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Method of Generating Differentials

Method of Generating Functions

For a sequence a0, a1, a2, · · · of numbers with combinatorial or
number theoretic interests, we consider the (ordinary) power series

a0 + a1T + a2T
2 + · · ·

or the (exponential) power series

a0 + a1T + a2(T 2/2!) + a3(T 3/3!) + · · ·

in Q[[T ]]. For example,
n∑

k=0

(
n

k

)
T k = (1 + T )n;

∞∑
k=0

(
n + k

n

)
T k =

1

(1− T )n+1
;
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Method of Generating Functions

∞∑
k=0

(
2k

k

)
T k =

1√
1− 4T

;

∞∑
k=0

1

k
T k = − log(1− T );

Catalan numbers Ci are defined by the power series
C =

∑
CiT

i satisfying C = 1 + TC2.

Bernoulli numbers Bi are defined by

T

eT − 1
=
∞∑
i=0

Bi
Ti

i !
.
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Method of Generating Functions

The power series gives rise to a function defined in certain region
of the complex plane. We may perform algebraic operations on
these functions. For example,

(1 + T )n + T (1 + T )n = (1 + T )n+1.

To obtain combinatorial information from the functions, there are
coefficient functionals. Given

f = a0 + a1T + a2T
2 + · · · ∈ Q[[T ]],

we define
[T i ]f := ai .

For example,(
n + 1

i

)
= [T i ](1+T )n+1 = [T i ](1+T )n+[T i−1](1+T )n =

(
n

i

)
+

(
n

i − 1

)
.
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Method of Generating Functions

If the functions are defined in an open set, we can also perform
analytic operations. With some mild analytic condition on

f = a0 + a1T + a2T
2 + · · · ,

we can extract coefficients by integration:

1

2π
√
−1

∮
f

T i+1
dT = ai

For example,(
n + 1

i

)
=

1

2π
√
−1

∮
(1 + T )n+1

T i+1
dT

=
1

2π
√
−1

∮
(1 + T )n

T i+1
dT +

1

2π
√
−1

∮
(1 + T )n

T i
dT

=

(
n

i

)
+

(
n

i − 1

)
.
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Method of Generating Functions

The method of generating functions is enhanced by the Lagrange
inversion formula. Let w be a power series in κ[[T ]] defined by
w = Tφ for an invertible power series φ ∈ κ[[T ]]. The Lagrange
inversion formula asserts

[T n]w(T )k =
k

n
[T n−k ]φ(T )n.

In the book “Analytic combinatorics in several variables” by
R. Pemantle and M. C. Wilson, a proof of Lagrange inversion is
supplied, “because of the danger that the reader will stumble upon
the more common and less illuminating formal power series proof”.

We would like to provide a viewpoint from commutative algebra to
the method of generating functions.
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Power Series Rings

Let κ be a field. We consider the ring κ[[X1, · · · ,Xn]].
Look at vector spaces first...

There is no canonical choice of variables for a power series
ring over a field κ. For example, with Y = X/(1− X ) or
with X = Y /(1 + Y ), we have κ[[X ]] = κ[[Y ]].

A power series ring R of n variables over a field κ
is a complete regular local ring of Krull dimension n
with the coefficient field κ.

If X1, · · · ,Xn generate the maximal ideal of R,
then R = κ[[X1, · · · ,Xn]].

The notation κ[[X1, · · · ,Xn]] means a power series ring over κ
with variables X1, · · · ,Xn specified.
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Derivations and Differentials

Let R be an algebra over a field κ. A κ-derivation from R to an
R-module M is a κ-linear map δ : R → M satisfying the Leibniz
rule:

δ(r1r2) = r1δ(r2) + r2δ(r1), r1, r2 ∈ R.

The universal object among all κ-derivation from R is called the
module of differentials of R over κ and is denoted by ΩR/κ.

R
d //

δ

��

ΩR/κ

}}z
z

z
z

M
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Derivations and Differentials

The module of differentials of R over κ always exists.

If R = κ[X1, · · · ,Xn], then ΩR/κ is free of rank n.
Indeed, ΩR/κ = RdX1 + · · ·+ RdXn.

Ωκ[[X1,··· ,Xn]]/κ is not finite.

A κ-derivation δ : R → M is finite, if M is a finite R-module. The
universal object among all finite κ-derivation from R is called the
module of finite differentials of R over κ and is denoted by Ω̃R/κ.

The module of finite differentials of κ[[X1, · · · ,Xn]] over κ
exists.

Ω̃κ[[X1,··· ,Xn]]/κ is free of rank n with basis dX1, · · · , dXn.

∧nΩ̃κ[[X1,··· ,Xn]]/κ = κ[[X1, · · · ,Xn]]dX1 ∧ · · · ∧ dXn.
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Local Cohomology

Let a be an ideal of a Noetherian ring R. We consider the functor
from the category of R-modules to itself given by

Γa(M) := {m ∈ M : aim = 0 for some i}.

The n-th right derived functor of Γa(−) is denoted by Hn
a (−).

If a is generate up to radical by f1, · · · , fn, we have an exact
sequence

⊕n
i=1Mf1···f̂i ···fn → Mf1···fn → Hn

a (M)→ 0.

f i−i1
1 · · · f i−in

n ω

(f1 · · · fn)i
7→
[

ω

f i1
1 , · · · , f in

n

]
, ω ∈ M and i >> 0
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Local Cohomology

linearity law For ω1, ω2 ∈ M, i1, · · · , in > 0, and g1, g2 ∈ R,[
g1ω1 + g2ω2

f i1
1 , · · · , f in

n

]
= g1

[
ω1

f i1
1 , · · · , f in

n

]
+ g2

[
ω2

f i1
1 , · · · , f in

n

]
.

transformation law Assume that a is also generated up to radical
by f ′1 , · · · , f ′n. For ω ∈ M,[

ω
f1, · · · , f`

]
=

[
det(rij)ω
f ′1 , · · · , f ′`

]
,

if f ′i =
∑n

j=1 rij fj for i = 1, · · · , n.
vanishing law For ω ∈ M,[

ω

f i1
1 , · · · , f in

n

]
= 0

if and only if (f i1
1 · · · f in

n )sω ∈ (f
i1(s+1)

1 , · · · , f in(s+1)
` )M for some

s ≥ 0.
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Residues

Let R = κ[[X1, · · · ,Xn]] and a be its maximal ideal. We define the
residue map

resX1,··· ,Xn : Hn
a (∧nΩR̃/κ)→ κ

with respect to X1, · · · ,Xn by

resX1,··· ,Xn

[ ∑
bi1···inX

i1
1 · · ·X in

n dX1 ∧ · · · ∧ dXn

X i1+1
1 , · · · ,X in+1

n

]
= bi1···in .

Theorem

If R = κ[[X1, · · · ,Xn]] = κ[[Y1, · · · ,Yn]], then
resX1,··· ,Xn = resY1,··· ,Yn .

The residue map is a pairing for differentials and system of
parameters.
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Residues

Saalschützs Theorem

Let a and b be positive integers. Let m and n be non-negative
integers. Then∑

k≥0

(
a

m − k

)(
b

n − k

)(
a + b + k

k

)
=

(
a + n

m

)(
b + m

n

)
.

The identity is from a change of variables κ[[X1,X2]] = κ[[Y1,Y2]],
where {

X1 = Y1/(1 + Y2),

X2 = Y2/(1 + Y1).
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Residues

From the relation {
X1 = Y1/(1 + Y2)

X2 = Y2/(1 + Y1),

we have {
1 + Y1 = (1 + X1)/(1− X1X2)

1 + Y2 = (1 + X2)/(1− X1X2).

Furthermore,

dY1 ∧ dY2 =
∂(Y1,Y2)

∂(X1,X2)
dX1 ∧ dX2 =

(1 + X1)(1 + X2)

(1− X1X2)3
dX1 ∧ dX2.
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Residues

The coefficient of Xm
1 X n

2 ∂(X1,X2)/∂(Y1,Y2) in the power series
(1 + Y1)a−1(1 + Y2)b−1 is given by

res

[
(1 + Y1)a−1(1 + Y2)b−1dY1dY2

Xm+1
1 ,X n+1

2

]
= res

[
(1 + Y1)a+n(1 + Y2)b+mdY1dY2

Y m+1
1 ,Y n+1

2

]
=

(
a + n

m

)(
b + m

n

)
.

The residue can be also computed in terms of x . The Saalschützs
theorem is recovered from the computation

res

[
(1+X1)a(1+X2)b

(1−X1X2)a+b+1 dX1dX2

Xm+1
1 ,X n+1

2

]
=
∑
k≥0

(
a

m − k

)(
b

n − k

)(
a + b + k

k

)
.
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Lagrange Inversion

Theorem

Let w be a power series in κ[[T ]] defined by w = Tφ for an
invertible power series φ ∈ κ[[T ]]. Then

[T n]w(T )k =
k

n
[T n−k ]φ(T )n.

The above formula is built into the framework of residue calculus.
Note that κ[[T ]] = κ[[w ]].

res

[
wkdT
T n+1

]
=

1

n
res

[
dwk

T n

]
=

1

n
res

[
φndwk

wn

]
=

k

n
res

[
φndw

wn−k+1

]
Therefore

[T n]wk =
k

n
[wn−k ]φn.
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Lagrange Inversion

Catalan numbers Cn are defined by the power series C =
∑

CiX
i

satisfying C = 1 + XC2. Let Y := C− 1. Then κ[[X ]] = κ[[Y ]].
Indeed,

X =
C− 1

C2
=

Y

(1 + Y )2
.

For n > 0,

Cn = res

[
YdX
X n+1

]
=

1

n
res

[
dY
X n

]
=

1

n
res

[
(1 + Y )2ndY

Y n

]
=

1

n

(
2n

n − 1

)
.
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Lagrange Inversion

Lagrange-Good formula

Let κ[[X1, · · · ,Xn]] = κ[[Y1, · · · ,Yn]], where Yi = Xiϕi for an
invertible ϕi . Then

res

[
GdX1 · · · dXn

X i1+1
1 , · · · ,X in+1

n

]

= res

 Gϕi1
1 · · ·ϕin

n det(δij −
Yi

ϕi

∂ϕi

∂Yj
)dY1 · · · dYn

Y i1+1
1 , · · · ,Y in+1

n



dXi = d
Yi

ϕi
=

n∑
j=1

∂(Yi/ϕi )

∂Yj
dYj =

1

ϕi

n∑
j=1

(δij −
Yi

ϕi

∂ϕi

∂Yj
)dYj .

Lagrange Inversion is indeed a phenomenon of changes of variables.
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Schauder Bases

A power series ring R over a field κ is a complete metric space.

Definition

A sequence f0, f1, f2, · · · ∈ R is a Schauder basis if
every element in R can be represented uniquely as
a0f0 + a1fa + a2f2 + · · · for a0, a1, a2, · · · ∈ κ

Ordinary Schauder basis: (X k)k≥0

Exponential Schauder basis: (X k/k!)k≥0, if char κ = 0
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Schauder Bases

Let κ[[X ]] = κ[[Y ]].

Gould-Schauder basis: (Y k(1 + X )p)k≥0, where p ∈ Z
Abel-Schauder basis: (Y kepX )k≥0, where p ∈ κ and
char κ = 0

Bernoulli-Schauder basis: (Y k(X/(eX − 1))p)k≥0, where
p ∈ Z and char κ = 0

Interplay of representations of a power series by two Schauder
bases is exactly an inverse relation.

The theory of Riordan arrays can be explained using Schauder
bases.
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Comparison

Non-canonical vs. Fixed Choice variables

Commutative vs. Non-commutative operations

Relations vs. Transformations. In linear algebra, a matrix may
be interpreted as a linear transformation of vector spaces. It
may be also regarded as relations between two sets of vectors.
In the literature, a Riordan array is treated as a map for power
series. From the viewpoint of Schauder bases, the array is
regarded as a relation between two power series.

Differentials vs. Functions
There is a pairing given by local cohomology residues for
differentials and systems of parameters. The pairing is an
algebraic analogue of the integration of a differential form on
a manifold. It has an effect of equating coefficients in a way
independent of choices of a set of variables.
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