CLASSIFICATION PROBLEMS OF SUBCATEGORIES

RYO TAKAHASHI

Contents

0.	Introduction	1
1.	Serre subcategories of module categories	1
2.	Resolving subcategories of module categories	5
3.	Thick subcategories of triangulated categories	8
4.	Proof of Theorem $3.11(1)$	13
References		15

0. INTRODUCTION

Aim. Given a category C, classify the * * * subcategories of C.

- Ring Theory
- Stable Homotopy Theory
- Modular Representation Theory
- Algebraic Geometry

Strategy. For a category \mathcal{C} , find a commutative ring R and make a 1-1 correspondence

$$\{ * * * \text{ subcategories of } \mathcal{C} \}$$
$$f \downarrow \cong \bigcap g$$
$$\{ +++ \text{ subsets of } \operatorname{Spec} R \}.$$

Convention. Throughout, unless otherwise specified,

- R =commutative Noetherian ring
- mod R = the category of f.g. (finitely generated) R-modules
- subcategory = nonempty full subcategory closed under isomorphisms
- A subcategory \mathcal{X} of a category $\mathcal{C} \rightsquigarrow | \mathcal{X} \subseteq \mathcal{C} |$

1. Serre subcategories of module categories

Theorem 1.1 (Gabriel (1962)).

 $\{$ Serre subcategories of mod $R \}$

$$\operatorname{Supp} \downarrow \cong \bigcap \operatorname{Supp}^{-1}$$

 $\{$ Specialization closed subsets of Spec $R \}$

Definition 1.2. $\mathcal{X} \subseteq \text{mod } R$ is <u>Serre</u> if for every exact sequence $0 \to L \to M \to N \to 0$ in mod R, it holds

$$M \in \mathcal{X} \iff L, N \in \mathcal{X}.$$
In other words, \mathcal{X} is closed under
$$\begin{cases} \text{submodules,} \\ \text{quotient modules,} \\ \text{extensions.} \end{cases}$$

Example 1.3. The following are Serre.

(1) $\{ M \in \text{mod } R \mid M \text{ has finite length } \}.$

(2) $\{ M \in \text{mod } R \mid M \text{ is a torsion module } \}.$

(3) { $M \in \text{mod } R \mid I^n M = 0$ for some $n \ge 0$ } for a fixed ideal $I \subseteq R$.

Definition 1.4. $W \subseteq \operatorname{Spec} R$ is specialization-closed if it satisfies

 $\mathfrak{p} \in W, \ \mathfrak{p} \subseteq \mathfrak{q} \in \operatorname{Spec} R \ \Rightarrow \ \mathfrak{q} \in W.$

Remark 1.5. TFAE (The Following Are Equivalent) for $W \subseteq \operatorname{Spec} R$.

(1) W is specialization-closed.

(2) W is a union of closed subsets of Spec R.

Definition 1.6. Let $M \in \text{mod } R$, $\mathcal{X} \subseteq \text{mod } R$ and $W \subseteq \text{Spec } R$.

- (1) Supp $M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \neq 0 \}.$
- (2) Supp $\mathcal{X} = \bigcup_{M \in \mathcal{X}} \text{Supp } M$.

(3) $\operatorname{Supp}^{-1} W = \{ M \in \operatorname{mod} R \mid \operatorname{Supp} M \subseteq W \}.$

Example 1.7. (1) $\{M \in \text{mod } R \mid M \text{ has finite length}\} = \text{Supp}^{-1} \text{Max } R.$

(2) { $M \in \text{mod } R \mid M$ is a torsion module } = Supp^{-1} { Prime ideals containing nonzerodivisors }.

(3) { $M \in \operatorname{mod} R \mid I^n M = 0$ for some $n \ge 0$ } = Supp⁻¹ V(I).

Proof of Theorem 1.1. Fix $\begin{cases} \mathcal{X} \subseteq \mod R & \text{Serre,} \\ W \subseteq \operatorname{Spec} R & \text{specialization-closed.} \end{cases}$

Want to show:

- (1) $\operatorname{Supp} \mathcal{X}$ is specialization-closed,
- (2) $\operatorname{Supp}^{-1} W$ is Serre,
- (3) Supp Supp⁻¹ W = W,
- (4) $\operatorname{Supp}^{-1} \operatorname{Supp} \mathcal{X} = \mathcal{X}.$
 - (1) Supp $\mathcal{X} = \bigcup_{M \in \mathcal{X}}$ Supp M and Supp M is closed.
 - (2) $0 \to L \to M \to N \to 0 \Rightarrow \operatorname{Supp} M = \operatorname{Supp} L \cup \operatorname{Supp} N.$

 $M \in \operatorname{Supp}^{-1} W \Rightarrow \operatorname{Supp} M \subseteq W$ $\Rightarrow \operatorname{Supp} L \subseteq W \text{ and } \operatorname{Supp} N \subseteq W$ $\Rightarrow L, N \in \operatorname{Supp}^{-1} W.$

 $(3)(\subseteq) \mathfrak{p} \in \operatorname{Supp} \operatorname{Supp}^{-1} W \Rightarrow \mathfrak{p} \in \operatorname{Supp} M \ (\exists M \in \operatorname{Supp}^{-1} W) \Rightarrow \mathfrak{p} \in W.$

 $(\supseteq) \mathfrak{p} \in W \Rightarrow \mathfrak{p} \in \operatorname{Supp} R/\mathfrak{p} = V(\mathfrak{p}) \subseteq W \Rightarrow \mathfrak{p} \in \operatorname{Supp} \operatorname{Supp}^{-1} W.$

 $(4)(\supseteq) \ M \in \mathcal{X} \ \Rightarrow \ \operatorname{Supp} M \subseteq \operatorname{Supp} \mathcal{X} \ \Rightarrow \ M \in \operatorname{Supp}^{-1} \operatorname{Supp} \mathcal{X}.$

 (\subseteq)

$$M \in \operatorname{Supp}^{-1} \operatorname{Supp} \mathcal{X}$$

$$\Rightarrow \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\} = \operatorname{Min} M \subseteq \operatorname{Supp} M \subseteq \operatorname{Supp} \mathcal{X} = \bigcup_{N \in \mathcal{X}} \operatorname{Supp} N$$

$$\Rightarrow \mathfrak{p}_i \in \operatorname{Supp} N_i \ (\exists N_i \in \mathcal{X}), \ N := N_1 \oplus \dots \oplus N_n$$

$$\Rightarrow \operatorname{Supp} M = V(\mathfrak{p}_1) \cup \dots \cup V(\mathfrak{p}_n) \subseteq \operatorname{Supp} N$$

$$\Rightarrow M \in \operatorname{Serre} N \subseteq \mathcal{X} \text{ by Proposition 1.8 below.}$$

Proposition 1.8 (Essential part of Theorem 1.1). Let $M, N \in \text{mod } R$ with $\text{Supp } M \subseteq \text{Supp } N$. Then

$$M \in \operatorname{Serre} N$$

where Serre N denotes the smallest Serre subcategory containing N. In other words, M can be built from N by taking submodules, quotient modules and extensions finitely many times.

Proof. Put $\mathcal{X} = \text{Serre } N$.

$$\begin{split} \mathfrak{p} \in \operatorname{Supp} M &\Rightarrow \mathfrak{p} \in \operatorname{Supp} N \\ &\Rightarrow \exists \mathfrak{q} \in \operatorname{Min} N \subseteq \operatorname{Ass} N \text{ s.t. } \mathfrak{q} \subseteq \mathfrak{p} \\ &\Rightarrow 0 \to R/\mathfrak{q} \to N, \ N \in \mathcal{X} \\ &\Rightarrow R/\mathfrak{q} \in \mathcal{X}, \ R/\mathfrak{q} \to R/\mathfrak{p} \to 0 \\ &\Rightarrow R/\mathfrak{p} \in \mathcal{X}. \end{split}$$

 $\exists 0 = M_0 \subsetneq \cdots \subsetneq M_n = M \text{ s.t. } M_i/M_{i-1} \cong R/\mathfrak{p}_i, \ \mathfrak{p}_i \in \text{Supp } M. \\ 0 \to M_{i-1} \to M_i \to R/\mathfrak{p}_i \to 0, \ R/\mathfrak{p}_i \in \mathcal{X} \ \rightsquigarrow \ M \in \mathcal{X}.$

Remark 1.9. Let R be a commutative ring. Several extensions of Theorem 1.1:

(1) Gabriel (1962)

Localizing subcategories of Mod R if R is Noetherian

- (2) Hovey (2000)Wide subcategories of mod R if R is a quotient ring of a coherent regular ring by a f.g. ideal
- (3) Garkusha-Prest (2008) Serre subcategories of mod R if R is coherent Torsion classes of finite type of Mod R
- (4) Krause (2008)
 Wide subcategories of Mod R closed under (arbitrary) direct sums if R is Noetherian
 (5) Stanley-Wang (2011)

Torsion classes and narrow subcategories of $\operatorname{mod} R$ if R is Noetherian

Theorem 1.10 (T (2008)). Let R be a commutative Noetherian ring.

{ Subcategories of mod R closed under submodules and extensions }

$$Ass \downarrow \cong \bigwedge Ass^{-1} \\ \{ Subsets of Spec R \}$$

Moreover, restricting this to Serre subcategories, one can recover Theorem 1.1.

Definition 1.11. Let $M \in \text{mod } R$, $\mathcal{X} \subseteq \text{mod } R$ and $W \subseteq \text{Spec } R$.

(1) Ass $M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \exists R/\mathfrak{p} \hookrightarrow M \}.$

- (2) Ass $\mathcal{X} = \bigcup_{M \in \mathcal{X}} Ass M$.
- (3) $\operatorname{Ass}^{-1} W = \{ M \in \operatorname{mod} R \mid \operatorname{Ass} M \subseteq W \}.$

Proposition 1.12 (Essential part of Theorem 1.10). Let $M, N \in \text{mod } R$ with Ass $M \subseteq \text{Ass } N$. Then

$$M \in \operatorname{subext} N$$

where subext N denotes the smallest subcategory containing N and closed under submodules and extensions.

Proof. Set $\mathcal{X} := \text{subext } N$ and Ass $M =: \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}.$

$$\begin{cases} 0 = M_1 \cap \dots \cap M_n \ (\exists M_i \subseteq M \ \mathfrak{p}_i \text{-primary}), \\ M = M/M_1 \cap \dots \cap M_n \hookrightarrow M/M_1 \oplus \dots \oplus M/M_n, \\ \operatorname{Ass} M/M_i = \{\mathfrak{p}_i\} \subseteq \operatorname{Ass} M \subseteq \operatorname{Ass} N \end{cases}$$

 $\stackrel{\text{$\sim \rightarrow $May assume Ass $M = \{ \mathfrak{p} \}.$} \\ \text{Suppose $M \notin \mathcal{X}$.} \\ \text{Write } \operatorname{Hom}_{R}(M, R/\mathfrak{p}) = \langle f_{1}, \dots, f_{m} \rangle.$

$$\exists 0 \to M' \to M \xrightarrow{\begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}} (R/\mathfrak{p})^{\oplus m}.$$

 $(R/\mathfrak{p})^{\oplus m} \in \mathcal{X}, \ M \notin \mathcal{X} \Rightarrow M' \notin \mathcal{X}, \ \mathrm{Ass} \ M' = \{\mathfrak{p}\}.$ Write $\mathrm{Hom}_R(M', R/\mathfrak{p}) = \langle f'_1, \dots, f'_{m'} \rangle.$

$$\exists 0 \to M'' \to M' \xrightarrow{\begin{pmatrix} f'_1 \\ \vdots \\ f'_{m'} \end{pmatrix}} (R/\mathfrak{p})^{\oplus m'}.$$

$$\begin{array}{l} (R/\mathfrak{p})^{\oplus m'} \in \mathcal{X}, \ M' \notin \mathcal{X} \ \Rightarrow \ M'' \notin \mathcal{X}, \ \mathrm{Ass} \ M'' = \{\mathfrak{p}\}. \\ 0 \neq \mathrm{Hom}_{R_\mathfrak{p}}(M_\mathfrak{p}, \kappa(\mathfrak{p})) = \langle (f_1)_\mathfrak{p}, \dots, (f_m)_\mathfrak{p} \rangle \ \Rightarrow \ M_\mathfrak{p} \supsetneq M'_\mathfrak{p} \\ \Rightarrow \ M_\mathfrak{p} \supsetneq M'_\mathfrak{p} \supsetneq M''_\mathfrak{p} \supsetneq \cdots \ R_\mathfrak{p} \text{-modules of finite length} \ \rightsquigarrow \ \mathrm{contradiction.} \end{array}$$

Definition 2.1 (Auslander-Bridger (1969)). $\mathcal{X} \subseteq \mod R$ is resolving if it satisfies

- (R1) \mathcal{X} contains proj $R := \{ \text{ f.g. projective } R \text{-modules} \}.$
- (R2) \mathcal{X} is closed under direct summands:
- $M \in \mathcal{X}, \ N \lessdot M \Rightarrow N \in \mathcal{X}.$ (R3) \mathcal{X} is closed under extensions:
- $0 \to L \to M \to N \to 0, \ L, N \in \mathcal{X} \ \Rightarrow \ M \in \mathcal{X}.$
- (R4) \mathcal{X} is closed under kernels of epimorphisms: $0 \to L \to M \to N \to 0, \ M, N \in \mathcal{X} \implies L \in \mathcal{X}.$
- **Remark 2.2.** (1) (R3) implies \mathcal{X} is closed under (finite) direct sums: $M, N \in \mathcal{X} \Rightarrow M \oplus N \in \mathcal{X}.$
- (2) (R1) can be replaced with (R1') $R \in \mathcal{X}$.
- (3) (R4) can be replaced with (R4') \mathcal{X} is closed under syzygies: $M \in \mathcal{X} \Rightarrow \Omega M \in \mathcal{X}.$

Example 2.3. The following are resolving.

- (1) $\mod R$
- (2) $\operatorname{proj} R$
- (3) $CM(R) := \{MCM R modules\}$ if R is a CM local ring
- (4) (Auslander-Bridger (1969)) $G(R) := \{ \text{ Totally reflexive } R \text{-modules} \}$
- (5) For a fixed module $E \in \text{mod } R$: $\{M \in \text{mod } R \mid \text{Tor}_{>0}^{R}(M, E) = 0\}$ $\{M \in \text{mod } R \mid \text{Ext}_{R}^{>0}(M, E) = 0\}$
- (6) For a fixed ideal $I \subseteq R$: $\{M \in \text{mod } R \mid \text{grade}(I, M) \ge \text{grade}(I, R) \}$ (7) If R is local: $\{M \in \text{mod } R \mid \sup_{i \ge 0} \{\beta_i^R(M)\} < \infty \}$ $\{M \in \text{mod } R \mid \operatorname{cx}_R M < \infty \}$ $\{M \in \text{mod } R \mid \operatorname{CI}_* \dim_R M \le 0 \}$

Remark 2.4 (Auslander-Bridger (1969)). Let $\mathcal{X} \subseteq \mod R$ be resolving. If

$$0 \to N \to X_{n-1} \to \dots \to X_0 \to M \to 0,$$

$$0 \to N' \to X'_{n-1} \to \dots \to X'_0 \to M \to 0$$

are exact sequences in mod R with $X_i, X'_i \in \mathcal{X} \ \forall i$, then

$$N \in \mathcal{X} \Leftrightarrow N' \in \mathcal{X}.$$

Definition 2.5. Let $\mathcal{X} \subseteq \mod R$.

(1) A homomorphism $\phi : X \to M$ in mod R with $X \in \mathcal{X}$ is a right \mathcal{X} -approximation (or an \mathcal{X} -precover) of M if

$$\operatorname{Hom}_R(X',\phi):\operatorname{Hom}_R(X',X)\to\operatorname{Hom}_R(X',M)$$

is surjective.

(2) \mathcal{X} is contravariantly finite (or precovering) if every $M \in \text{mod } R$ has a right \mathcal{X} -approximation.

Example 2.6. The following are contravariantly finite.

- (1) $\operatorname{proj} R$
- (2) $\mod R$
- (3) (Auslander-Bridger (1969)) { $M \in \text{mod } R \mid \text{Ext}_{R}^{1}(M, R) = 0$ }
- (4) (Auslander-Reiten (1992, 1994)) When R is Artinian and $n \ge 0$: $\{M \in \text{mod } R \mid \exists 0 \to M \to P^0 \to \dots \to P^{n-1}, P^i \in \text{proj } R \forall i \}$ $\{M \in \text{mod } R \mid \exists I_{n-1} \to \dots \to I_0 \to M \to 0, I_i \in \text{inj } R \forall i \}$
- (5) (Iyama (2003)) When $R \to S$ module-finite: $\{ M \in \text{mod } R \mid M \text{ is a f.g. } S\text{-module} \}$

(6) (Auslander-Smalø (1980))
 A subcategory closed under direct sums and having only finite many indecomposable modules

Proof. Let \mathcal{X} be such a subcategory. Set

{ indecomposable modules in \mathcal{X} } =: { X_1, \ldots, X_n }.

Then $X := X_1 \oplus \cdots \oplus X_n \in \mathcal{X}$. Write $\operatorname{Hom}_R(X, M) = \langle f_1, \ldots, f_m \rangle$. Then

$$\phi: X^{\oplus m} \to M, \ \phi\left(\begin{array}{c} x_1\\ \vdots\\ x_m\end{array}\right) = \sum_{i=1}^m f_i(x_i)$$

is a right \mathcal{X} -approximation of M.

(7) (Auslander-Buchweitz (1989))

CM(R) if R is CM local with canonical module

Proof. Every $M \in \text{mod } R$ has a CM approximation:

$$0 \to Y \to X \xrightarrow{\phi} M \to 0$$

s.t. $X \in CM(R)$, $id_R Y < \infty \rightsquigarrow \phi$ is a right CM(R)-approximation.

Remark 2.7. TFAE for $\mathcal{X} \subseteq \mod R$.

(1) \mathcal{X} is contravariantly finite.

6

(2) $\operatorname{Hom}_R(-, M) \in \operatorname{Mod} \mathcal{X}$ is f.g. for all $M \in \operatorname{mod} R$.

Here, $\operatorname{Mod} \mathcal{X}$ denotes the functor category of \mathcal{X} .

Theorem 2.8 (Auslander-Reiten (1991)). Let R be an Artin algebra with gldim $R < \infty$. Then

{ Contravariantly finite resolving subcategories of mod R }

 $\{ \text{Basic cotilting } R \text{-modules } \} / \cong .$

Theorem 2.9 (T (2011)). Let R be a Gorenstein complete local ring. Then

{ Contravariantly finite resolving subcategories of mod R }

 $\{\operatorname{proj} R, \operatorname{CM}(R), \operatorname{mod} R\}.$

In particular, all resolving subcategories other than these three contain infinitely many indecomposable modules.

More generally:

Theorem 2.10 (T (2011)). Let R be complete local. Let $\mathcal{X} \subseteq \mod R$ be contravariantly finite resolving. Assume $\exists G \in \mathcal{X}$ s.t. $\operatorname{Ext}_{R}^{\gg 0}(G, R) = 0$ and $\operatorname{pd}_{R} G = \infty$. Then R is CM, and $\mathcal{X} = \operatorname{CM}(R)$.

Proof of Theorem 2.9. Let $\mathcal{X} \subseteq \mod R$ be contravariantly finite resolving. (1) When $\operatorname{pd} G = \infty$ for some $G \in \mathcal{X}$:

$$R \text{ is Gorenstein} \Rightarrow \operatorname{Ext}^{\operatorname{>dim} R}(G, R) = 0$$
$$\Rightarrow \begin{cases} \mathcal{X} = \operatorname{mod} R, \\ \mathcal{X} = \operatorname{CM}(R) \end{cases} \text{ by Theorem 2.10.} \end{cases}$$

(2) When $\operatorname{pd} X < \infty$ for all $X \in \mathcal{X}$:

May assume $\mathcal{X} \neq \mod R \Rightarrow \exists M \in \mod R \text{ s.t. } M \notin \mathcal{X}.$

 \mathcal{X} is contravariantly finite $\Rightarrow M$ has a right \mathcal{X} -approximation $\phi: X \to M$.

$$\begin{array}{ccc} X & \stackrel{\phi}{\longrightarrow} & M \\ & & & \uparrow^{\exists \, \text{surj}} \\ & & R^{\oplus} \end{array}$$

 $\rightsquigarrow \phi$ is surjective.

$$\exists 0 \to Y \to X \xrightarrow{\phi} M \to 0.$$

By Wakamatsu's lemma: $\operatorname{Ext}^{1}(N, Y) = 0$ for all $N \in \mathcal{X} \rightsquigarrow \operatorname{Ext}^{>0}(N, Y) = 0$.

$$N \in \mathcal{X} \Rightarrow \operatorname{pd} N < \infty$$

$$\Rightarrow 0 = \sup\{i \mid \operatorname{Ext}^{i}(N, Y) \neq 0\} = \operatorname{depth} R - \operatorname{depth} N = \operatorname{pd} N$$

$$\Rightarrow N \in \operatorname{proj} R.$$

Thus $\mathcal{X} = \operatorname{proj} R$.

7

Corollary 2.11 (Christensen-Piepmeyer-Striuli-T (2008)). Let R be a complete local ring with an algebraically closed coefficient field of characteristic 0 and with a nonfree totally reflexive module. TFAE:

(1) R is a simple singularity.

(2) There are only finitely many indecomposable totally reflexive R-modules.

Proof. (2) \Rightarrow (1) By Example 2.3(4) and Example 2.6(6), G(R) is contravariantly finite resolving. $\exists G \in G(R) \text{ nonfree } \Rightarrow \text{ pd} G = \infty, \text{ Ext}^{>0}(G, R) = 0$

 \Rightarrow By Theorem 2.10, either holds:

(a) $G(R) = \mod R$,

(b) R is CM and G(R) = CM(R).

In either case, R is Gorenstein.

By Buchweitz-Greuel-Herzog-Knörrer-Schreyer, R is a simple singularity.

3. THICK SUBCATEGORIES OF TRIANGULATED CATEGORIES

Definition 3.1. Let \mathcal{T} be a triangulated category. $\mathcal{X} \subseteq \mathcal{T}$ is <u>thick</u> if

(T1) \mathcal{X} is closed under direct summands: $M \in \mathcal{X}, N \lessdot M$ in $\mathcal{T} \Rightarrow N \in \mathcal{X}$.

(T2) \mathcal{X} is closed under exact triangles: $L \to M \to N \to \Sigma L$ an exact triangle, (2 of $L, M, N) \in \mathcal{X} \Rightarrow (3rd) \in \mathcal{X}$.

Remark 3.2. (1) (T2) means: \mathcal{X} is a triangulated subcategory of \mathcal{T} .

(2) Verdier (1977): "épaisse subcategory" Localization of triangulated categories (Verdier quotient)

Classification of thick subcategories

Stable homotopy theory

- Ravenel (1984)
- Devinatz-Hopkins-Smith (1988)
- Hopkins-Smith (1998) (Telescope Conjecture)

Thick subcategories of the category of compact objects in the p-local stable homotopy category

Ring theory

- Hopkins (1987)
- Neeman (1992)

Notation 3.3. Denote:

 $D^{b}(R) =$ the bounded derived category of mod R,

 $D_{perf}(R) = \{ Perfect complexes \} \subseteq D^{b}(R),$

perfect complex = bounded complex of f.g. projective R-modules.

Theorem 3.4 (Hopkins-Neeman).

{ Thick subcategories of $D_{perf}(R)$ }

$$\operatorname{Supp} \downarrow \cong \bigcap \operatorname{Supp}^{-1}$$

{ Specialization closed subsets of $\operatorname{Spec} R$ }.

For $\mathcal{X} \subseteq D_{\text{perf}}(R)$ and $W \subseteq \text{Spec } R$:

- (1) Supp $\mathcal{X} = \bigcup_{M \in \mathcal{X}}$ Supp $M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \kappa(\mathfrak{p}) \otimes_R^{\mathbf{L}} M \not\cong 0 \}$, where Supp $M = \operatorname{Supp} \operatorname{H}(M), \ \operatorname{H}(M) = \bigoplus_{i \in \mathbb{Z}} \operatorname{H}^i(M) \in \operatorname{mod} R$,
- (2) $\operatorname{Supp}^{-1} W = \{ M \in \operatorname{D}_{\operatorname{perf}}(R) \mid \operatorname{Supp} M \subseteq W \}.$
 - Thomason (1997) Extension to quasi-compact quasi-separated schemes
 - Avramov-Buchweitz-Christensen-Iyengar-Piepmeyer (2010) Thick subcategories of the derived category of perfect differential modules

Modular representation theory

- Benson-Carlson-Rickard (1997) Thick subcategories of the stable category of finite dimensional representations of a finite *p*-group
- Friedlander-Pevtsova (2007) Extension to finite group schemes
- Benson-Iyengar-Krause (2012) Extension to thick subcategories of $D^{b}(kG)$

Definition 3.5. Let R be CM.

$$\underline{CM}(R) = \frac{CM(R)}{\text{proj }R}$$
 CM stable category of R

 $\begin{cases} \operatorname{Ob}(\underline{\operatorname{CM}}(R)) = \operatorname{Ob}(\operatorname{CM}(R)) = \{ \operatorname{MCM} R \operatorname{-modules} \}, \\ \operatorname{Hom}_{\underline{\operatorname{CM}}(R)}(M, N) = \underline{\operatorname{Hom}}_{R}(M, N) = \frac{\operatorname{Hom}_{R}(M, N)}{\{ f \mid f \text{ factors through a projective module} \}}. \end{cases}$

Fact 3.6 (Buchweitz (1987), Happel (1988)). $\underline{CM}(R)$ is triangulated if R is Gorenstein.

(f) (f)

Remark 3.7. Let R be a d-dimensional CM local ring with canonical module ω and having an isolated singularity.

(1) Auslander-Reiten duality:

$$\underline{\operatorname{Hom}}_{R}(M,N) \cong \operatorname{Ext}_{R}^{1}(N,\tau M)^{\vee}$$

for $M, N \in \underline{CM}(R)$, where $\tau M = \operatorname{Hom}_R(\Omega^d \operatorname{Tr} M, \omega)$ is the Auslander-Reiten translation.

(2) Calabi-Yau property (\rightsquigarrow Cluster theory): If R is Gorenstein, then

$$\underline{\operatorname{Hom}}_{R}(M,N) \cong \underline{\operatorname{Hom}}_{R}(N,\Sigma^{d-1}M)^{\vee},$$

i.e., $\underline{CM}(R)$ is (d-1)-Calabi-Yau.

Definition 3.8. Let R be a (commutative) Noetherian ring.

$$D_{sg}(R) = \frac{D^{b}(R)}{D_{perf}(R)}$$
 the singularity category of R

 $\begin{cases} \operatorname{Ob}(\mathcal{D}_{\mathrm{sg}}(R)) = \operatorname{Ob}(\mathcal{D}^{\mathrm{b}}(R)) = \{ \text{ Bounded complexes of f.g. } R\text{-modules} \}, \\ \operatorname{Hom}_{\mathcal{D}_{\mathrm{sg}}(R)}(M, N) = \{ (M \xleftarrow{s} X \xrightarrow{f} N) \mid s, f \in \operatorname{Mor} \mathcal{D}^{\mathrm{b}}(R), \ \operatorname{cone}(s) \in \mathcal{D}_{\mathrm{perf}}(R) \}. \end{cases}$

Remark 3.9. Orlov: Mirror symmetry

Fact 3.10 (Buchweitz (1987)). $D_{sg}(R) \cong \underline{CM}(R)$ if R is Gorenstein.

Problem. Classify the thick subcategories of $\underline{CM}(R)$ when R is Gorenstein!

Theorem 3.11 (T (2010, 2011)). (1) Let R be a local hypersurface. Set

- $A = \{ \text{Specialization-closed subsets of Sing } R \},\$
- $B = \{ \text{Thick subcategories of } \underline{CM}(R) \},\$
- $C = \{ \text{Thick subcategories of } CM(R) \text{ containing } R \},\$
- $D = \{ \text{Thick subcategories of mod } R \text{ containing } R \},\$
- $E = \{ \text{Thick subcategories of } D^{\mathbf{b}}(R) \text{ containing } R \},\$
- $F = \{ \text{Resolving subcategories of mod } R \text{ contained in } CM(R) \}.$
- (2) Let (R, \mathfrak{m}, k) be *d*-dimensional Gorenstein singular (= nonregular) local ring, locally a hypersurface on the punctured spectrum. Set
 - $A = \{ \text{Nonempty specialization-closed subsets of Sing } R \},\$
 - $B = \{ \text{Thick subcategories of } \underline{CM}(R) \text{ containing } \Omega^d k \},\$
 - $C = \{ \text{Thick subcategories of } CM(R) \text{ containing } R, \Omega^d k \},\$
 - $D = \{ \text{Thick subcategories of mod } R \text{ containing } R, \Omega^d k \},\$
 - $E = \{$ Thick subcategories of $D^{b}(R)$ containing $R, k \},\$
 - $F = \{ \text{Resolving subcategories of mod } R \text{ contained in } CM(R) \text{ containing } \Omega^d k \}.$

In each case, $A \cong B \cong C \cong D \cong E \cong F$ holds. More precisely:

$$\begin{array}{c} E \\ \uparrow \text{thick} \\ D \\ \uparrow \text{thick} \\ A \xleftarrow{\text{NF}} C = F \\ \uparrow \text{can} \\ B \end{array}$$

Remark 3.12. Recently, Stevenson extended $A \cong B$ in (1) to a Noetherian ring which is locally a hypersurface. More recently, he and Krause extended $C \cong D \cong E$ in (1) to an exact category with enough projective objects.

Definition 3.13. (1) Sing $R = \{ \mathfrak{p} \in \operatorname{Spec} R \mid R_{\mathfrak{p}} \text{ is singular } \}.$

- (2) A local ring R is a hypersurface if $\widehat{R} \cong S/(f)$ for some complete RLR S and $f \in S$.
- (3) For $\mathcal{X} \subseteq \text{mod } R$, $NF(\mathcal{X}) = \bigcup_{M \in \mathcal{X}} NF(M)$, where

 $NF(M) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \text{ is nonfree over } R_{\mathfrak{p}} \}.$

- (4) For $\mathcal{X} \subseteq D^{\mathrm{b}}(R)$, $\mathrm{IPD}(\mathcal{X}) = \bigcup_{M \in \mathcal{X}} \mathrm{IPD}(M)$, where $\mathrm{IPD}(M) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathrm{pd}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \infty \}.$
- (5) For $\mathcal{X} \subseteq \underline{CM}(R)$, $\underline{Supp} \mathcal{X} = \bigcup_{M \in \mathcal{X}} \underline{Supp} M$, where $Supp M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \not\cong 0 \text{ in } \underline{CM}(R_{\mathfrak{p}}) \}.$
- (6) $\mathcal{X} \subseteq \mod R$ is <u>thick</u> if
 - (a) \mathcal{X} is closed under direct summands,
 - (b) \mathcal{X} is closed under short exact sequences:
 - $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ an exact sequence of f.g. modules,

$$(2 \text{ of } L, M, N) \in \mathcal{X} \Rightarrow (3rd) \in \mathcal{X}$$

(7)
$$\mathcal{X} \subseteq CM(R)$$
 is thick if

- (a) \mathcal{X} is closed under direct summands,
- (b) \mathcal{X} is closed under short exact sequences: $0 \to L \to M \to N \to 0$ an exact sequence of MCM mods, $(2 \text{ of } L, M, N) \in \mathcal{X} \Rightarrow (3rd) \in \mathcal{X}.$

Corollary 3.14. Let R be a local hypersurface with an isolated singularity.

- (1) { Resolving subcategories contained in CM(R) } = { proj R, CM(R) }.
- (2) { Thick subcategories of $\underline{CM}(R)$ } = { 0, $\underline{CM}(R)$ }.
- (3) { Thick subcategories of $D^{b}(R)$ containing R } = { $D_{perf}(R)$, $D^{b}(R)$ }.

Example 3.15. Let k be a field.

(1) Let $R = k[[x, y]]/(x^2)$.

 $CM(R) = add \{ R, (x), (x, y^n) \mid n \ge 1 \}.$

Setting $\mathfrak{p} = (x)$, $\mathfrak{m} = (x, y)$, we have

Sing R = Spec R = { $\mathfrak{p}, \mathfrak{m}$ }.

Hence

{ Specialization-closed subsets of Sing R } = { \emptyset , { \mathfrak{m} }, Sing R }.

 $\begin{cases} \mathrm{NF}^{-1}(\emptyset) = \mathrm{proj}\,R,\\ \mathrm{NF}^{-1}(\{\mathfrak{m}\}) = \{ \text{MCM modules locally free on the punctured spectrum} \}\\ &= \mathrm{add}\{\,R,\,(x,y^n) \mid n \geq 1 \,\},\\ \mathrm{NF}^{-1}(\mathrm{Sing}\,R) = \mathrm{CM}(R). \end{cases}$

By Theorem 3.11(1),

{ Resolving subcategories of mod R contained in CM(R) } = { proj R, add{ R, $(x, y^n) | n \ge 1$ }, CM(R) }, { Thick subcategories of $\underline{CM}(R)$ } = { 0, $\underline{add}\{(x, y^n) | n \ge 1\}, \underline{CM}(R)$ }.

(2) Let $R = k[[x, y, z]]/(x^2, yz)$.

Spec $R = \{ \mathfrak{p}, \mathfrak{q}, \mathfrak{m} \},\$

where $\mathfrak{p} = (x, y)$, $\mathfrak{q} = (x, z)$ and $\mathfrak{m} = (x, y, z)$.

$$\begin{cases} R_{\mathfrak{p}} \cong k[[x,z]]_{(x)}/(x^2), \\ R_{\mathfrak{q}} \cong k[[x,y]]_{(x)}/(x^2), \end{cases} \text{ and } \operatorname{Sing} R = \{\mathfrak{p}, \mathfrak{q}, \mathfrak{m}\}. \end{cases}$$

{ Nonempty specialization-closed subsets of Sing R } = { $V(\mathfrak{p}), V(\mathfrak{q}), V(\mathfrak{p}, \mathfrak{q}), V(\mathfrak{p}, \mathfrak{q}, \mathfrak{m})$ }.

By Theorem 3.11(2),

#{ Thick subcategories of $\underline{CM}(R)$ containing \mathfrak{m} } = #{ Resolving subcategories of mod R contained in CM(R) containing \mathfrak{m} } = 4.

Corollary 3.16 (Huneke-Wiegand (1997)). Let R be a local hypersurface. Let $M, N \in \text{mod } R$.

 $\begin{array}{ll} (1) \ \operatorname{Tor}_{\gg 0}^R(M,N) = 0 \ \Leftrightarrow \ \operatorname{pd}_R M < \infty \ \operatorname{or} \ \operatorname{pd}_R N < \infty \\ (2) \ \operatorname{Ext}_R^{\gg 0}(M,N) = 0 \ \Leftrightarrow \ \operatorname{pd}_R M < \infty \ \operatorname{or} \ \operatorname{id}_R N < \infty \end{array}$

Proof. $(1)(\Rightarrow)$

 $M \in \mathcal{X} := \{ X \in \text{mod } R \mid \text{Tor}_{\gg 0}^{R}(X, N) = 0 \}.$

 $\mathcal X$ is a thick subcategory of mod R containing R.

By Theorem 3.11(1), $\mathcal{X} = IPD^{-1}(IPD(\mathcal{X})).$

$$pd M = \infty \implies \mathfrak{m} \in IPD(M) \subseteq IPD(\mathcal{X})$$
$$\implies IPD(k) \subseteq \{\mathfrak{m}\} \subseteq IPD(\mathcal{X})$$
$$\implies k \in IPD^{-1}(IPD(\mathcal{X})) = \mathcal{X}$$
$$\implies pd N < \infty.$$

Remark 3.17. Let $R = k[[x, y]]/(x^2, y^2)$, where k is a commutative ring. Then

$$\begin{cases} \operatorname{Tor}_{>0}^{R}(R/(x), R/(y)) = 0 = \operatorname{Ext}_{R}^{>0}(R/(x), R/(y)), \\ \operatorname{pd}_{R} R/(x) = \operatorname{pd}_{R} R/(y) = \operatorname{id}_{R} R/(y) = \infty. \end{cases}$$

4. Proof of Theorem 3.11(1)

Lemma 4.1. Let \mathcal{T} be a triangulated category and $\mathcal{U} \subseteq \mathcal{T}$ a thick subcategory.

{ Thick subcategories of
$$\mathcal{T}$$
 containing \mathcal{U} }
 $\pi \downarrow \cong \uparrow$
{ Thick subcategories of \mathcal{T}/\mathcal{U} },

where $\pi(\mathcal{X}) = \mathcal{X}/\mathcal{U}$.

In what follows, unless otherwise specified, let (R, \mathfrak{m}, k) be a local hypersurface with dim R = d.

Proposition 4.2.

$$E = \{ \text{ Thick subcategories of } \mathbf{D}^{\mathbf{b}}(R) \text{ containing } R \}$$
$$_{\text{IPD}} \downarrow \cong \qquad \uparrow _{\text{IPD}^{-1}}$$
$$A = \{ \text{ Specialization-closed subsets of } \text{Spec } R \}.$$

Proof.

This sends \mathcal{X} to IPD (\mathcal{X}) .

Proposition 4.3.

Proposition 4.4 (Essential part of Proposition 4.3). Let $M, N \in CM(R)$ with $NF(M) \subseteq NF(N)$. Then

 $M \in \operatorname{res} N$,

where res N denotes the smallest resolving subcategory containing N.

Lemma 4.5. (1) Let (R, \mathfrak{m}, k) be a CM local ring with dim R = d. Let $M \in CM(R)$. If M is locally free on the punctured spectrum, then

 $M \in \operatorname{res} \Omega^d k.$

(2) Let R be an Artinian hypersurface. Then

{Resolving subcategories of mod R} = {proj R, mod R}.

(3) Let R be CM local, $\mathcal{X} \subseteq CM(R)$ resolving, $M \in CM(R)$ and $W \subseteq \operatorname{Spec} R$ nonempty finite. If $M_{\mathfrak{p}} \in \operatorname{add}_{R_{\mathfrak{p}}} \mathcal{X}_{\mathfrak{p}}$ for all $\mathfrak{p} \in W$, then

 $\exists \, 0 \rightarrow L \rightarrow N \rightarrow X \rightarrow 0$ an exact sequence of MCM modules

s.t. $\begin{cases} X \in \mathcal{X}, \\ M \text{ is a direct summand of } N, \\ NF(L) \subseteq NF(M), \\ NF(L) \cap W = \emptyset. \end{cases}$

Proof of Proposition 4.4. Set $\mathcal{X} := \operatorname{res} N$. Induction on $n := \dim \operatorname{NF}(M)$. (1) When $n \leq 0$:

 $NF(M) \subseteq \{\mathfrak{m}\}, \text{ i.e., } M \text{ is locally free on the punctured spectrum}$ $\rightsquigarrow M \in \operatorname{res}(\Omega^d k) \subseteq \mathcal{X} \text{ by Lemma } 4.5(1)(2).$

(2) When $n \ge 1$:

 $\mathfrak{p} \in \min \operatorname{NF}(M) \Rightarrow M_{\mathfrak{p}} \in \operatorname{add}_{R_{\mathfrak{p}}} \mathcal{X}_{\mathfrak{p}}$ by the induction hypothesis. By Lemma 4.5(3),

$$\exists 0 \to L \to N \to X \to 0 \text{ s.t.} \begin{cases} X \in \mathcal{X}, \\ M \text{ is a direct summand of } N, \\ NF(L) \subseteq NF(M), \\ NF(L) \cap \min NF(M) = \emptyset \end{cases}$$

 $\rightsquigarrow \dim \operatorname{NF}(L) < n.$

By the induction hypothesis $L \in \mathcal{X}$, and hence $M \in \mathcal{X}$.

References

- R. TAKAHASHI, Classifying subcategories of modules over a commutative noetherian ring, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 767–782.
- [2] R. TAKAHASHI, Classifying thick subcategories of the stable category of Cohen-Macaulay modules, Adv. Math. 225 (2010), no. 4, 2076–2116.
- [3] R. TAKAHASHI, Contravariantly finite resolving subcategories over commutative rings, Amer. J. Math. 133 (2011), no. 2, 417–436.
- [4] R. TAKAHASHI, Thick subcategories over Gorenstein local rings that are locally hypersurfaces on the punctured spectra, *J. Math. Soc. Japan* (to appear).