
CLASSIFICATION PROBLEMS OF SUBCATEGORIES

RYO TAKAHASHI

Contents

0. Introduction 1
1. Serre subcategories of module categories 1
2. Resolving subcategories of module categories 5
3. Thick subcategories of triangulated categories 8
4. Proof of Theorem 3.11(1) 13
References 15

0. Introduction

Aim. Given a category C, classify the ∗ ∗ ∗ subcategories of C.

• Ring Theory
• Stable Homotopy Theory
• Modular Representation Theory
• Algebraic Geometry

Strategy. For a category C, find a commutative ring R and make a 1-1 correspondence

{ ∗ ∗ ∗ subcategories of C }

f

y ∼=

xg

{+++ subsets of SpecR }.

Convention. Throughout, unless otherwise specified,

• R = commutative Noetherian ring
• modR = the category of f.g. (finitely generated) R-modules
• subcategory = nonempty full subcategory closed under isomorphisms
• A subcategory X of a category C ⇝ X ⊆ C

1. Serre subcategories of module categories

Theorem 1.1 (Gabriel (1962)).

{ Serre subcategories of modR }

Supp

y ∼=

xSupp−1

{ Specialization closed subsets of SpecR }
1
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Definition 1.2. X ⊆ modR is Serre if for every exact sequence 0→ L→ M → N → 0
in modR, it holds

M ∈ X ⇔ L,N ∈ X .

In other words, X is closed under


submodules,

quotient modules,

extensions.

Example 1.3. The following are Serre.

(1) {M ∈ modR |M has finite length }.
(2) {M ∈ modR |M is a torsion module }.
(3) {M ∈ modR | InM = 0 for some n ≥ 0 } for a fixed ideal I ⊆ R.

Definition 1.4. W ⊆ SpecR is specialization-closed if it satisfies

p ∈ W, p ⊆ q ∈ SpecR ⇒ q ∈ W.

Remark 1.5. TFAE (The Following Are Equivalent) for W ⊆ SpecR.

(1) W is specialization-closed.
(2) W is a union of closed subsets of SpecR.

Definition 1.6. Let M ∈ modR, X ⊆ modR and W ⊆ SpecR.

(1) SuppM = { p ∈ SpecR |Mp ̸= 0 }.
(2) SuppX =

∪
M∈X SuppM .

(3) Supp−1W = {M ∈ modR | SuppM ⊆ W }.

Example 1.7. (1) {M ∈ modR |M has finite length } = Supp−1MaxR.
(2) {M ∈ modR |M is a torsion module } = Supp−1{Prime ideals containing nonzerodivisors }.
(3) {M ∈ modR | InM = 0 for some n ≥ 0 } = Supp−1 V (I).

Proof of Theorem 1.1. Fix

{
X ⊆ modR Serre,

W ⊆ SpecR specialization-closed.

Want to show:

(1) SuppX is specialization-closed,
(2) Supp−1W is Serre,
(3) Supp Supp−1 W = W ,
(4) Supp−1 SuppX = X .

(1) SuppX =
∪

M∈X SuppM and SuppM is closed.
(2) 0→ L→M → N → 0 ⇒ SuppM = SuppL ∪ SuppN .

M ∈ Supp−1W ⇒ SuppM ⊆ W

⇒ SuppL ⊆ W and SuppN ⊆ W

⇒ L,N ∈ Supp−1 W.

(3)(⊆) p ∈ Supp Supp−1W ⇒ p ∈ SuppM (∃M ∈ Supp−1W ) ⇒ p ∈ W .
(⊇) p ∈ W ⇒ p ∈ SuppR/p = V (p) ⊆ W ⇒ p ∈ Supp Supp−1W .
(4)(⊇) M ∈ X ⇒ SuppM ⊆ SuppX ⇒ M ∈ Supp−1 SuppX .
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(⊆)

M ∈ Supp−1 SuppX

⇒ {p1, . . . , pn} = MinM ⊆ SuppM ⊆ SuppX =
∪
N∈X

SuppN

⇒ pi ∈ SuppNi (∃Ni ∈ X ), N := N1 ⊕ · · · ⊕Nn

⇒ SuppM = V (p1) ∪ · · · ∪ V (pn) ⊆ SuppN

⇒ M ∈ SerreN ⊆ X by Proposition 1.8 below.

□

Proposition 1.8 (Essential part of Theorem 1.1). Let M,N ∈ modR with SuppM ⊆
SuppN . Then

M ∈ SerreN,

where SerreN denotes the smallest Serre subcategory containing N .
In other words, M can be built from N by taking submodules, quotient modules and
extensions finitely many times.

Proof. Put X = SerreN .

p ∈ SuppM ⇒ p ∈ SuppN

⇒ ∃ q ∈ MinN ⊆ AssN s.t. q ⊆ p

⇒ 0→ R/q→ N, N ∈ X
⇒ R/q ∈ X , R/q→ R/p→ 0

⇒ R/p ∈ X .

∃ 0 = M0 ⊊ · · · ⊊ Mn = M s.t. Mi/Mi−1
∼= R/pi, pi ∈ SuppM .

0→Mi−1 →Mi → R/pi → 0, R/pi ∈ X ⇝ M ∈ X . □

Remark 1.9. Let R be a commutative ring. Several extensions of Theorem 1.1:

(1) Gabriel (1962)
Localizing subcategories of ModR if R is Noetherian

(2) Hovey (2000)
Wide subcategories of modR if R is a quotient ring of a coherent regular ring by a
f.g. ideal

(3) Garkusha-Prest (2008)
Serre subcategories of modR if R is coherent
Torsion classes of finite type of ModR

(4) Krause (2008)
Wide subcategories of ModR closed under (arbitrary) direct sums if R is Noetherian

(5) Stanley-Wang (2011)
Torsion classes and narrow subcategories of modR if R is Noetherian
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Theorem 1.10 (T (2008)). Let R be a commutative Noetherian ring.

{ Subcategories of modR closed under submodules and extensions }

Ass

y ∼=

xAss−1

{ Subsets of SpecR }.

Moreover, restricting this to Serre subcategories, one can recover Theorem 1.1.

Definition 1.11. Let M ∈ modR, X ⊆ modR and W ⊆ SpecR.

(1) AssM = { p ∈ SpecR | ∃R/p ↪→M }.
(2) AssX =

∪
M∈X AssM .

(3) Ass−1W = {M ∈ modR | AssM ⊆ W }.

Proposition 1.12 (Essential part of Theorem 1.10). Let M,N ∈ modR with AssM ⊆
AssN . Then

M ∈ subextN,

where subextN denotes the smallest subcategory containing N and closed under sub-
modules and extensions.

Proof. Set X := subextN and AssM =: {p1, . . . , pn}.
0 = M1 ∩ · · · ∩Mn (∃Mi ⊆M pi-primary),

M = M/M1 ∩ · · · ∩Mn ↪→M/M1 ⊕ · · · ⊕M/Mn,

AssM/Mi = {pi} ⊆ AssM ⊆ AssN

⇝ May assume AssM = {p}.
Suppose M /∈ X .
Write HomR(M,R/p) = ⟨f1, . . . , fm⟩.

∃ 0→M ′ →M


f1
...
fm


−−−−→ (R/p)⊕m.

(R/p)⊕m ∈ X , M /∈ X ⇒ M ′ /∈ X , AssM ′ = {p}.
Write HomR(M

′, R/p) = ⟨f ′
1, . . . , f

′
m′⟩.

∃ 0→M ′′ →M ′


f ′
1

...
f ′
m′


−−−−→ (R/p)⊕m′

.

(R/p)⊕m′ ∈ X , M ′ /∈ X ⇒ M ′′ /∈ X , AssM ′′ = {p}.
0 ̸= HomRp(Mp, κ(p)) = ⟨(f1)p, . . . , (fm)p⟩ ⇒ Mp ⊋ M ′

p

⇒ Mp ⊋ M ′
p ⊋ M ′′

p ⊋ · · · Rp-modules of finite length ⇝ contradiction. □
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2. Resolving subcategories of module categories

Definition 2.1 (Auslander-Bridger (1969)). X ⊆ modR is resolving if it satisfies

(R1) X contains projR := { f.g. projective R-modules }.
(R2) X is closed under direct summands:

M ∈ X , N ⋖M ⇒ N ∈ X .
(R3) X is closed under extensions:

0→ L→M → N → 0, L,N ∈ X ⇒ M ∈ X .
(R4) X is closed under kernels of epimorphisms:

0→ L→M → N → 0, M,N ∈ X ⇒ L ∈ X .

Remark 2.2. (1) (R3) implies
X is closed under (finite) direct sums:
M,N ∈ X ⇒ M ⊕N ∈ X .

(2) (R1) can be replaced with
(R1’) R ∈ X .

(3) (R4) can be replaced with
(R4’) X is closed under syzygies:

M ∈ X ⇒ ΩM ∈ X .

Example 2.3. The following are resolving.

(1) modR
(2) projR
(3) CM(R) := {MCM R-modules } if R is a CM local ring
(4) (Auslander-Bridger (1969))

G(R) := {Totally reflexive R-modules }
(5) For a fixed module E ∈ modR:
{M ∈ modR | TorR>0(M,E) = 0 }
{M ∈ modR | Ext>0

R (M,E) = 0 }
(6) For a fixed ideal I ⊆ R:
{M ∈ modR | grade(I,M) ≥ grade(I, R) }

(7) If R is local:
{M ∈ modR | supi≥0{βR

i (M)} <∞}
{M ∈ modR | cxR M <∞}
{M ∈ modR | CI∗dimR M ≤ 0 }

Remark 2.4 (Auslander-Bridger (1969)). Let X ⊆ modR be resolving. If

0→ N → Xn−1 → · · · → X0 →M → 0,

0→ N ′ → X ′
n−1 → · · · → X ′

0 →M → 0

are exact sequences in modR with Xi, X
′
i ∈ X ∀i, then

N ∈ X ⇔ N ′ ∈ X .

Definition 2.5. Let X ⊆ modR.
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(1) A homomorphism ϕ : X → M in modR with X ∈ X is a right X -approximation (or
an X -precover) of M if

HomR(X
′, ϕ) : HomR(X

′, X)→ HomR(X
′,M)

is surjective.

X
ϕ−−−→ Mx∀ϕ′

X ′

(2) X is contravariantly finite (or precovering) if every M ∈ modR has a right X -
approximation.

Example 2.6. The following are contravariantly finite.

(1) projR
(2) modR
(3) (Auslander-Bridger (1969))
{M ∈ modR | Ext1R(M,R) = 0 }

(4) (Auslander-Reiten (1992, 1994))
When R is Artinian and n ≥ 0:
{M ∈ modR | ∃ 0→M → P 0 → · · · → P n−1, P i ∈ projR ∀i }
{M ∈ modR | ∃ In−1 → · · · → I0 →M → 0, Ii ∈ injR ∀i }

(5) (Iyama (2003))
When R→ S module-finite:
{M ∈ modR |M is a f.g. S-module }

(6) (Auslander-Smalø (1980))
A subcategory closed under direct sums and having only finite many indecomposable
modules

Proof. Let X be such a subcategory. Set

{ indecomposable modules in X } =: {X1, . . . , Xn}.
Then X := X1 ⊕ · · · ⊕Xn ∈ X . Write HomR(X,M) = ⟨f1, . . . , fm⟩. Then

ϕ : X⊕m →M, ϕ

( x1

...
xm

)
=

m∑
i=1

fi(xi)

is a right X -approximation of M . □
(7) (Auslander-Buchweitz (1989))

CM(R) if R is CM local with canonical module

Proof. Every M ∈ modR has a CM approximation:

0→ Y → X
ϕ−→M → 0

s.t. X ∈ CM(R), idR Y <∞ ⇝ ϕ is a right CM(R)-approximation. □

Remark 2.7. TFAE for X ⊆ modR.

(1) X is contravariantly finite.
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(2) HomR(−,M) ∈ ModX is f.g. for all M ∈ modR.

Here, ModX denotes the functor category of X .

Theorem 2.8 (Auslander-Reiten (1991)). Let R be an Artin algebra with gldimR <∞.
Then

{Contravariantly finite resolving subcategories of modR }y ∼=

x(−)⊥

{Basic cotilting R-modules }/ ∼= .

Theorem 2.9 (T (2011)). Let R be a Gorenstein complete local ring. Then

{Contravariantly finite resolving subcategories of modR }

∥

{ projR, CM(R), modR }.
In particular, all resolving subcategories other than these three contain infinitely many
indecomposable modules.

More generally:

Theorem 2.10 (T (2011)). Let R be complete local. Let X ⊊ modR be contravariantly
finite resolving. Assume ∃G ∈ X s.t. Ext≫0

R (G,R) = 0 and pdR G =∞. Then R is CM,
and X = CM(R).

Proof of Theorem 2.9. Let X ⊆ modR be contravariantly finite resolving.
(1) When pdG =∞ for some G ∈ X :

R is Gorenstein⇒ Ext>dimR(G,R) = 0

⇒

{
X = modR,

X = CM(R)
by Theorem 2.10.

(2) When pdX <∞ for all X ∈ X :
May assume X ̸= modR ⇒ ∃M ∈ modR s.t. M /∈ X .
X is contravariantly finite ⇒ M has a right X -approximation ϕ : X →M .

X
ϕ−−−→ Mx∃ surj

R⊕

⇝ ϕ is surjective.

∃ 0→ Y → X
ϕ−→M → 0.

By Wakamatsu’s lemma: Ext1(N, Y ) = 0 for all N ∈ X ⇝ Ext>0(N, Y ) = 0.

N ∈ X ⇒ pdN <∞
⇒ 0 = sup{ i | Exti(N, Y ) ̸= 0 } = depthR− depthN = pdN

⇒ N ∈ projR.

Thus X = projR. □
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Corollary 2.11 (Christensen-Piepmeyer-Striuli-T (2008)). Let R be a complete local
ring with an algebraically closed coefficient field of characteristic 0 and with a nonfree
totally reflexive module. TFAE:

(1) R is a simple singularity.
(2) There are only finitely many indecomposable totally reflexive R-modules.

Proof. (2) ⇒ (1)
By Example 2.3(4) and Example 2.6(6), G(R) is contravariantly finite resolving.

∃G ∈ G(R) nonfree ⇒ pdG =∞, Ext>0(G,R) = 0

⇒ By Theorem 2.10, either holds:

(a) G(R) = modR,
(b) R is CM and G(R) = CM(R).

In either case, R is Gorenstein.
By Buchweitz-Greuel-Herzog-Knörrer-Schreyer, R is a simple singularity. □

3. Thick subcategories of triangulated categories

Definition 3.1. Let T be a triangulated category. X ⊆ T is thick if

(T1) X is closed under direct summands:
M ∈ X , N ⋖M in T ⇒ N ∈ X .

(T2) X is closed under exact triangles:
L→M → N → ΣL an exact triangle,
(2 of L,M,N) ∈ X ⇒ (3rd) ∈ X .

Remark 3.2. (1) (T2) means: X is a triangulated subcategory of T .
(2) Verdier (1977): “épaisse subcategory”

Localization of triangulated categories (Verdier quotient)

Classification of thick subcategories

Stable homotopy theory

• Ravenel (1984)
• Devinatz-Hopkins-Smith (1988)
• Hopkins-Smith (1998) (Telescope Conjecture)

Thick subcategories of the category of compact objects in the p-local stable homotopy
category

Ring theory

• Hopkins (1987)
• Neeman (1992)

Notation 3.3. Denote:
Db(R) = the bounded derived category of modR,
Dperf(R) = {Perfect complexes } ⊆ Db(R),
perfect complex = bounded complex of f.g. projective R-modules.
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Theorem 3.4 (Hopkins-Neeman).

{Thick subcategories of Dperf(R) }

Supp

y ∼=

xSupp−1

{ Specialization closed subsets of SpecR }.

For X ⊆ Dperf(R) and W ⊆ SpecR:

(1) SuppX =
∪

M∈X SuppM = { p ∈ SpecR | κ(p)⊗L
R M ̸∼= 0 },

where SuppM = SuppH(M), H(M) =
⊕

i∈ZH
i(M) ∈ modR,

(2) Supp−1W = {M ∈ Dperf(R) | SuppM ⊆ W }.

• Thomason (1997)
Extension to quasi-compact quasi-separated schemes
• Avramov-Buchweitz-Christensen-Iyengar-Piepmeyer (2010)
Thick subcategories of the derived category of perfect differential modules

Modular representation theory

• Benson-Carlson-Rickard (1997)
Thick subcategories of the stable category of finite dimensional representations of
a finite p-group
• Friedlander-Pevtsova (2007)
Extension to finite group schemes
• Benson-Iyengar-Krause (2012)
Extension to thick subcategories of Db(kG)

Definition 3.5. Let R be CM.

CM(R) =
CM(R)

projR
CM stable category of ROb(CM(R)) = Ob(CM(R)) = {MCM R-modules },

HomCM(R)(M,N) = HomR(M,N) =
HomR(M,N)

{ f | f factors through a projective module }
.

Fact 3.6 (Buchweitz (1987), Happel (1988)). CM(R) is triangulated if R is Gorenstein.

∀M ∈ CM(R), ∃ 0→M → R⊕ → N → 0.
ΣM := N ⇝ Σ : CM(R)→ CM(R) an automorphism with a quasi-inverse Ω.

0 −−−→ M −−−→ R⊕ −−−→ ΣM −−−→ 0

f

y y ∥∥∥
0 −−−→ N −−−→ C −−−→ ΣM −−−→ 0

⇝ M
f−→ N → C → ΣM an exact triangle in CM(R), cone(f) := C.

Remark 3.7. Let R be a d-dimensional CM local ring with canonical module ω and
having an isolated singularity.
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(1) Auslander-Reiten duality:

HomR(M,N) ∼= Ext1R(N, τM)∨

for M,N ∈ CM(R), where τM = HomR(Ω
dTrM,ω) is the Auslander-Reiten transla-

tion.
(2) Calabi-Yau property (⇝ Cluster theory):

If R is Gorenstein, then

HomR(M,N) ∼= HomR(N,Σd−1M)∨,

i.e., CM(R) is (d− 1)-Calabi-Yau.

Definition 3.8. Let R be a (commutative) Noetherian ring.

Dsg(R) =
Db(R)

Dperf(R)
the singularity category of R

{
Ob(Dsg(R)) = Ob(Db(R)) = {Bounded complexes of f.g. R-modules },
HomDsg(R)(M,N) = { (M s←− X

f−→ N) | s, f ∈ MorDb(R), cone(s) ∈ Dperf(R) }.

Remark 3.9. Orlov: Mirror symmetry

Fact 3.10 (Buchweitz (1987)). Dsg(R) ∼= CM(R) if R is Gorenstein.

Problem. Classify the thick subcategories of CM(R) when R is Gorenstein!

Theorem 3.11 (T (2010, 2011)). (1) Let R be a local hypersurface. Set

A = { Specialization-closed subsets of SingR },
B = {Thick subcategories of CM(R) },
C = {Thick subcategories of CM(R) containing R },
D = {Thick subcategories of modR containing R },
E = {Thick subcategories of Db(R) containing R },
F = {Resolving subcategories of modR contained in CM(R) }.

(2) Let (R,m, k) be d-dimensional Gorenstein singular (= nonregular) local ring, locally
a hypersurface on the punctured spectrum. Set

A = {Nonempty specialization-closed subsets of SingR },
B = {Thick subcategories of CM(R) containing Ωdk },
C = {Thick subcategories of CM(R) containing R,Ωdk },
D = {Thick subcategories of modR containing R,Ωdk },
E = {Thick subcategories of Db(R) containing R, k },
F = {Resolving subcategories of modR contained in CM(R) containing Ωdk }.
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In each case, A ∼= B ∼= C ∼= D ∼= E ∼= F holds. More precisely:

Exthick

Dxthick

A
NF←−−− C Fxcan

B

Remark 3.12. Recently, Stevenson extended A ∼= B in (1) to a Noetherian ring which
is locally a hypersurface. More recently, he and Krause extended C ∼= D ∼= E in (1) to
an exact category with enough projective objects.

Definition 3.13. (1) SingR = { p ∈ SpecR | Rp is singular }.
(2) A local ring R is a hypersurface if R̂ ∼= S/(f) for some complete RLR S and f ∈ S.
(3) For X ⊆ modR, NF(X ) =

∪
M∈X NF(M), where

NF(M) = { p ∈ SpecR |Mp is nonfree over Rp }.
(4) For X ⊆ Db(R), IPD(X ) =

∪
M∈X IPD(M), where

IPD(M) = { p ∈ SpecR | pdRp
Mp =∞}.

(5) For X ⊆ CM(R), SuppX =
∪

M∈X SuppM , where

SuppM = { p ∈ SpecR |Mp ̸∼= 0 in CM(Rp) }.
(6) X ⊆ modR is thick if

(a) X is closed under direct summands,
(b) X is closed under short exact sequences:

0→ L→M → N → 0 an exact sequence of f.g. modules,
(2 of L,M,N) ∈ X ⇒ (3rd) ∈ X .

(7) X ⊆ CM(R) is thick if
(a) X is closed under direct summands,
(b) X is closed under short exact sequences:

0→ L→M → N → 0 an exact sequence of MCM mods,
(2 of L,M,N) ∈ X ⇒ (3rd) ∈ X .

Corollary 3.14. Let R be a local hypersurface with an isolated singularity.

(1) {Resolving subcategories contained in CM(R) } = { projR, CM(R) }.
(2) {Thick subcategories of CM(R) } = { 0, CM(R) }.
(3) {Thick subcategories of Db(R) containing R } = {Dperf(R), Db(R) }.

Example 3.15. Let k be a field.

(1) Let R = k[[x, y]]/(x2).

CM(R) = add{R, (x), (x, yn) | n ≥ 1 }.
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Setting p = (x), m = (x, y), we have

SingR = SpecR = { p, m }.

Hence

{ Specialization-closed subsets of SingR } = { ∅, {m}, SingR }.
NF−1(∅) = projR,

NF−1({m}) = {MCM modules locally free on the punctured spectrum }
= add{R, (x, yn) | n ≥ 1 },

NF−1(SingR) = CM(R).

By Theorem 3.11(1),

{Resolving subcategories of modR contained in CM(R) }
= { projR, add{R, (x, yn) | n ≥ 1 }, CM(R) },
{Thick subcategories of CM(R) }

= { 0, add{ (x, yn) | n ≥ 1}, CM(R) }.

(2) Let R = k[[x, y, z]]/(x2, yz).

SpecR = { p, q, m },

where p = (x, y), q = (x, z) and m = (x, y, z).{
Rp
∼= k[[x, z]](x)/(x

2),

Rq
∼= k[[x, y]](x)/(x

2),
and SingR = { p, q, m }.

{Nonempty specialization-closed subsets of SingR }
= {V (p), V (q), V (p, q), V (p, q,m) }.

By Theorem 3.11(2),

#{Thick subcategories of CM(R) containing m }
= #{Resolving subcategories of modR contained in CM(R) containing m }
= 4.

Corollary 3.16 (Huneke-Wiegand (1997)). Let R be a local hypersurface. Let M,N ∈
modR.

(1) TorR≫0(M,N) = 0 ⇔ pdR M <∞ or pdR N <∞
(2) Ext≫0

R (M,N) = 0 ⇔ pdR M <∞ or idR N <∞

Proof. (1)(⇒)
M ∈ X := {X ∈ modR | TorR≫0(X,N) = 0 }.
X is a thick subcategory of modR containing R.
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By Theorem 3.11(1), X = IPD−1(IPD(X )).

pdM =∞ ⇒ m ∈ IPD(M) ⊆ IPD(X )
⇒ IPD(k) ⊆ {m} ⊆ IPD(X )
⇒ k ∈ IPD−1(IPD(X )) = X
⇒ pdN <∞.

□

Remark 3.17. Let R = k[[x, y]]/(x2, y2), where k is a commutative ring. Then

{
TorR>0(R/(x), R/(y)) = 0 = Ext>0

R (R/(x), R/(y)),

pdR R/(x) = pdR R/(y) = idR R/(y) =∞.

4. Proof of Theorem 3.11(1)

Lemma 4.1. Let T be a triangulated category and U ⊆ T a thick subcategory.

{Thick subcategories of T containing U }

π

y ∼=

x
{Thick subcategories of T /U },

where π(X ) = X/U .

In what follows, unless otherwise specified, let (R,m, k) be a local hypersurface with
dimR = d.

Proposition 4.2.

E = {Thick subcategories of Db(R) containing R }

IPD

y ∼=

x IPD−1

A = { Specialization-closed subsets of SpecR }.
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Proof.
{Thick subcategories of Db(R) containing R }∥∥∥

{Thick subcategories of Db(R) containing Dperf(R) }

Lemma 4.1

y∼=

{Thick subcategories of Dsg(R) }

Fact 3.10

y∼=

{Thick subcategories of CM(R) }

nat

y∼=

{Thick subcategories of CM(R) containing R }

Proposition 4.3 below

y∼=

{ Specialization-closed subsets of SpecR }
This sends X to IPD(X ). □

Proposition 4.3.

C = {Thick subcategories of CM(R) containing R }

NF

y ∼=

xNF−1

A = { Specialization-closed subsets of SpecR }.

Proposition 4.4 (Essential part of Proposition 4.3). Let M,N ∈ CM(R) with NF(M) ⊆
NF(N). Then

M ∈ resN,

where resN denotes the smallest resolving subcategory containing N .

Lemma 4.5. (1) Let (R,m, k) be a CM local ring with dimR = d. Let M ∈ CM(R). If
M is locally free on the punctured spectrum, then

M ∈ res Ωdk.

(2) Let R be an Artinian hypersurface. Then

{Resolving subcategories of modR } = { projR, modR }.

(3) Let R be CM local, X ⊆ CM(R) resolving, M ∈ CM(R) and W ⊆ SpecR nonempty
finite. If Mp ∈ addRp Xp for all p ∈ W , then

∃ 0→ L→ N → X → 0 an exact sequence of MCM modules

s.t.


X ∈ X ,
M is a direct summand of N,

NF(L) ⊆ NF(M),

NF(L) ∩W = ∅.
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Proof of Proposition 4.4. Set X := resN . Induction on n := dimNF(M).
(1) When n ≤ 0:

NF(M) ⊆ {m}, i.e., M is locally free on the punctured spectrum
⇝ M ∈ res(Ωdk) ⊆ X by Lemma 4.5(1)(2).

(2) When n ≥ 1:
p ∈ minNF(M) ⇒ Mp ∈ addRp Xp by the induction hypothesis.
By Lemma 4.5(3),

∃ 0→ L→ N → X → 0 s.t.


X ∈ X ,
M is a direct summand of N,

NF(L) ⊆ NF(M),

NF(L) ∩minNF(M) = ∅
⇝ dimNF(L) < n.

By the induction hypothesis L ∈ X , and hence M ∈ X . □
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