Integral symbolic and adic topologies

> Reza Naghipour

Integral symbolic and adic topologies

Reza Naghipour

University of Tabriz

Webinars on Commutative Algebra

School of Mathematics, IPM, Tehran

24 December 2020

Integral symbolic and adic topologies

Reza Naghipour

Throughout this talk:

• R will be always a *commutative Noetherian ring* and I, J two ideals of R.

Integral symbolic and adic topologies

Reza Naghipour

- R will be always a *commutative Noetherian ring* and I, J two ideals of R.
- If (R, \mathfrak{m}) is local, then \hat{R} denotes the completion of R with respect to the \mathfrak{m} -adic topology.

Integral symbolic and adic topologies

> Reza Naghipour

- R will be always a *commutative Noetherian ring* and I, J two ideals of R.
- If (R, \mathfrak{m}) is local, then \hat{R} denotes the completion of R with respect to the \mathfrak{m} -adic topology.
- For each R-module L, we denote by $\mathsf{mAss}_R L$ the set of minimal primes of $\mathsf{Ass}_R L$.

Integral symbolic and adic topologies

> Reza Naghipour

- R will be always a *commutative Noetherian ring* and I, J two ideals of R.
- If (R, \mathfrak{m}) is local, then \hat{R} denotes the completion of R with respect to the \mathfrak{m} -adic topology.
- For each R-module L, we denote by $\mathsf{mAss}_R L$ the set of minimal primes of $\mathsf{Ass}_R L$.
- If (R, \mathfrak{m}) is local, then R is said to be a *quasi-unmixed ring* if for every $\mathfrak{p} \in \mathsf{mAss}_{\hat{R}} \hat{R}$, $\dim \hat{R}/\mathfrak{p} = \dim R$.

Integral symbolic and adic topologies

> Reza Naghipour

- R will be always a *commutative Noetherian ring* and I, J two ideals of R.
- If (R, \mathfrak{m}) is local, then \hat{R} denotes the completion of R with respect to the \mathfrak{m} -adic topology.
- For each R-module L, we denote by $\mathsf{mAss}_R L$ the set of minimal primes of $\mathsf{Ass}_R L$.
- If (R, \mathfrak{m}) is local, then R is said to be a *quasi-unmixed ring* if for every $\mathfrak{p} \in \mathsf{mAss}_{\hat{R}} \hat{R}$, $\dim \hat{R}/\mathfrak{p} = \dim R$.
- R is a *locally quasi-unmixed ring* if for any $\mathfrak{p} \in \operatorname{Spec}(R)$, $R_{\mathfrak{p}}$ is a quasi-unmixed ring.

Integral symbolic and adic topologies

> Reza Naghipour

- R will be always a *commutative Noetherian ring* and I, J two ideals of R.
- If (R, \mathfrak{m}) is local, then \hat{R} denotes the completion of R with respect to the \mathfrak{m} -adic topology.
- For each R-module L, we denote by $\mathsf{mAss}_R L$ the set of minimal primes of $\mathsf{Ass}_R L$.
- If (R, \mathfrak{m}) is local, then R is said to be a *quasi-unmixed ring* if for every $\mathfrak{p} \in \mathsf{mAss}_{\hat{R}} \hat{R}$, $\dim \hat{R}/\mathfrak{p} = \dim R$.
- R is a *locally quasi-unmixed ring* if for any $\mathfrak{p} \in \operatorname{Spec}(R)$, $R_{\mathfrak{p}}$ is a quasi-unmixed ring.
- We will use $I:_R \langle J \rangle$ to denote the ideal $\bigcup_{n\geq 1} (I:_R J^n)$.

Integral symbolic and adic topologies

Reza Naghipour • We denote by \mathscr{R} the Rees ring $R[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n t^n$ of R w.r.t. I, where t is an indeterminate and $u = t^{-1}$.

Integral symbolic and adic topologies

- We denote by \mathscr{R} the Rees ring $R[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n t^n$ of R w.r.t. I, where t is an indeterminate and $u = t^{-1}$.
- If (R, \mathfrak{m}) is local, then the analytic spread of I is defined to be $\ell(I) := \dim \mathcal{R}/(\mathfrak{m}, u)\mathcal{R}$.

Integral symbolic and adic topologies

- We denote by \mathscr{R} the Rees ring $R[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n t^n$ of R w.r.t. I, where t is an indeterminate and $u = t^{-1}$.
- If (R, \mathfrak{m}) is local, then the analytic spread of I is defined to be $\ell(I) := \dim \mathscr{R}/(\mathfrak{m}, u)\mathscr{R}$.
- \overline{I} denotes the integral closure of I in R, i.e., \overline{I} is the ideal of R consisting of all elements $x \in R$ satisfying an equation $x^n + r_1 x^{n-1} + \cdots + r_n = 0$, where $r_i \in I^i$, $i = 1, \ldots, n$.

Integral symbolic and adic topologies

- We denote by \mathscr{R} the Rees ring $R[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n t^n$ of R w.r.t. I, where t is an indeterminate and $u = t^{-1}$.
- If (R, \mathfrak{m}) is local, then the analytic spread of I is defined to be $\ell(I) := \dim \mathcal{R}/(\mathfrak{m}, u)\mathcal{R}$.
- \overline{I} denotes the integral closure of I in R, i.e., \overline{I} is the ideal of R consisting of all elements $x \in R$ satisfying an equation $x^n + r_1 x^{n-1} + \cdots + r_n = 0$, where $r_i \in I^i$, $i = 1, \ldots, n$.
- For a natural number n, the nth symbolic power of I, denoted by $I^{(n)}$, is defined to be the union of $I^n :_R s$, where s runs in the multiplicatively closed subset $\bigcap_{\mathfrak{p} \in \mathsf{mAss}_R} \frac{1}{R} I(R \setminus \mathfrak{p})$.

Integral symbolic and adic topologies

- We denote by \mathscr{R} the Rees ring $R[u, It] := \bigoplus_{n \in \mathbb{Z}} I^n t^n$ of R w.r.t. I, where t is an indeterminate and $u = t^{-1}$.
- If (R, \mathfrak{m}) is local, then the analytic spread of I is defined to be $\ell(I) := \dim \mathcal{R}/(\mathfrak{m}, u)\mathcal{R}$.
- \overline{I} denotes the integral closure of I in R, i.e., \overline{I} is the ideal of R consisting of all elements $x \in R$ satisfying an equation $x^n + r_1 x^{n-1} + \cdots + r_n = 0$, where $r_i \in I^i$, $i = 1, \ldots, n$.
- For a natural number n, the nth symbolic power of I, denoted by $I^{(n)}$, is defined to be the union of $I^n :_R s$, where s runs in the multiplicatively closed subset $\bigcap_{\mathfrak{p}\in\mathsf{mAss}_R R/I} (R\setminus\mathfrak{p})$.
- The *nth integral symbolic power of I*, denoted by $I^{\langle n \rangle}$, to be the union of $\overline{I^n}:_R s$, where s varies in the multiplicatively closed subset $\bigcap_{\mathfrak{p} \in \mathsf{mAss}_R R/I} (R \setminus \mathfrak{p})$.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of *R* containing *I*:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of *R* containing *I*:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

 $\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

If S is a mcs in R, then for any ideal \mathfrak{b} of R, we use $S(\mathfrak{b})$ to denote the ideal $\bigcup_{s \in S} (\mathfrak{b} :_R s)$.

• Theorem (McAdam 1987). If S is a mcs of R, then TFAE:

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

If S is a **mcs** in R, then for any ideal \mathfrak{b} of R, we use $S(\mathfrak{b})$ to denote the ideal $\bigcup_{s \in S} (\mathfrak{b} :_R s)$.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

- Theorem (McAdam 1987). If S is a mcs of R, then TFAE:
- (i) $S \subseteq R \setminus \bigcup \{ \mathfrak{p} \in \bar{Q}^*(I) \}.$
- (ii) For all $k \geq 0$, there is an $m \geq 0$ such that $S(\overline{I^m}) \subseteq \overline{I^k}$.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

- (ii) For all $k \ge 0$, there is an $m \ge 0$ such that $S(\overline{I^m}) \subseteq \overline{I^k}$.
- (iii) For all $k \ge 0$, there is an $m \ge 0$ such that $S(I^m) \subseteq \overline{I^k}$.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

- (ii) For all $k \ge 0$, there is an $m \ge 0$ such that $S(\overline{I^m}) \subseteq \overline{I^k}$.
- (iii) For all $k \ge 0$, there is an $m \ge 0$ such that $S(I^m) \subseteq \overline{I^k}$.
- (iv) For all $\mathfrak{q} \in V(I)$ and $k \geq 0$, $\exists m \geq 0$ s.t. $S(\overline{I^m}) \subseteq \mathfrak{q}^{\langle n \rangle}$.

Integral symbolic and adic topologies

> Reza Naghipour

McAdam studied the following interesting set of prime ideals of R containing I:

• Definition.

$$\bar{Q}^*(I) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} R : \exists \mathfrak{q} \in \operatorname{\mathsf{mAss}} \hat{R}_{\mathfrak{p}}, \ \operatorname{\mathsf{Rad}} (I \hat{R}_{\mathfrak{p}} + \mathfrak{q}) = \mathfrak{p} \hat{R}_{\mathfrak{p}} \}.$$

The set $\bar{Q}^*(I)$ is called the *quintasymptotic prime ideals* of I.

- (1) $S \subseteq R \setminus \bigcup \{ \mathfrak{p} \in Q^*(I) \}$.
- (ii) For all $k \ge 0$, there is an $m \ge 0$ such that $S(\overline{I^m}) \subseteq I^k$.
- (iii) For all $k \ge 0$, there is an $m \ge 0$ such that $S(I^m) \subseteq I^k$.
- (iv) For all $\mathfrak{q} \in V(I)$ and $k \geq 0$, $\exists m \geq 0$ s.t. $S(\overline{I^m}) \subseteq \mathfrak{q}^{\langle n \rangle}$.
- (v) For all $q \in V(I)$ and $k \ge 0$, $\exists m \ge 0$ s.t. $S(I^m) \subseteq q^{\langle n \rangle}$.

Integral symbolic and adic topologies

Reza Naghipour • **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:

Integral symbolic and adic topologies

> Reza Naghipour

• **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:

(i)
$$\mathfrak{p} \in \bar{Q}^*(I)$$
.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \geq 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $\overline{I^m} :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $\overline{I^m} :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- **Proposition B.** Let $\mathfrak{p} \in V(I) \setminus \mathsf{mAss}_R R/I$. Consider the following statements.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $\overline{I^m} :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- **Proposition B.** Let $\mathfrak{p} \in V(I) \setminus \mathsf{mAss}_R R/I$. Consider the following statements.
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $\overline{I^m} :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- **Proposition B.** Let $\mathfrak{p} \in V(I) \setminus \mathsf{mAss}_R R/I$. Consider the following statements.
- (i) $\mathfrak{p} \in \overline{\bar{Q}}^*(I)$.
- (ii) There is an integer $k \geq 1$ s.t. $I^{\langle m \rangle} \nsubseteq \mathfrak{p}^{\langle k \rangle}$ for all $m \in \mathbb{N}$.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $\overline{I^m} :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- **Proposition B.** Let $\mathfrak{p} \in V(I) \setminus \mathsf{mAss}_R R/I$. Consider the following statements.
- (i) $\mathfrak{p} \in \overline{Q}^*(I)$.
- (ii) There is an integer $k \geq 1$ s.t. $I^{\langle m \rangle} \nsubseteq \mathfrak{p}^{\langle k \rangle}$ for all $m \in \mathbb{N}$.
- (iii) There is a prime ideal $\mathfrak{q} \subseteq \mathfrak{p}$ s.t. $\mathfrak{q} \in \bar{Q}^*(I) \setminus \mathsf{mAss}_R R/I$.

Integral symbolic and adic topologies

- **Proposition A.** Let $\mathfrak{p} \in V(I)$. Then TFAE:
- (i) $\mathfrak{p} \in \bar{Q}^*(I)$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $I^m :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- (ii) There is a $k \ge 0$ such that for all m > 0, $\overline{I^m} :_R \langle \mathfrak{p} \rangle \nsubseteq \mathfrak{p}^{\langle k \rangle}$.
- **Proposition B.** Let $\mathfrak{p} \in V(I) \setminus \mathsf{mAss}_R R/I$. Consider the following statements.
- (i) $\mathfrak{p} \in \overline{\bar{Q}}^*(I)$.
- (ii) There is an integer $k \geq 1$ s.t. $I^{\langle m \rangle} \nsubseteq \mathfrak{p}^{\langle k \rangle}$ for all $m \in \mathbb{N}$.
- (iii) There is a prime ideal $\mathfrak{q} \subseteq \mathfrak{p}$ s.t. $\mathfrak{q} \in \bar{Q}^*(I) \setminus \mathsf{mAss}_R R/I$.
- Then (i) \Longrightarrow (ii) \Longrightarrow (iii).

Integral symbolic and adic topologies

Reza Naghipour • **Theorem A.** The following conditions are equivalent:

Integral symbolic and adic topologies

- **Theorem A.** The following conditions are equivalent:
- (i) $\bar{Q}^*(I) = \mathsf{mAss}_R R/I$.

Integral symbolic and adic topologies

- **Theorem A.** The following conditions are equivalent:
- (i) $\bar{Q}^*(I) = \text{mAss}_R R/I$.
- (ii) The topology $\{I^{\langle m \rangle}\}_{m \geq 1}$ is equivalent to $\{\overline{I^m}\}_{m \geq 1}$.

Integral symbolic and adic topologies

- **Theorem A.** The following conditions are equivalent:
- (i) $\bar{Q}^*(I) = \mathsf{mAss}_R R/I$.
- (ii) The topology $\{I^{(m)}\}_{m\geq 1}$ is equivalent to $\{\overline{I^m}\}_{m\geq 1}$.
- (iii) The topology $\{I^{(m)}\}_{m\geq 1}$ is equivalent to $\{\overline{I^m}\}_{m\geq 1}$.

Integral symbolic and adic topologies

- **Theorem A.** The following conditions are equivalent:
- (i) $\bar{Q}^*(I) = \mathsf{mAss}_R R/I$.
- (ii) The topology $\{I^{(m)}\}_{m\geq 1}$ is equivalent to $\{\overline{I_m}\}_{m\geq 1}$.
- (iii) The topology $\{I^{(m)}\}_{m\geq 1}$ is equivalent to $\{\overline{I^m}\}_{m\geq 1}$.
- (iv) For every radical ideal J of R which contains I, the topology $\{I^{\langle m \rangle}\}_{m \geq 1}$ is finer than the topology $\{J^{\langle m \rangle}\}_{m \geq 1}$.

Integral symbolic and adic topologies

> Reza Naghipou

- **Theorem A.** The following conditions are equivalent:
- (i) $\bar{Q}^*(I) = \mathsf{mAss}_R R/I$.
- (ii) The topology $\{I^{(m)}\}_{m\geq 1}$ is equivalent to $\{\overline{I^m}\}_{m\geq 1}$.
- (iii) The topology $\{I^{(m)}\}_{m\geq 1}$ is equivalent to $\{\overline{I^m}\}_{m\geq 1}$.
- (iv) For every radical ideal J of R which contains I, the topology $\{I^{\langle m \rangle}\}_{m \geq 1}$ is finer than the topology $\{J^{\langle m \rangle}\}_{m \geq 1}$.

SKETCH OF PROOF. (i) \Longrightarrow (ii) follows from McAdam's Theorem. To prove the conclusion (ii) \Longrightarrow (i), suppose the contrary is true. Then, there exists $\mathfrak{p} \in \bar{Q}^*(I)$ such that $\mathfrak{p} \notin \mathsf{mAss}_R \, R/I$. Then, by Proposition A, there exists an integer $k \geq 1$ such that $I^{\langle m \rangle} \nsubseteq \mathfrak{p}^{\langle k \rangle}$ for all integers $m \geq 1$. Further, in view of assumption (ii), there exists an integer $I \geq 1$ such that $I^{\langle I \rangle} \subseteq \overline{I^k}$. Now, since $\overline{I^k} \subseteq \overline{\mathfrak{p}^k} \subseteq \mathfrak{p}^{\langle k \rangle}$, it follows that $I^{\langle I \rangle} \subseteq \mathfrak{p}^{\langle k \rangle}$, which provides a contradiction.

Comparison of Topologies and Quintasymptotic Primes

Integral symbolic and adic topologies

> Reza Naghipour

In order to show (iii) \Longrightarrow (iv), let $I \geq 1$. Then, in view of McAdam's Theorem, there exists an integer $m \geq 1$ such that $I^{\langle m \rangle} \subseteq \overline{I^I}$. Since $I \subseteq J$, we have $I^{\langle m \rangle} \subseteq \overline{J^I}$, and so as $\overline{J^I} \subseteq J^{\langle I \rangle}$ it follows that $I^{\langle m \rangle} \subseteq J^{\langle I \rangle}$, as required.

Comparison of Topologies and Quintasymptotic Primes

Integral symbolic and adic topologies

> Reza Naghipour

In order to show (iii) \Longrightarrow (iv), let $I \ge 1$. Then, in view of McAdam's Theorem, there exists an integer $m \ge 1$ such that $I^{\langle m \rangle} \subseteq \overline{I^I}$. Since $I \subseteq J$, we have $I^{\langle m \rangle} \subseteq \overline{J^I}$, and so as $\overline{J^I} \subseteq J^{\langle I \rangle}$ it follows that $I^{\langle m \rangle} \subseteq J^{\langle I \rangle}$, as required. Finally, in order to prove the conclusion (iv) \Longrightarrow (i), suppose the contrary is true. Then, there is an element $\mathfrak{p} \in \overline{Q}^*(I)$ such that $\mathfrak{p} \not= \mathfrak{p} \cap \mathfrak{p} \subseteq \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p} \cap \mathfrak{p$

the contrary is true. Then, there is an element $\mathfrak{p} \in \bar{Q}^*(I)$ such that $\mathfrak{p} \notin \mathsf{mAss}_R R/I$. Hence, in view of Proposition B, there exists an integer $k \geq 1$ such that $I^{\langle m \rangle} \nsubseteq \mathfrak{p}^{\langle k \rangle}$ for all integers m. Now, since $I \subseteq \mathfrak{p}$ and \mathfrak{p} is a radical ideal, the assumption (iv) provides a contradiction.

Integral symbolic and adic topologies

Reza Naghipour • Theorem (M. Nagata 1961). Let (R, \mathfrak{m}) be a regular local ring and let \mathfrak{p} be a prime ideal of R. Then for every integer $n \geq 1$, $\mathfrak{p}^{(n)} \subseteq \mathfrak{m}^n$.

Integral symbolic and adic topologies

- Theorem (M. Nagata 1961). Let (R, \mathfrak{m}) be a regular local ring and let \mathfrak{p} be a prime ideal of R. Then for every integer $n \geq 1$, $\mathfrak{p}^{(n)} \subseteq \mathfrak{m}^n$.
- Corollary. Let R be a regular ring and let $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals of R. Then for every integer $n \ge 1$, $\mathfrak{p}^{\langle n \rangle} \subseteq \mathfrak{q}^{\langle n \rangle}$.

Integral symbolic and adic topologies

- Theorem (M. Nagata 1961). Let (R, \mathfrak{m}) be a regular local ring and let \mathfrak{p} be a prime ideal of R. Then for every integer $n \geq 1$, $\mathfrak{p}^{(n)} \subseteq \mathfrak{m}^n$.
- Corollary. Let R be a regular ring and let $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals of R. Then for every integer $n \ge 1$, $\mathfrak{p}^{\langle n \rangle} \subseteq \mathfrak{q}^{\langle n \rangle}$.
- **Lemma.** Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be prime ideals of R. Then, for every integer $n \geq 1$,

$$(\bigcap_{i=1}^t \mathfrak{p}_i)^{\langle n \rangle} = \bigcap_{i=1}^t \mathfrak{p}_i^{\langle n \rangle}.$$

Integral symbolic and adic topologies

> Reza Naghipour

- Theorem (M. Nagata 1961). Let (R, \mathfrak{m}) be a regular local ring and let \mathfrak{p} be a prime ideal of R. Then for every integer $n \geq 1$, $\mathfrak{p}^{(n)} \subseteq \mathfrak{m}^n$.
- Corollary. Let R be a regular ring and let $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals of R. Then for every integer $n \ge 1$, $\mathfrak{p}^{\langle n \rangle} \subseteq \mathfrak{q}^{\langle n \rangle}$.
- **Lemma.** Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be prime ideals of R. Then, for every integer $n \geq 1$,

$$(\bigcap_{i=1}^t \mathfrak{p}_i)^{\langle n \rangle} = \bigcap_{i=1}^t \mathfrak{p}_i^{\langle n \rangle}.$$

• **Proposition.** Let R be a regular ring and I an ideal of R. Let J be an radical ideal of R containing I and let $n \ge 1$ be an integer. Then $I^{\langle n \rangle} \subseteq J^{\langle n \rangle}$.

Integral symbolic and adic topologies

Reza Naghipour • Corollary. Let R be a regular ring and let $I \subseteq J$ be ideals of R. Then for every integer $n \ge 1$, $I^{\langle n \rangle} \subseteq (\text{Rad}(J))^{\langle n \rangle}$.

Integral symbolic and adic topologies

- Corollary. Let R be a regular ring and let $I \subseteq J$ be ideals of R. Then for every integer $n \ge 1$, $I^{\langle n \rangle} \subseteq (\text{Rad}(J))^{\langle n \rangle}$.
- Theorem B. Let R be a regular ring. Then the topologies induced by $\{\overline{I^m}\}_{m\geq 1}$ and $\{I^{\langle m\rangle}\}_{m\geq 1}$ are equivalent.

Integral symbolic and adic topologies

- Corollary. Let R be a regular ring and let $I \subseteq J$ be ideals of R. Then for every integer $n \ge 1$, $I^{\langle n \rangle} \subseteq (\text{Rad}(J))^{\langle n \rangle}$.
- Theorem B. Let R be a regular ring. Then the topologies induced by $\{\overline{I^m}\}_{m\geq 1}$ and $\{I^{\langle m\rangle}\}_{m\geq 1}$ are equivalent.
- Theorem (J. Lipman and A. Sathaye 1981). Let R be a regular ring. Let I be any ideal of R that is generated by s elements. Then for any integer $n \ge 0$,

$$\overline{I^{n+s}} \subseteq I^{n+1}$$
.

Integral symbolic and adic topologies

> Reza Naghipour

- Corollary. Let R be a regular ring and let $I \subseteq J$ be ideals of R. Then for every integer $n \ge 1$, $I^{\langle n \rangle} \subseteq (\text{Rad}(J))^{\langle n \rangle}$.
- Theorem B. Let R be a regular ring. Then the topologies induced by $\{\overline{I^m}\}_{m\geq 1}$ and $\{I^{\langle m\rangle}\}_{m\geq 1}$ are equivalent.
- Theorem (J. Lipman and A. Sathaye 1981). Let R be a regular ring. Let I be any ideal of R that is generated by s elements. Then for any integer $n \ge 0$,

$$\overline{I^{n+s}} \subseteq I^{n+1}$$
.

• Theorem C. Let R be a regular ring. Then the topology defined by $\{I^{(m)}\}_{m\geq 1}$ is equivalent to the I-adic topology.

Integral symbolic and adic topologies

> Reza Naghipour

• Proposition. Let

$$\bar{Q}^*(I) = \mathsf{mAss}_R \, R/I \text{ and } \bar{Q}^*(J) = \mathsf{mAss}_R \, R/J.$$

Further, suppose that

$$\mathsf{mAss}_R R/IJ = \mathsf{mAss}_R R/I \bigcup \mathsf{mAss}_R R/J.$$

Then
$$\bar{Q}^*(IJ) = \text{mAss}_R R/IJ$$
 and $\bar{Q}^*(I \cap J) = \text{mAss}_R R/I \cap J$.

Integral symbolic and adic topologies

> Reza Naghipour

• Proposition. Let

$$\bar{Q}^*(I) = \mathsf{mAss}_R \, R/I \text{ and } \bar{Q}^*(J) = \mathsf{mAss}_R \, R/J.$$

Further, suppose that

$$\mathsf{mAss}_R \, R/IJ = \mathsf{mAss}_R \, R/I \bigcup \mathsf{mAss}_R \, R/J.$$

Then
$$\bar{Q}^*(IJ) = \mathsf{mAss}_R \, R/IJ$$
 and $\bar{Q}^*(I \cap J) = \mathsf{mAss}_R \, R/I \cap J$.

• Corollary. If for all $\mathfrak{p} \in \mathsf{mAss}_R R/I$, the topologies $\{\mathfrak{p}^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{\mathfrak{p}}^n\}_{n \geq 1}$ are equivalent, then $Q^*(I) = \mathsf{mAss}_R R/I$.

Integral symbolic and adic topologies

> Reza Naghipour

• Proposition. Let

$$\bar{Q}^*(I) = \mathsf{mAss}_R \, R/I \text{ and } \bar{Q}^*(J) = \mathsf{mAss}_R \, R/J.$$

Further, suppose that

$$\mathsf{mAss}_R R/IJ = \mathsf{mAss}_R R/I \bigcup \mathsf{mAss}_R R/J.$$

Then $\bar{Q}^*(IJ) = \mathsf{mAss}_R \, R/IJ$ and $\bar{Q}^*(I \cap J) = \mathsf{mAss}_R \, R/I \cap J$.

- Corollary. If for all $\mathfrak{p} \in \mathsf{mAss}_R R/I$, the topologies $\{\mathfrak{p}^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{\mathfrak{p}}^n\}_{n \geq 1}$ are equivalent, then $Q^*(I) = \mathsf{mAss}_R R/I$.
- Theorem D. Let R be a locally quasi-unmixed ring and let I be a set-theoretic complete intersection ideal. Then topologies $\{I^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{I^n}\}_{n \geq 1}$ are equivalent.

Integral symbolic and adic topologies

> Reza Naghipour

• Proposition. Let

$$\bar{Q}^*(I) = \mathsf{mAss}_R \, R/I \text{ and } \bar{Q}^*(J) = \mathsf{mAss}_R \, R/J.$$

Further, suppose that

$$\mathsf{mAss}_R \, R/IJ = \mathsf{mAss}_R \, R/I \bigcup \mathsf{mAss}_R \, R/J.$$

Then $\bar{Q}^*(IJ) = \mathsf{mAss}_R \, R/IJ$ and $\bar{Q}^*(I \cap J) = \mathsf{mAss}_R \, R/I \cap J$.

- Corollary. If for all $\mathfrak{p} \in \mathsf{mAss}_R R/I$, the topologies $\{\mathfrak{p}^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{\mathfrak{p}^n}\}_{n \geq 1}$ are equivalent, then $Q^*(I) = \mathsf{mAss}_R R/I$.
- Theorem D. Let R be a locally quasi-unmixed ring and let I be a set-theoretic complete intersection ideal. Then topologies $\{I^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{I^n}\}_{n \geq 1}$ are equivalent.
- Recall that *I* is called a set theoretic complete intersection ideal if it is the radical of an ideal generated by height *I* elements.

Integral symbolic and adic topologies

> Reza Naghipour

SKETCH OF PROOF. In view of Theorem A, it will suffice to show that $\bar{Q}^*(I) = \mathsf{mAss}_R \, R/I$. For this, let $\mathfrak{p} \in \bar{Q}^*(I)$. Since $\bar{Q}^*(I) \subseteq \bar{A}^*(I)$ by [3, Lemma 2.1], it follows that $\mathfrak{p} \in \bar{A}^*(I)$, where

$$\bar{A}^*(I) := \{ \mathfrak{p} \in \operatorname{Spec} R : \mathfrak{p} \in \operatorname{Ass} R/\bar{I}^n \text{ for all large } n \}.$$

So, as R is locally quasi-unmixed, it follows from McAdam's result [2, Proposition 4.1] that height $\mathfrak{p}=\ell(IR_{\mathfrak{p}})$. Now, as I is a set-theoretic complete intersection ideal, without loss of generality we may assume that $\mathrm{Rad}(I)=I$ and I is generated by height I elements. As, at least $\ell(\mathfrak{a})$ elements are needed to generate \mathfrak{a} , for any ideal \mathfrak{a} in a commutative Noetherian ring A, we have $\ell(IR_{\mathfrak{p}}) \leq \mathrm{height}\, I$, and so $\mathrm{height}\, \mathfrak{p} = \mathrm{height}\, I$. That is $\mathfrak{p} \in \mathrm{MAss}_R\, R/I$, as required.

Integral symbolic and adic topologies

> Reza Naghipour

• Theorem (R. Hartshorne 1970). Let R be a complete local ring and $\mathfrak p$ be prime ideal of R such that $\dim R/\mathfrak p=1$. Then the $\mathfrak p$ -adic and $\mathfrak p$ -symbolic topologies are equivalent.

Integral symbolic and adic topologies

- Theorem (R. Hartshorne 1970). Let R be a complete local ring and $\mathfrak p$ be prime ideal of R such that $\dim R/\mathfrak p=1$. Then the $\mathfrak p$ -adic and $\mathfrak p$ -symbolic topologies are equivalent.
- Theorem E. Let (R, \mathfrak{m}) be a local (Noetherian) ring and let \mathfrak{p} be a prime ideal of R such that $\dim R/\mathfrak{p}=1$. Then TFAE:

Integral symbolic and adic topologies

- Theorem (R. Hartshorne 1970). Let R be a complete local ring and $\mathfrak p$ be prime ideal of R such that $\dim R/\mathfrak p=1$. Then the $\mathfrak p$ -adic and $\mathfrak p$ -symbolic topologies are equivalent.
- Theorem E. Let (R, \mathfrak{m}) be a local (Noetherian) ring and let \mathfrak{p} be a prime ideal of R such that $\dim R/\mathfrak{p}=1$. Then TFAE:
- (i) The topologies defined by $\{\mathfrak{p}^{\langle n\rangle}\}_{n\geq 1}$ and $\{\overline{\mathfrak{p}^n}\}_{n\geq 1}$ are equivalent.

Integral symbolic and adic topologies

- Theorem (R. Hartshorne 1970). Let R be a complete local ring and $\mathfrak p$ be prime ideal of R such that $\dim R/\mathfrak p=1$. Then the $\mathfrak p$ -adic and $\mathfrak p$ -symbolic topologies are equivalent.
- **Theorem E.** Let (R, \mathfrak{m}) be a local (Noetherian) ring and let \mathfrak{p} be a prime ideal of R such that $\dim R/\mathfrak{p}=1$. Then TFAE:
- (i) The topologies defined by $\{\mathfrak{p}^{\langle n\rangle}\}_{n\geq 1}$ and $\{\overline{\mathfrak{p}^n}\}_{n\geq 1}$ are equivalent.
- (ii) For all $z \in \mathsf{mAss}_{\hat{R}} \, \hat{R}$, there exists $\mathfrak{q} \in \mathsf{Spec}(\hat{R})$ such that $z \subseteq \mathfrak{q}$ and $\mathfrak{q} \cap R = \mathfrak{p}$.

Integral symbolic and adic topologies

> Reza Naghipour

SKETCH OF PROOF. For (i) \Longrightarrow (ii), let $z \in \mathsf{mAss}_{\hat{R}} \hat{R}$. In view of Theorem A, $\bar{Q}^*(\mathfrak{p}) = \{\mathfrak{p}\}$, and so $\mathfrak{m} \notin \bar{Q}^*(\mathfrak{p})$. Hence $\mathfrak{m}\hat{R}$ is not minimal over $\mathfrak{p}\hat{R} + z$. Let \mathfrak{q} be a minimal over $\mathfrak{p}\hat{R} + z$. Then $\mathfrak{p} \subseteq \mathfrak{q} \cap R$. Now, since dim $R/\mathfrak{p} = 1$, it is easily seen that $\mathfrak{q} \cap R = \mathfrak{p}$, and $z \subseteq \mathfrak{q}$.

Integral symbolic and adic topologies

> Reza Naghipour

SKETCH OF PROOF. For (i) \Longrightarrow (ii), let $z \in \mathsf{mAss}_{\hat{R}} \hat{R}$. In view of Theorem A, $\bar{Q}^*(\mathfrak{p}) = \{\mathfrak{p}\}$, and so $\mathfrak{m} \notin \bar{Q}^*(\mathfrak{p})$. Hence $\mathfrak{m}\hat{R}$ is not minimal over $\mathfrak{p}\hat{R}+z$. Let \mathfrak{q} be a minimal over $\mathfrak{p}\hat{R} + z$. Then $\mathfrak{p} \subseteq \mathfrak{q} \cap R$. Now, since dim $R/\mathfrak{p} = 1$, it is easily seen that $\mathfrak{q} \cap R = \mathfrak{p}$, and $z \subseteq \mathfrak{q}$. In order to prove (ii) \Longrightarrow (i), in view of Theorem A, it will suffice to show that $\bar{Q}^*(\mathfrak{p}) = \{\mathfrak{p}\}$. To this end, let $\mathfrak{q} \in \bar{Q}^*(\mathfrak{p})$. Then $\mathfrak{p} \subseteq \mathfrak{q} \subseteq \mathfrak{m}$. Since dim $R/\mathfrak{p} = 1$, we have $\mathfrak{q} = \mathfrak{p}$ or $\mathfrak{q} = \mathfrak{m}$. If $\mathfrak{q}=\mathfrak{p}$, the claim is true. Hence, let $\mathfrak{q}=\mathfrak{m}$. Then $\mathfrak{m}\in \bar{Q}^*(\mathfrak{p})$, and so there is $z \in \mathsf{mAss}_{\hat{R}} \hat{R}$ such that $\mathsf{Rad}(\mathfrak{p}\hat{R} + z) = \mathfrak{m}\hat{R}$. Therefore, in view of assumption (ii), there exists $\mathfrak{q} \in \operatorname{Spec}(\hat{R})$ such that $z \subseteq \mathfrak{q}$ and $\mathfrak{q} \cap R = \mathfrak{p}$. Hence $\mathfrak{q} \subseteq \mathfrak{p} \hat{R}$, and so $\operatorname{Rad}(\mathfrak{p}\hat{R}) = \mathfrak{m}\hat{R}$. Whence, $\dim \hat{R}/\mathfrak{p}\hat{R} = \dim R/\mathfrak{p} = 0$, which is a contradiction.

Integral symbolic and adic topologies

> Reza Naghipour

• Theorem (O. Zariski 1951). Let R be a Noetherian domain which is analytically irreducible at all prime ideals containing \mathfrak{p} , i.e. $\hat{R_{\mathfrak{q}}}$ is an integral domain for all primes \mathfrak{q} with $\mathfrak{q} \supseteq \mathfrak{p}$. Then the \mathfrak{p} -adic and \mathfrak{p} -symbolic topologies are equivalent.

Integral symbolic and adic topologies

- Theorem (O. Zariski 1951). Let R be a Noetherian domain which is analytically irreducible at all prime ideals containing \mathfrak{p} , i.e. $\hat{R}_{\mathfrak{q}}$ is an integral domain for all primes \mathfrak{q} with $\mathfrak{q} \supseteq \mathfrak{p}$. Then the \mathfrak{p} -adic and \mathfrak{p} -symbolic topologies are equivalent.
- Theorem F. Suppose that mAss $_{\hat{R_{\mathfrak{p}}}}$ $\hat{R_{\mathfrak{p}}}$ consists of a single prime ideal z, for all $\mathfrak{p} \in \bar{A^*}(I)$. Then the topologies $\{I^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{I^n}\}_{n \geq 1}$ are equivalent.

Integral symbolic and adic topologies

> Reza Naghipour

- Theorem (O. Zariski 1951). Let R be a Noetherian domain which is analytically irreducible at all prime ideals containing \mathfrak{p} , i.e. $\hat{R}_{\mathfrak{q}}$ is an integral domain for all primes \mathfrak{q} with $\mathfrak{q} \supseteq \mathfrak{p}$. Then the \mathfrak{p} -adic and \mathfrak{p} -symbolic topologies are equivalent.
- Theorem F. Suppose that mAss $_{\hat{R_{\mathfrak{p}}}}$ $\hat{R_{\mathfrak{p}}}$ consists of a single prime ideal z, for all $\mathfrak{p} \in \bar{A^*}(I)$. Then the topologies $\{I^{\langle n \rangle}\}_{n \geq 1}$ and $\{\overline{I^n}\}_{n \geq 1}$ are equivalent.

Recall: $\bar{A}^*(I) := \{ \mathfrak{p} \in \operatorname{Spec} R : \mathfrak{p} \in \operatorname{Ass} R/\bar{I}^n \text{ for all large } n \}.$

Integral symbolic and adic topologies

> Reza Naghipou

SKETCH OF PROOF. In view of Theorem A, it will suffice to show that $\bar{Q}^*(I) = \text{mAss}_R R/I$. To do this, suppose the contrary is true. Then, as mAss_R $R/I \subseteq \bar{Q}^*(I)$, there exists $\mathfrak{p} \in Q^*(I)$ such that $\mathfrak{p} \notin \mathsf{mAss}_R R/I$. Since $\mathfrak{p} \in V(I)$, it follows that there exists $\mathfrak{q} \in \mathsf{mAss}_R R/I$ such that $\mathfrak{q} \subsetneq \mathfrak{p}$. Moreover, it is well known that $\bar{Q}^*(I) \subseteq \bar{A}^*(I)$, hence mAss $_{\hat{R}_n} \hat{R}_p = \{z\}$. Therefore, $Rad(I\hat{R}_{\mathfrak{p}}+z)=\mathfrak{p}\hat{R}_{\mathfrak{p}}$. Now, let \mathfrak{q}^* be a minimal prime over $q\hat{R}_{\mathfrak{p}}$. Then $I\hat{R}_{\mathfrak{p}}\subseteq q\hat{R}_{\mathfrak{p}}\subseteq q^*$. Now, since $z\subseteq q^*$ it follows that $\mathfrak{p}\hat{R}_{\mathfrak{p}}\subseteq\mathfrak{q}^*$, and hence $\mathfrak{p}\hat{R}_{\mathfrak{p}}\subseteq\mathfrak{q}^*\cap R_{\mathfrak{p}}$. On the other hand, since \mathfrak{q}^* is a minimal prime over $\mathfrak{q}\hat{R}_{\mathfrak{p}}$, we can therefore deduce from the Going-Down Theorem that $\mathfrak{q}^* \cap R_{\mathfrak{p}} = \mathfrak{q} R_{\mathfrak{p}}$. Hence $\mathfrak{q}R_{\mathfrak{p}} = \mathfrak{p}R_{\mathfrak{p}}$, and so $\mathfrak{q} = \mathfrak{p}$, which is a contradiction.

References

Integral symbolic and adic topologies

- R. Hartshorne, *Affine duality and cofiniteness*, Invent. Math. **9** (1970), 145-164.
- M. Hochster, *Criteria for equality of ordinary and symbolic powers of primes*, Math. Z. **133** (1973), 53-65.
- M. Hochster and C. Huneke, *Comparison of symbolic and ordinary powers of ideals*, Invent. Math. **147** (2002), 349-369.
- M. Hochster and C. Huneke, *Fine behavior of symbolic powers of ideals*, Illinois J. Math. **51** (2007), 171-183.
- C. Huneke, D. Katz and J. Validashti, *Uniform equivalence of symbolic and adic topologies*, Illinois J. Math. **53** (2009), 325-338.

References

Integral symbolic and adic topologies

- J. Lipman and A. Sathaye, Jacobian ideals and a theorem of Briancon-Skoda, Michigan Math. J. 28 (1981), 199-222.
- S. McAdam, *Asymptotic Prime Divisors*, Lecture Notes in Math. **1023**, Springer-Verlag, New York, 1983.
- S. McAdam, Quintasymptotic primes and four results of Schenzel, J. Pure Appl. Algebra 47 (1987), 283-298.
- M. Nagata, Local Rings, Interscience, New York, 1961.
- L.J. Ratliff, Jr., *On asymptotic prime divisors*, Pacific J. Math. **111** (1984), 395-413.
- O. Zariski, Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Mem. Amer. Math. Soc. 5 (1951), 1-90.

Integral symbolic and adic topologies

> Reza Naghipour

Thanks for your attention