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0. INTRODUCTION
Aim. Given a category C, classify the * % % subcategories of C.

e Ring Theory

e Stable Homotopy Theory

e Modular Representation Theory
e Algebraic Geometry

Strategy. For a category C, find a commutative ring R and make a 1-1 correspondence
{ % * x subcategories of C }
f l = Tg
{+++ subsets of Spec R }.

Convention. Throughout, unless otherwise specified,

e R = commutative Noetherian ring
e mod R = the category of f.g. (finitely generated) R-modules
e subcategory = nonempty full subcategory closed under isomorphisms

e A subcategory & of a category C ~~
1. SERRE SUBCATEGORIES OF MODULE CATEGORIES
Theorem 1.1 (Gabriel (1962)).
{ Serre subcategories of mod R }

Supp J{ =] T Supp !

{ Specialization closed subsets of Spec R }
1
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Definition 1.2. X C mod R is Serre if for every exact sequence 0 - L — M — N — 0
in mod R, it holds

MeX & L,NekX.
submodules,
In other words, X is closed under ¢ quotient modules,

extensions.

Example 1.3. The following are Serre.

(1) { M € mod R | M has finite length }.
(2) {M € mod R | M is a torsion module }.
(3) {M €modR | I"M = 0 for some n > 0} for a fixed ideal I C R.

Definition 1.4. W C Spec R is specialization-closed if it satisfies

peW, pCqgeSpecR = qeW.
Remark 1.5. TFAE (The Following Are Equivalent) for W C Spec R.

(1) W is specialization-closed.
(2) W is a union of closed subsets of Spec R.

Definition 1.6. Let M € mod R, X C mod R and W C Spec R.
(1) SuppM = {p € SpecR | M, #0}.

(2) Supp X = {Uyser Supp M.

(3) Supp 'W ={M € mod R | Supp M C W }.

Example 1.7. (1) { M € mod R | M has finite length } = Supp™' Max R.
(2) {M € mod R | M is a torsion module } = Supp™'{ Prime ideals containing nonzerodivisors }.
(3) {M € mod R | I"M = 0 for some n >0} = Supp * V(I).

X CmodR Serre,

Proof of Theorem 1.1. Fix o
W C Spec R specialization-closed.

Want to show:
(1) Supp X is specialization-closed,
(2) Supp ' W is Serre,
(3) Supp Supp™' W =W,
(4) Supp ' Supp X = X.
(1) Supp X =, cx Supp M and Supp M is closed.
2)0-L—-M— N —0 = SuppM = Supp L U Supp N.
M e Supp 'W = SuppM C W
= SuppL C W and Supp N C W
= L,N € Supp ' W.
(3)(C) p € SuppSupp ' W = p € SuppM (IM € Supp *W) = pcW.
(D)peW = peSuppR/p=V(p) CW = pe& SuppSupp ' W.
(4)(2) M e X = SuppM C SuppX = M & Supp ' Supp X.



M € Supp ' Supp X

= {p1,...,pn} = Min M C Supp M C Supp X = U Supp N
Nex

=p; €SuppN; (IN, € X), N:=N,&---@® N,

= SuppM =V (p)U---UV(p,) € Supp N

= M € Serre N C X by Proposition 1.8 below.

O

Proposition 1.8 (Essential part of Theorem 1.1). Let M, N € mod R with Supp M C
Supp N. Then

M € Serre N,

where Serre N denotes the smallest Serre subcategory containing V.
In other words, M can be built from N by taking submodules, quotient modules and
extensions finitely many times.

Proof. Put X = Serre N.

peSuppM = peSuppN
= JgeMinN CAssNs.t. qCp
= 0—->R/q—> N, Ne X
= R/qe X, R/q— R/p =0
= R/peX.

0— M,y — M, — R/p; =0, R/lp, ¢ X ~ MecX. O

Remark 1.9. Let R be a commutative ring. Several extensions of Theorem 1.1:

(1) Gabriel (1962)
Localizing subcategories of Mod R if R is Noetherian
(2) Hovey (2000)
Wide subcategories of mod R if R is a quotient ring of a coherent regular ring by a
f.g. ideal
(3) Garkusha-Prest (2008)
Serre subcategories of mod R if R is coherent
Torsion classes of finite type of Mod R
(4) Krause (2008)
Wide subcategories of Mod R closed under (arbitrary) direct sums if R is Noetherian
(5) Stanley-Wang (2011)
Torsion classes and narrow subcategories of mod R if R is Noetherian
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Theorem 1.10 (T (2008)). Let R be a commutative Noetherian ring.

{ Subcategories of mod R closed under submodules and extensions }

Ass l ~ T Ass™1

{ Subsets of Spec R }.
Moreover, restricting this to Serre subcategories, one can recover Theorem 1.1.

Definition 1.11. Let M € mod R, X C mod R and W C Spec R.

(1) AssM ={p € SpecR|3IR/p — M }.
(2) Ass X = U er Ass M.
(3) Ass'W ={M cmodR | AssM C W }.

Proposition 1.12 (Essential part of Theorem 1.10). Let M, N € mod R with Ass M C
Ass N. Then

M € subext N,

where subext N denotes the smallest subcategory containing N and closed under sub-
modules and extensions.

Proof. Set X :=subext N and Ass M =: {p1,...,pn}

O=Mn---NM, (IM; C M p;-primary),
Ass M/M; = {p;} C AssM C Ass N

~» May assume Ass M = {p}.
Suppose M ¢ X.
Write Hompg(M, R/p) = (f1, .-, fm)-

(ﬁ)
30 = M — M 2 (R/p)®m.
(R/p)Pm e X, Mé X = M ¢ X, Ass M’ = {p}.
Write Hompg(M', R/p) = (f1,..., fl./).
i

!

30 - M — M Iy (R/p)®™.

(R/p)®™ c X, M'¢ X = M" ¢ X, AssM" = {p}.

0 # Hompg, (My, 5(p)) = ((f1)ps - (fm)p) = My 2 M,
= M, 2 M, 2 M) 2 - Ry-modules of finite length ~ contradiction. O]



2. RESOLVING SUBCATEGORIES OF MODULE CATEGORIES

Definition 2.1 (Auslander-Bridger (1969)). & C mod R is resolving if it satisfies

(R1) X contains proj R := {f.g. projective R-modules }.
(R2) X is closed under direct summands:
MeX N<M = NeX.
(R3) X is closed under extensions:
0O—-L—-M-—-N—=0, LNecX = MecAX.
(R4) X is closed under kernels of epimorphisms:
0O—-L—->M-—-N-—=0 MNeX = LelX.

Remark 2.2. (1) (R3) implies
X is closed under (finite) direct sums:
M,NeX = MoNeAX.
(2) (R1) can be replaced with
(R1’) Re X.
(3) (R4) can be replaced with
(R4") X is closed under syzygies:
MeX = QM e X.

Example 2.3. The following are resolving.

(1) mod R
(2) proj R
(3) CM(R) := { MCM R-modules } if R is a CM local ring
(4) (Auslander-Bridger (1969))
G(R) := { Totally reflexive R-modules }
(5) For a fixed module E € mod R:
{M €modR | Tor? (M,E) =0}
{M €modR | Ext;’(M,E) =0}
(6) For a fixed ideal I C R:
{M € mod R | grade(I, M) > grade(I, R) }
(7) If R is local:
{ M € mod R | sup;»o{Bf(M)} < oo}
{MemodR|cxgM < o0}
(M emodR | ClLdimg M <0}

Remark 2.4 (Auslander-Bridger (1969)). Let X C mod R be resolving. If

0O—+N—=>X, 11— —=>Xg—=M-—=0,
0N —->X ==X, —>M=0

are exact sequences in mod R with X;, X] € X Vi, then
NeX & N eX.

Definition 2.5. Let X € mod R.
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(1) A homomorphism ¢ : X — M in mod R with X € X is a right X-approximation (or
an X-precover) of M if

Hompg (X', ¢) : Homg(X', X) — Hompg(X', M)

is surjective.

X %5 M

[

X/
(2) X is contravariantly finite (or precovering) if every M € mod R has a right X-
approximation.

Example 2.6. The following are contravariantly finite.

(1) proj R

(2) mod R

(3) (Auslander-Bridger (1969))
{M c€modR | Extp(M,R) =0}

(4) (Auslander-Reiten (1992, 1994))
When R is Artinian and n > 0:
{MemodR |30 M — P°— ... > P! P cprojRVi}
{MemodR |31,y —--—Ip—>M—0, [, cinjR Vi}

(5) (Iyama (2003))
When R — S module-finite:
{M €modR | M is a f.g. S-module }

(6) (Auslander-Smalg (1980))
A subcategory closed under direct sums and having only finite many indecomposable
modules

Proof. Let X be such a subcategory. Set
{indecomposable modules in X } =: {X,..., X, }.
Then X == X;®--- @ X,, € X. Write Homg(X, M) = (f1,..., fm). Then

1

Tm

is a right X-approximation of M. O

(7) (Auslander-Buchweitz (1989))
CM(R) if R is CM local with canonical module

Proof. Every M € mod R has a CM approximation:

05Y 5 X5 M0
st. X € CM(R),idrY < oo ~» ¢ is a right CM(R)-approximation. O
Remark 2.7. TFAE for X C mod R.

(1) X is contravariantly finite.



(2) Homp(—, M) € Mod X is f.g. for all M € mod R.
Here, Mod X denotes the functor category of X.

Theorem 2.8 (Auslander-Reiten (1991)). Let R be an Artin algebra with gldim R < occ.
Then

{ Contravariantly finite resolving subcategories of mod R }
| - o
{ Basic cotilting R-modules }/ = .
Theorem 2.9 (T (2011)). Let R be a Gorenstein complete local ring. Then

{ Contravariantly finite resolving subcategories of mod R }

I
{proj R, CM(R), mod R }.
In particular, all resolving subcategories other than these three contain infinitely many
indecomposable modules.

More generally:

Theorem 2.10 (T (2011)). Let R be complete local. Let X C mod R be contravariantly
finite resolving. Assume 3G € X s.t. Ext;°(G, R) = 0 and pd G = co. Then R is CM,
and X = CM(R).
Proof of Theorem 2.9. Let X C mod R be contravariantly finite resolving.
(1) When pd G = oo for some G € X
R is Gorenstein = Ext” ™ #(G R) =0
A =mod &, by Theorem 2.10.
X = CM(R)

(2) When pd X < oo for all X € &
May assume X # mod R = IM € mod R st. M ¢ X.
X is contravariantly finite = M has a right X-approximation ¢ : X — M.

X 25 M
TEI surj
R®

~ (¢ is surjective.
30-Y X5 Mo
By Wakamatsu’s lemma: Ext'(N,Y) =0 forall N € X ~ Ext™(N,Y) =0.

NeX = pdN <
= 0=sup{i|Ext'(N,Y) # 0} = depth R — depth N = pd N
= N € proj R.
Thus X = proj R. U
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Corollary 2.11 (Christensen-Piepmeyer-Striuli-T (2008)). Let R be a complete local
ring with an algebraically closed coefficient field of characteristic 0 and with a nonfree
totally reflexive module. TFAE:

(1) R is a simple singularity.
(2) There are only finitely many indecomposable totally reflexive R-modules.
Proof. (2) = (1)

By Example 2.3(4) and Example 2.6(6), G(R) is contravariantly finite resolving.

3G € G(R) nonfree = pdG = oo, Ext™(G, R) =0
= By Theorem 2.10, either holds:

(a) G(R) = mod R,
(b) R is CM and G(R) = CM(R).

In either case, R is Gorenstein.

By Buchweitz-Greuel-Herzog-Knorrer-Schreyer, R is a simple singularity. 0

3. THICK SUBCATEGORIES OF TRIANGULATED CATEGORIES

Definition 3.1. Let 7 be a triangulated category. X C T is thick if

(T1) X is closed under direct summands:
MeX, N<MinT = NecAX.
(T2) X is closed under exact triangles:
L —- M — N — XL an exact triangle,
(2of LLM,N)e X = (3rd) € X.

Remark 3.2. (1) (T2) means: X is a triangulated subcategory of T.
(2) Verdier (1977): “épaisse subcategory”
Localization of triangulated categories (Verdier quotient)

‘Classiﬁcation of thick Subcategories‘

Stable homotopy theory

e Ravenel (1984)
e Devinatz-Hopkins-Smith (1988)
e Hopkins-Smith (1998) (Telescope Conjecture)

Thick subcategories of the category of compact objects in the p-local stable homotopy
category

Ring theory
e Hopkins (1987)
e Neeman (1992)

Notation 3.3. Denote:
DP(R) = the bounded derived category of mod R,
Dpert(R) = { Perfect complexes } C D°(R),
perfect complex = bounded complex of f.g. projective R-modules.



Theorem 3.4 (Hopkins-Neeman).
{ Thick subcategories of Dpet(R) }

Supp J{ = T Supp~!

{ Specialization closed subsets of Spec R }.
For X C Dyes(R) and W C Spec R:
(1) Supp X = Uy Supp M = {p € Spec R | r(p) @ M # 0},
where Supp M = Supp H(M), H(M) = @,., H'(M) € mod R,
(2) Supp ' W ={M ¢ Dpert(R) | Supp M C W }.

e Thomason (1997)
Extension to quasi-compact quasi-separated schemes
e Avramov-Buchweitz-Christensen-Iyengar-Piepmeyer (2010)
Thick subcategories of the derived category of perfect differential modules

Modular representation theory
e Benson-Carlson-Rickard (1997)

Thick subcategories of the stable category of finite dimensional representations of
a finite p-group
e Friedlander-Pevtsova (2007)
Extension to finite group schemes
e Benson-Iyengar-Krause (2012)
Extension to thick subcategories of DP(kG)

Definition 3.5. Let R be CM.
CM(R) = CM@ CM stable category of R
proj R
Ob(CM(R)) = Ob(CM(R)) = { MCM R-modules },

Hompg(M, N)
H M,N)=H M,N) = .
omanr) (M, N) omp(M, N) { | f factors through a projective module }

Fact 3.6 (Buchweitz (1987), Happel (1988)). CM(R) is triangulated if R is Gorenstein.

VM e CM(R), 30 - M — R® - N — 0.
YM:=N ~» ¥:CM(R) — CM(R) an automorphism with a quasi-inverse 2.

0 s M R® s XM —— 0
IR |
0 > N C > XM —— 0

~ ML N C— SM an exact triangle in CM(R), cone(f) := C.

Remark 3.7. Let R be a d-dimensional CM local ring with canonical module w and
having an isolated singularity.
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(1) Auslander-Reiten duality:
Hom (M, N) = ExtR(N,7M)"

for M, N € CM(R), where 7TM = Hompg(Q4TrM,w) is the Auslander-Reiten transla-
tion.

(2) Calabi-Yau property (~» Cluster theory):
If R is Gorenstein, then

Hom (M, N) = Homp(N, 51 M)Y,
i.e., CM(R) is (d — 1)-Calabi-Yau.
Definition 3.8. Let R be a (commutative) Noetherian ring.

D" (R)

Dsg (R) = Dperf (R)

the singularity category of R

Ob(Dg(R)) = Ob(DP(R)) = { Bounded complexes of f.g. R-modules },
Homp,, (s (M, N) = { (M < X L N) | s, f € MorDP(R), cone(s) € Dyert(R) }.

Remark 3.9. Orlov: Mirror symmetry

Fact 3.10 (Buchweitz (1987)). Dy (R) = CM(R) if R is Gorenstein.
Problem. Classify the thick subcategories of CM(R) when R is Gorenstein!
Theorem 3.11 (T (2010, 2011)). (1) Let R be a local hypersurface. Set

A = { Specialization-closed subsets of Sing R },
B = { Thick subcategories of CM(R) },
C' = { Thick subcategories of CM(R) containing R },
D = { Thick subcategories of mod R containing R },
E = { Thick subcategories of D”(R) containing R },
F = { Resolving subcategories of mod R contained in CM(R) }.
(2) Let (R, m, k) be d-dimensional Gorenstein singular (= nonregular) local ring, locally
a hypersurface on the punctured spectrum. Set
A = { Nonempty specialization-closed subsets of Sing R },
B = { Thick subcategories of CM(R) containing Q% },
C = { Thick subcategories of CM(R) containing R, Q% },
D = { Thick subcategories of mod R containing R, Q%% },
E = { Thick subcategories of D"(R) containing R, k },
F = { Resolving subcategories of mod R contained in CM(R) containing Q% }.
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In each case, AZ B=(C=D=FE = F holds. More precisely:

Remark 3.12. Recently, Stevenson extended A = B in (1) to a Noetherian ring which
is locally a hypersurface. More recently, he and Krause extended C =2 D = E in (1) to
an exact category with enough projective objects.

Definition 3.13. (1) Sing R = {p € Spec R | R, is singular }.
(2) A local ring R is a hypersurface if R = S/(f) for some complete RLR S and f € S.
(3) For X € mod R, NF(&X) = ;e NF(M), where
NF(M) = {p € Spec R | M,, is nonfree over R, }.
(4) For X C DP(R), IPD(X) = U, IPD(M), where
IPD(M) = {p € Spec R | pdp, M, = 00 }.
(5) For X € CM(R), Supp X = [J;cr Supp M, where
Supp M = {p € Spec R | M, % 0 in CM(R;) }.

(6) X € mod R is thick if
(a) X is closed under direct summands,
(b) X is closed under short exact sequences:
0—L— M — N — 0 an exact sequence of f.g. modules,
(2of L,M,N) e X = (3rd) € X.
(7) X C CM(R) is thick if
(a) X is closed under direct summands,
(b) X is closed under short exact sequences:
0—L— M — N — 0 an exact sequence of MCM mods,
(2of LM,N)e X = (3rd) € X

Corollary 3.14. Let R be a local hypersurface with an isolated singularity.

(1) {Resolving subcategories contained in CM(R) } = { proj R, CM(R) }.
(2) { Thick subcategories of CM(R) } = {0, CM(R) }.
(3) { Thick subcategories of DP(R) containing R} = { Dpet(R), DP(R) }.

Example 3.15. Let k be a field.
(1) Let R = k[[z,y]]/(2?).
CM(R) = add{ R, (x), (z,y") |n>1}.
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Setting p = (x), m = (z,y), we have
Sing R = Spec R = {p, m }.
Hence

{ Specialization-closed subsets of Sing R} = {0, {m}, Sing R }.

NF~}(0) = proj R,

NF~'({m}) = { MCM modules locally free on the punctured spectrum }
= add{ R, (z,y") |n > 1},

NF~!(Sing R) = CM(R).

By Theorem 3.11(1),

{ Resolving subcategories of mod R contained in CM(R) }
= {proj R, add{ R, (z,y") |n>1}, CM(R) },

{ Thick subcategories of CM(R) }
= {0, add{(z,y") [n > 1}, CM(R) }.

(2) Let R = k[[z,y, 2]]/ (2%, y2).

Spec R = {p, q, m},
where p= (I7y), q= (JI,Z) and m = (‘raya Z)

?%%Hmdmmﬁ%

By ke, gl /e, " SmeR=1p g m)

{ Nonempty specialization-closed subsets of Sing R }
={V(p), V(a), V(p,a), V(p.q,m) }.
By Theorem 3.11(2),

#{ Thick subcategories of CM(R) containing m }
= #{ Resolving subcategories of mod R contained in CM(R) containing m }
= 4.
Corollary 3.16 (Huneke-Wiegand (1997)). Let R be a local hypersurface. Let M, N €
mod R.
(1) TorZ (M,N)=0 & pdz M < oo or pdp N < 00
(2) Ext3°(M,N) =0 < pdy M < oo or idg N < o0

Proof. (1)(=)
MeX :={X emodR | Tor (X,N)=0}.
X is a thick subcategory of mod R containing R.



By Theorem 3.11(1), X = IPD™'(IPD(&X)).

pd M =00 = m e IPD(M) C IPD(X)
= IPD(k) C {m} C IPD(X)
= k€ IPD HIPD(X)) = X
= pdN < .

Remark 3.17. Let R = k[[z,y]]/(2?,y*), where k is a commutative ring. Then

Torfy(R/(x), R/(y)) = 0 = Extz’(R/(z), R/ (),
pdg /() = pdg R/(y) = idr R/(y) = oo.

4. PROOF OF THEOREM 3.11(1)

Lemma 4.1. Let 7 be a triangulated category and & C T a thick subcategory.
{ Thick subcategories of 7 containing U }

{ Thick subcategories of T /U },

where m(X) = X /U.
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In what follows, unless otherwise specified, let (R, m, k) be a local hypersurface with

dim R =d.

Proposition 4.2.

E = { Thick subcategories of D’(R) containing R }

IPD l o T IPD—!

A = { Specialization-closed subsets of Spec R }.
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Proof.
{ Thick subcategories of D’(R) containing R }
{ Thick subcategories of DP(R) containing Dpe(R) }
Lemma 4.1 | &
{ Thick subcategories of Dy, (R) }
Fact 3.10 | &
{ Thick subcategories of CM(R) }
nat | =
{ Thick subcategories of CM(R) containing R }
Proposition 4.3 below | =
{ Specialization-closed subsets of Spec R }
This sends X' to IPD(X). O

Proposition 4.3.
C' = { Thick subcategories of CM(R) containing R }

NFl o TNF”

A = { Specialization-closed subsets of Spec R }.

Proposition 4.4 (Essential part of Proposition 4.3). Let M, N € CM(R) with NF(M) C
NF(N). Then
M €res N,

where res N denotes the smallest resolving subcategory containing V.

Lemma 4.5. (1) Let (R, m, k) be a CM local ring with dim R = d. Let M € CM(R). If
M is locally free on the punctured spectrum, then

M € res Q.
(2) Let R be an Artinian hypersurface. Then
{ Resolving subcategories of mod R } = { proj R, mod R }.

(3) Let R be CM local, X C CM(R) resolving, M € CM(R) and W C Spec R nonempty
finite. If M, € addg, &, for all p € W, then

30 - L - N — X — 0 an exact sequence of MCM modules

X edX,

M is a direct summand of N,
NF(L) C NF(M),
NF(L)NnW = .

s.t.
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Proof of Proposition 4.4. Set X :=res N. Induction on n := dim NF(M).
(1) When n < 0:

NF(M) C {m}, i.e., M is locally free on the punctured spectrum

~ M € res(Q%k) C X by Lemma 4.5(1)(2).
(2) When n > 1:

p € minNF(M) = M, € addg, &, by the induction hypothesis.

By Lemma 4.5(3),

XeX,

M is a direct summand of N,
NF(L) C NF(M),

NF(L) Nmin NF(M) =0

40 - L - N —- X — 0 s.t.

~ dimNF(L) < n.
By the induction hypothesis L € X', and hence M € X. 0
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