcal{C}\) complexes of objects in \(\mathcal{A}\).
Definition (Gillespie’04)

Let $(\mathcal{C}, \mathcal{C}^\perp)$ be a cotorsion pair in \mathcal{A}.

- An exact complex E in $\mathcal{C}(\mathcal{A})$ is a \mathcal{C}^\perp-complex if $Z_n E \in \mathcal{C}^\perp$, for each $n \in \mathbb{Z}$. \mathcal{C}^\perp denote the class of all \mathcal{C}^\perp-complexes.

- A complex $M = (M^n)$ in $\mathcal{C}(\mathcal{A})$ is a dg-\mathcal{C} complex if each $M \to E$ is nullhomotopic for any complex $E \in \mathcal{C}^\perp$ and $M^n \in \mathcal{C}$, for each $n \in \mathbb{Z}$. $\text{dg} \mathcal{C}$ denote the class of all dg-\mathcal{C} complexes of objects in \mathcal{A}.

- Dually we can define the classes \mathcal{C} and $\text{dg} \mathcal{C}^\perp$ of \mathcal{C}-complexes and dg-\mathcal{C}^\perp complexes of objects in \mathcal{A}.
Notation and assumptions

- $Q_X = (V, E)$ a quiver associated to a scheme X,

- κ an infinite cardinal such that $\kappa \geq |V|$ for all $v \in V$.

- For each $v \in V$, S_v a class of $\leq \kappa$–presented $R(v)$–modules, $F_v = \perp (S_v \perp)$ is resolving, and

- C be the class of all qc sheaves M such that $M(v) \in F_v$ for each $v \in V$.

- Assume that C contains a generator for $Q_X^{co}(X)$.

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011
Slide 19
Notation and assumptions

- \(Q_X = (V, E) \) a quiver associated to a scheme \(X \),
- \(\kappa \) an infinite cardinal such that \(\kappa \geq |V| \) for all \(v \in V \).
Notation and assumptions

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \geq |V|$ for all $v \in V$.
- For each $v \in V$, S_v a class of $\leq \kappa$–presented $R(v)$–modules,
Notation and assumptions

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \geq |V|$ for all $v \in V$.
- For each $v \in V$, S_v a class of $\leq \kappa$–presented $R(v)$–modules, $\mathcal{F}_v = \perp(S_v^\perp)$ is resolving, and C be the class of all qc sheaves M such that $M(v) \in \mathcal{F}_v$ for each $v \in V$.
- Assume that C contains a generator for $Q(X)$.
Notation and assumptions

- $Q_X = (V, E)$ a quiver associated to a scheme X,
- κ an infinite cardinal such that $\kappa \geq |V|$ for all $v \in V$.
- For each $v \in V$, S_v a class of $\leq \kappa$–presented $R(v)$–modules, $\mathcal{F}_v = \perp(S_v^\perp)$ is resolving, and
- \mathcal{C} be the class of all qc sheaves \mathcal{M} such that $\mathcal{M}(v) \in \mathcal{F}_v$ for each $v \in V$.
Notation and assumptions

- \(Q_X = (V, E) \) a quiver associated to a scheme \(X \),
- \(\kappa \) an infinite cardinal such that \(\kappa \geq |V| \) for all \(v \in V \).
- For each \(v \in V \), \(S_v \) a class of \(\leq \kappa \)–presented \(R(v) \)–modules, \(\mathcal{F}_v = \perp(S_v^\perp) \) is resolving, and
- \(\mathcal{C} \) be the class of all qc sheaves \(\mathcal{M} \) such that \(\mathcal{M}(v) \in \mathcal{F}_v \) for each \(v \in V \).
- Assume that \(\mathcal{C} \) contains a generator for \(\mathcal{Q}co(X) \).
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.
Theorem (Hovey’02,E.-Guil-Prest-Trlifaj)

Let X be a scheme.
There is an **abelian model category structure on** $\mathcal{C}(\Omega \text{co}(X))$
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\Omega \text{co}(X))$ in which the **weak equivalences** are the **homology isomorphisms**,
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.
There is an **abelian model category structure on** $\mathbb{C}(\Omega \text{co}(X))$
in which the **weak equivalences** are the **homology isomorphisms**, the **cofibrations** (resp. **trivial cofibrations**) are the **monomorphism with cokernels in** $\text{dg}\mathbb{C}$ (resp. \mathbb{C}),
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme. There is an abelian model category structure on $\mathbb{C}(\Omega \text{co}(X))$ in which the weak equivalences are the homology isomorphisms, the cofibrations (resp. trivial cofibrations) are the monomorphism with cokernels in $\text{dg} \tilde{\mathbb{C}}$ (resp. $\tilde{\mathbb{C}}$), and the fibrations (resp. trivial fibrations) are the epimorphisms whose kernels are in $\text{dg} \tilde{\mathbb{C}}^\perp$ (resp. $\tilde{\mathbb{C}}^\perp$).
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.

There is an **abelian model category structure on** $\mathbb{C}(\mathcal{Q}\text{co}(X))$ in which the **weak equivalences** are the **homology isomorphisms**, the **cofibrations** (resp. **trivial cofibrations**) are the **monomorphism with cokernels in $\text{dg} \tilde{\mathbb{C}}$** (resp. $\tilde{\mathbb{C}}$), and the **fibrations** (resp. **trivial fibrations**) are the **epimorphisms whose kernels are in $\text{dg} \tilde{\mathbb{C}}^\perp$** (resp. $\tilde{\mathbb{C}}^\perp$).

Moreover, if every $M \in S_v$ is a flat $R(v)$-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, ...
Theorem (Hovey’02,E.-Guil-Prest-Trlifaj)

Let X be a scheme.
There is an **abelian model category structure on** $\mathcal{C}(\Omega \text{co}(X))$
in which the **weak equivalences** are the **homology isomorphisms**, the **cofibrations** (resp. **trivial cofibrations**)
are the **monomorphism with cokernels in** $\text{dg} \tilde{\mathcal{C}}$ (resp. $\tilde{\mathcal{C}}$),
and the **fibrations** (resp. **trivial fibrations**)
are the **epimorphisms whose kernels are in** $\text{dg} \tilde{\mathcal{C}^\perp}$ (resp. $\tilde{\mathcal{C}^\perp}$).

Moreover, if every $M \in S_v$ is a flat $R(v)$-module,
and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$,
then **the model category structure is monoidal**.

Comments to the proof:
Key point is to use the Hill Lemma to make compatible all the individual filtrations,
first at the level of qc sheaves and then at the level of complexes of qc.
(The Hill Lemma was primarily used as a preparatory tool for applications of Shelah’s Singular Compactness Theorem).
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.
There is an abelian model category structure on $\mathbb{C}(\mathcal{O}\text{co}(X))$
in which the weak equivalences are the homology isomorphisms, the cofibrations (resp. trivial cofibrations)
are the monomorphism with cokernels in $\text{dg}\tilde{\mathbb{C}}$ (resp. $\tilde{\mathbb{C}}$), and the fibrations (resp. trivial fibrations)
are the epimorphisms whose kernels are in $\text{dg}\tilde{\mathbb{C}}^\perp$ (resp. $\tilde{\mathbb{C}}^\perp$).

Moreover, if every $M \in S_v$ is a flat $R(v)$-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$,
then the model category structure is monoidal.

Comments to the proof:
Theorem (Hovey’02,E.-Guil-Prest-Trlifaj)

Let \(X \) be a scheme.
There is an **abelian model category structure on** \(C(\mathcal{Q}co(X)) \)
in which the **weak equivalences** are the **homology isomorphisms**, the **cofibrations** (resp. **trivial cofibrations**)
are the **monomorphism with cokernels in** \(d\!g\tilde{C} \) (resp. \(\tilde{C} \)),
and the **fibrations** (resp. **trivial fibrations**)
are the **epimorphisms whose kernels are in** \(d\!g\tilde{C}^\perp \) (resp. \(\tilde{C}^\perp \)).

Moreover, if every \(M \in S_v \) is a flat \(R(v) \)-module,
and \(M \otimes_{R(v)} N \in S_v \) for all \(M, N \in S_v \),
then **the model category structure is monoidal**.

Comments to the proof: Key point is to use the **Hill Lemma** to make compatible all the individual filtrations,
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.
There is an abelian model category structure on $\mathcal{C}(\Omega \text{co}(X))$ in which the weak equivalences are the homology isomorphisms, the cofibrations (resp. trivial cofibrations) are the monomorphism with cokernels in dg $\tilde{\mathcal{C}}$ (resp. $\tilde{\mathcal{C}}$), and the fibrations (resp. trivial fibrations) are the epimorphisms whose kernels are in dg \mathcal{C}^\perp (resp. $\tilde{\mathcal{C}}^\perp$).

Moreover, if every $M \in S_v$ is a flat $R(v)$-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then the model category structure is monoidal.

Comments to the proof: Key point is to use the Hill Lemma to make compatible all the individual filtrations, first at the level of qc sheaves and then at the level of complexes of qc.
Theorem (Hovey’02, E.-Guil-Prest-Trlifaj)

Let X be a scheme.

There is an **abelian model category structure on** $\mathcal{C}(\mathcal{O}\co(X))$ in which the **weak equivalences** are the **homology isomorphisms**, the **cofibrations** (resp. **trivial cofibrations**) are the **monomorphism with cokernels in** $\text{dg} \widetilde{\mathcal{C}}$ (resp. $\widetilde{\mathcal{C}}$), and the **fibrations** (resp. **trivial fibrations**) are the **epimorphisms whose kernels are in** $\text{dg} \mathcal{C}^\perp$ (resp. \mathcal{C}^\perp).

Moreover, if every $M \in S_v$ is a flat $R(v)$-module, and $M \otimes_{R(v)} N \in S_v$ for all $M, N \in S_v$, then **the model category structure is monoidal**.

Comments to the proof: Key point is to use the **Hill Lemma** to make compatible all the individual filtrations, first at the level of qc sheaves and then at the level of complexes of qc. (The Hill Lemma was primarily used as a preparatory tool for applications of Shelah’s Singular Compactness Theorem).
First application: Locally projective model structure on $\mathbb{C}(\Omega \mathcal{O}(X))$.

Corollary (Enochs-E.-García Rozas’08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathbb{C}(\Omega \mathcal{O}(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie’07; S_v = a representative set of $\leq \sup_{v \in V} |R(v)|$-generated flat modules)

If X is a scheme having enough flats then there is a monoidal model category structure on $\mathbb{C}(\Omega \mathcal{O}(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-flat complexes of qc-sheaves.

Further cases [E.-Guil-Prest-Trlifaj] ‘Restricted’ Drinfeld vector bundles, etc.
First application: Locally projective model structure on $\mathcal{C}(\Omega \text{co}(X))$.

Corollary (Enochs-E.-García Rozas’08; $S_v = \{ R(v) \}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathcal{C}(\Omega \text{co}(X))$ such that

[Further cases: [E.-Guil-Prest-Trlifaj] 'Restricted' Drinfeld vector bundles, etc.]
First application: Locally projective model structure on $\mathcal{C}(\mathcal{Q}co(X))$.

Corollary (Enochs-E.-García Rozas’08; $S_v = \{ R(v) \}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathcal{C}(\mathcal{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.
First application: Locally projective model structure on $\mathcal{C}(\mathcal{Q}co(X))$.

Corollary (Enochs-E.-García Rozas’08; $S_v = \{ R(v) \}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathcal{C}(\mathcal{Q}co(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie’07; $S_v = a$ representative set of $\leq \sup_{v \in V} |R(v)|$-generated flat modules)
First application: Locally projective model structure on $\mathcal{C}(\mathcal{O}\text{co}(X))$.

Corollary (Enochs-E.-García Rozas’08; $S_v = \{R(v)\}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathcal{C}(\mathcal{O}\text{co}(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie’07; $S_v = \text{a representative set of } \leq \sup_{v \in V} |R(v)|$-generated flat modules)

If X is a scheme having enough flats then there is a monoidal model category structure on $\mathcal{C}(\mathcal{O}\text{co}(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-flat complexes of qc-sheaves.
First application: Locally projective model structure on $\mathcal{C}(\Omega \text{co}(X))$.

Corollary (Enochs-E.-García Rozas’08; $S_v = \{ R(v) \}$)

If X is a scheme having enough vector bundles then there is a monoidal model category structure on $\mathcal{C}(\Omega \text{co}(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-locally projective complexes of vector bundles.

Corollary (Gillespie’07; $S_v =$ a representative set of $\leq \sup_{v \in V} |R(v)|$-generated flat modules)

If X is a scheme having enough flats then there is a monoidal model category structure on $\mathcal{C}(\Omega \text{co}(X))$ such that weak equivalences are homology isomorphisms, and cofibrations are monomorphisms whose cokernels are dg-flat complexes of qc-sheaves.

Further cases

[E.-Guil-Prest-Trlifaj ’Restricted’ Drinfeld vector bundles, etc.]

Sergio Estrada — Model Structures for Sheaves — IPM, Tehran, July 2011
Slide 21
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)

A class of modules \mathcal{C} is **deconstructible** in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)
A class of modules \mathcal{C} is deconstructible in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = \perp(S^{\perp})$?
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)

A class of modules \mathcal{C} is **deconstructible** in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = \perp (S\perp)$? Equivalently: Is \mathcal{D} deconstructible?
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)

A class of modules \mathcal{C} is **deconstructible** in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = \perp (S\perp)$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)

A class of modules \mathcal{C} is **deconstructible** in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = \perp (\perp S)$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

- The class \mathcal{D} is deconstructible.
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)

A class of modules \mathcal{C} is **deconstructible** in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = \perp (S^{\perp})$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

- The class \mathcal{D} is deconstructible.
- R is a right perfect ring.
Why ’restricted’ Drinfeld vector bundles?

Definition (Eklof)

A class of modules \mathcal{C} is deconstructible in case there is a cardinal κ such that each $M \in \mathcal{C}$ is a transfinite extension of $\leq \kappa$-presented modules in \mathcal{C}.

The crucial question: Is there a subset $S \subseteq \mathcal{D}$ such that $\mathcal{D} = \perp (S^\perp)$? Equivalently: Is \mathcal{D} deconstructible?

Theorem (Herbera-Trlifaj)

Let R be a ring. Then the following conditions are equivalent:

- The class \mathcal{D} is deconstructible.
- R is a right perfect ring.

Theorem

The homotopy theory tools above apply to vector bundles and flat qc sheaves, but not to Drinfeld vector bundles.
Precovering classes

Definition (Enochs)

A class \mathcal{F} is **precovering** if for each M there is a morphism $\varphi : F \to M$, such that $F \in \mathcal{F}$ and every diagram

\[
F \xrightarrow{\varphi} M
\]

Each class of the form $\bot^E \mathcal{E}$ is precovering provided it is deconstructible. In particular the classes \mathcal{P} and \mathcal{F} are precovering.

Theorem (Eklof-Shelah'03, E.-Guil-Prest-Trlifaj)

The class $D(=\text{all } \aleph_1\text{-free abelian groups})$ is not precovering for $R=\mathbb{Z}$.
Precovering classes

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi : F \to M$, such that $F \in \mathcal{F}$ and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\downarrow & & \downarrow \\
F' & \xrightarrow{\varphi'} & M
\end{array}
\]

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $\perp_{\mathcal{E}}$ is precovering provided it is deconstructible. In particular the classes \mathcal{P} and \mathcal{F} are precovering.

Theorem (Eklof-Shelah'03, E.-Guil-Prest-Trlifaj)

The class \mathcal{D} (= all \aleph_1-free abelian groups) is not precovering for $\mathcal{R} = \mathbb{Z}$.
Precovering classes

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\phi : F \rightarrow M$, such that $F \in \mathcal{F}$ and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\phi} & M \\
\downarrow f & & \downarrow \\
F' & \xrightarrow{\phi'} & \ \\
\end{array}
\]

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $\perp E$ is precovering provided it is deconstructible. In particular the classes P and F are precovering.

Theorem (Eklof-Shelah'03, E.-Guil-Prest-Trlifaj)

The class $D (= \text{all } \aleph_1 \text{-free abelian groups})$ is not precovering for $R = \mathbb{Z}$.
Precovering classes

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi : F \to M$, such that $F \in \mathcal{F}$ and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\downarrow f & & \uparrow \\
F' & & \\
\end{array}
\]

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $\perp E$ is precovering provided it is deconstructible.
Precovering classes

Definition (Enochs)

A class \(\mathcal{F} \) is precovering if for each \(M \) there is a morphism \(\varphi : F \to M \), such that \(F \in \mathcal{F} \) and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\downarrow f & & \downarrow \\
F' & \xrightarrow{\varphi'} & M \\
\end{array}
\]

can be completed commutatively, with \(F' \in \mathcal{F} \).

Each class of the form \(\bot \mathcal{E} \) is precovering provided it is deconstructible. In particular the classes \(\mathcal{P} \) and \(\mathcal{F} \) are precovering.
Precovering classes

Definition (Enochs)

A class \(\mathcal{F} \) is precovering if for each \(M \) there is a morphism \(\varphi : F \to M \), such that \(F \in \mathcal{F} \) and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\downarrow f & & \downarrow \\
F' & \nearrow \varphi' & \\
\end{array}
\]

can be completed commutatively, with \(F' \in \mathcal{F} \).

Each class of the form \(\perp \mathcal{E} \) is precovering provided it is deconstructible. In particular the classes \(\mathcal{P} \) and \(\mathcal{F} \) are precovering.

Theorem (Eklof-Shelah’03,E.-Guil-Prest-Trlifaj)

The class \(\mathcal{D} = (\text{all } \aleph_1\text{-free abelian groups}) \) is not precovering for \(R = \mathbb{Z} \).
Precovering classes

Definition (Enochs)

A class \mathcal{F} is precovering if for each M there is a morphism $\varphi : F \to M$, such that $F \in \mathcal{F}$ and every diagram

\[
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
f & & \downarrow \\
F' & \xrightarrow{\varphi'} & M
\end{array}
\]

can be completed commutatively, with $F' \in \mathcal{F}$.

Each class of the form $\perp \mathcal{E}$ is precovering provided it is deconstructible. In particular the classes \mathcal{P} and \mathcal{F} are precovering.

Theorem (Eklof-Shelah’03,E.-Guil-Prest-Trlifaj)

The class \mathcal{D} (= all \aleph_1-free abelian groups) is not precovering for $R = \mathbb{Z}$.