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FIXED NOTATION

Throughout this talk:

• R will be always a commutative Noetherian ring and I , J two
ideals of R.

• If (R,m) is local, then R̂ denotes the completion of R with
respect to the m-adic topology.

• For each R-module L, we denote by mAssR L the set of
minimal primes of AssR L.

• If (R,m) is local, then R is said to be a quasi-unmixed ring if
for every p ∈ mAssR̂ R̂, dim R̂/p = dim R.

• R is a locally quasi-unmixed ring if for any p ∈ Spec(R), Rp

is a quasi-unmixed ring.

• We will use I :R 〈J〉 to denote the ideal
⋃

n≥1(I :R Jn).
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FIXED NOTATION

• We denote by R the Rees ring R[u, It] := ⊕n∈ZI ntn of R
w.r.t. I , where t is an indeterminate and u = t−1.

• If (R,m) is local, then the analytic spread of I is defined to
be `(I ) := dim R/(m, u)R.

• I denotes the integral closure of I in R, i.e., I is the ideal of
R consisting of all elements x ∈ R satisfying an equation
xn + r1xn−1 + · · ·+ rn = 0, where ri ∈ I i , i = 1, . . . , n.

• For a natural number n, the nth symbolic power of I ,
denoted by I (n), is defined to be the union of I n :R s, where s
runs in the multiplicatively closed subset

⋂
p∈mAssR R/I (R \ p).

• The nth integral symbolic power of I , denoted by I 〈n〉, to be
the union of I n :R s, where s varies in the multiplicatively
closed subset

⋂
p∈mAssR R/I (R \ p).
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A theorem and a definition of S. McAdam 1987

McAdam studied the following interesting set of prime ideals of
R containing I :

• Definition.
Q̄∗(I ) := {p ∈ Spec R : ∃q ∈ mAss R̂p, Rad(I R̂p + q) = pR̂p}.

The set Q̄∗(I ) is called the quintasymptotic prime ideals of I .

If S is a mcs in R, then for any ideal b of R, we use S(b) to
denote the ideal

⋃
s∈S(b :R s).

• Theorem (McAdam 1987). If S is a mcs of R, then TFAE:
(i) S ⊆ R\

⋃
{p ∈ Q̄∗(I )}.

(ii) For all k ≥ 0, there is an m ≥ 0 such that S(Im) ⊆ I k .

(iii) For all k ≥ 0, there is an m ≥ 0 such that S(Im) ⊆ I k .
(iv) For all q ∈ V (I ) and k ≥ 0, ∃ m ≥ 0 s.t. S(Im) ⊆ q〈n〉.
(v) For all q ∈ V (I ) and k ≥ 0, ∃ m ≥ 0 s.t. S(Im) ⊆ q〈n〉.
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Comparison of Topologies and Quintasymptotic
Primes

• Proposition A. Let p ∈ V (I ). Then TFAE:

(i) p ∈ Q̄∗(I ).
(ii) There is a k ≥ 0 such that for all m > 0, Im :R 〈p〉 * p〈k〉.
(ii) There is a k ≥ 0 such that for all m > 0, Im :R 〈p〉 * p〈k〉.

• Proposition B. Let p ∈ V (I ) \mAssR R/I . Consider the
following statements.
(i) p ∈ Q̄∗(I ).
(ii) There is an integer k ≥ 1 s.t. I 〈m〉 * p〈k〉 for all m ∈ N.
(iii) There is a prime ideal q ⊆ p s.t. q ∈ Q̄∗(I ) \mAssR R/I .

Then (i) =⇒ (ii) =⇒ (iii).
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• Theorem A. The following conditions are equivalent:

(i) Q̄∗(I ) = mAssR R/I .
(ii) The topology {I 〈m〉}m≥1 is equivalent to {Im}m≥1.
(iii) The topology {I (m)}m≥1 is equivalent to {Im}m≥1.
(iv) For every radical ideal J of R which contains I , the
topology {I 〈m〉}m≥1 is finer than the topology {J〈m〉}m≥1.

SKETCH OF PROOF. (i) =⇒ (ii) follows from McAdam’s
Theorem. To prove the conclusion (ii) =⇒ (i), suppose the
contrary is true. Then, there exists p ∈ Q̄∗(I ) such that
p /∈ mAssR R/I . Then, by Proposition A, there exists an
integer k ≥ 1 such that I 〈m〉 * p〈k〉 for all integers m ≥ 1.
Further, in view of assumption (ii), there exists an integer

l ≥ 1 such that I 〈l〉 ⊆ I k . Now, since I k ⊆ pk ⊆ p〈k〉, it follows
that I 〈l〉 ⊆ p〈k〉, which provides a contradiction.
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In order to show (iii) =⇒ (iv), let l ≥ 1. Then, in view of
McAdam’s Theorem, there exists an integer m ≥ 1 such that
I 〈m〉 ⊆ I l . Since I ⊆ J, we have I 〈m〉 ⊆ J l , and so as J l ⊆ J〈l〉

it follows that I 〈m〉 ⊆ J〈l〉, as required.

Finally, in order to prove the conclusion (iv) =⇒ (i), suppose
the contrary is true. Then, there is an element p ∈ Q̄∗(I ) such
that p /∈ mAssR R/I . Hence, in view of Proposition B, there
exists an integer k ≥ 1 such that I 〈m〉 * p〈k〉 for all integers m.
Now, since I ⊆ p and p is a radical ideal, the assumption (iv)
provides a contradiction.

Reza Naghipour Integral symbolic and adic topologies



Integral
symbolic and

adic
topologies

Reza
Naghipour

Comparison of Topologies and Quintasymptotic
Primes

In order to show (iii) =⇒ (iv), let l ≥ 1. Then, in view of
McAdam’s Theorem, there exists an integer m ≥ 1 such that
I 〈m〉 ⊆ I l . Since I ⊆ J, we have I 〈m〉 ⊆ J l , and so as J l ⊆ J〈l〉

it follows that I 〈m〉 ⊆ J〈l〉, as required.
Finally, in order to prove the conclusion (iv) =⇒ (i), suppose
the contrary is true. Then, there is an element p ∈ Q̄∗(I ) such
that p /∈ mAssR R/I . Hence, in view of Proposition B, there
exists an integer k ≥ 1 such that I 〈m〉 * p〈k〉 for all integers m.
Now, since I ⊆ p and p is a radical ideal, the assumption (iv)
provides a contradiction.

Reza Naghipour Integral symbolic and adic topologies



Integral
symbolic and

adic
topologies

Reza
Naghipour

Comparison of Topologies in Regular Rings

• Theorem (M. Nagata 1961). Let (R,m) be a regular local
ring and let p be a prime ideal of R. Then for every integer
n ≥ 1, p(n) ⊆ mn.

• Corollary. Let R be a regular ring and let p ⊆ q be prime
ideals of R. Then for every integer n ≥ 1, p〈n〉 ⊆ q〈n〉.

• Lemma. Let p1, . . . , pt be prime ideals of R. Then, for every
integer n ≥ 1,

(
⋂t

i=1 pi )
〈n〉 =

⋂t
i=1 p

〈n〉
i .

• Proposition. Let R be a regular ring and I an ideal of R.
Let J be an radical ideal of R containing I and let n ≥ 1 be an
integer. Then I 〈n〉 ⊆ J〈n〉.
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Comparison of Topologies in Regular Rings

• Corollary. Let R be a regular ring and let I ⊆ J be ideals of
R. Then for every integer n ≥ 1, I 〈n〉 ⊆ (Rad(J))〈n〉.

• Theorem B. Let R be a regular ring. Then the topologies
induced by {Im}m≥1 and {I 〈m〉}m≥1 are equivalent.

• Theorem (J. Lipman and A. Sathaye 1981). Let R be a
regular ring. Let I be any ideal of R that is generated by s
elements. Then for any integer n ≥ 0,

I n+s ⊆ I n+1.

• Theorem C. Let R be a regular ring. Then the topology
defined by {I 〈m〉}m≥1 is equivalent to the I -adic topology.
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Comparison of Topologies in Locally
Quasi-Unmixed Rings

• Proposition. Let

Q̄∗(I ) = mAssR R/I and Q̄∗(J) = mAssR R/J.

Further, suppose that

mAssR R/IJ = mAssR R/I
⋃

mAssR R/J.

Then Q̄∗(IJ) = mAssR R/IJ and Q̄∗(I ∩ J) = mAssR R/I ∩ J.

• Corollary. If for all p ∈ mAssR R/I , the topologies {p〈n〉}n≥1
and {pn}n≥1 are equivalent, then Q̄∗(I ) = mAssR R/I .

• Theorem D. Let R be a locally quasi-unmixed ring and let I
be a set-theoretic complete intersection ideal. Then topologies
{I 〈n〉}n≥1 and {I n}n≥1 are equivalent.

• Recall that I is called a set theoretic complete intersection
ideal if it is the radical of an ideal generated by height I
elements.
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Comparison of Topologies in Locally
Quasi-Unmixed Rings

SKETCH OF PROOF. In view of Theorem A, it will suffice to
show that Q̄∗(I ) = mAssR R/I . For this, let p ∈ Q̄∗(I ). Since
Q̄∗(I ) ⊆ Ā∗(I ) by [3, Lemma 2.1], it follows that p ∈ Ā∗(I ),
where

Ā∗(I ) := {p ∈ Spec R : p ∈ Ass R/Ī n for all large n}.

So, as R is locally quasi-unmixed, it follows from McAdam’s
result [2, Proposition 4.1] that height p = `(IRp). Now, as I is
a set-theoretic complete intersection ideal, without loss of
generality we may assume that Rad(I ) = I and I is generated
by height I elements. As, at least `(a) elements are needed to
generate a, for any ideal a in a commutative Noetherian ring A,
we have `(IRp) ≤ height I , and so height p = height I . That is
p ∈ mAssR R/I , as required.
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Hartshorne and Zariski’s results

• Theorem (R. Hartshorne 1970). Let R be a complete local
ring and p be prime ideal of R such that dim R/p = 1. Then
the p-adic and p-symbolic topologies are equivalent.

• Theorem E. Let (R,m) be a local (Noetherian) ring and let
p be a prime ideal of R such that dim R/p = 1. Then TFAE:
(i) The topologies defined by {p〈n〉}n≥1 and {pn}n≥1 are
equivalent.
(ii) For all z ∈ mAssR̂ R̂, there exists q ∈ Spec(R̂) such that
z ⊆ q and q ∩ R = p.
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Hartshorne and Zariski’s results

SKETCH OF PROOF. For (i) =⇒ (ii), let z ∈ mAssR̂ R̂. In
view of Theorem A, Q̄∗(p) = {p}, and so m /∈ Q̄∗(p). Hence
mR̂ is not minimal over pR̂ + z . Let q be a minimal over
pR̂ + z . Then p ⊆ q ∩ R. Now, since dim R/p = 1, it is easily
seen that q ∩ R = p, and z ⊆ q.

In order to prove (ii) =⇒ (i), in view of Theorem A, it will
suffice to show that Q̄∗(p) = {p}. To this end, let q ∈ Q̄∗(p).
Then p ⊆ q ⊆ m. Since dim R/p = 1, we have q = p or q = m.
If q = p, the claim is true. Hence, let q = m. Then m ∈ Q̄∗(p),
and so there is z ∈ mAssR̂ R̂ such that Rad(pR̂ + z) = mR̂.

Therefore, in view of assumption (ii), there exists q ∈ Spec(R̂)
such that z ⊆ q and q ∩ R = p. Hence q ⊆ pR̂, and so
Rad(pR̂) = mR̂. Whence, dim R̂/pR̂ = dim R/p = 0, which is
a contradiction.
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• Theorem (O. Zariski 1951). Let R be a Noetherian domain
which is analytically irreducible at all prime ideals containing p,
i.e. R̂q is an integral domain for all primes q with q ⊇ p. Then
the p-adic and p-symbolic topologies are equivalent.

• Theorem F. Suppose that mAssR̂p
R̂p consists of a single

prime ideal z , for all p ∈ Ā∗(I ). Then the topologies {I 〈n〉}n≥1
and {I n}n≥1 are equivalent.

Recall: Ā∗(I ) := {p ∈ Spec R : p ∈ Ass R/Ī n for all large n}.
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SKETCH OF PROOF. In view of Theorem A, it will suffice to
show that Q̄∗(I ) = mAssR R/I . To do this, suppose the
contrary is true. Then, as mAssR R/I ⊆ Q̄∗(I ), there exists
p ∈ Q̄∗(I ) such that p /∈ mAssR R/I . Since p ∈ V (I ), it follows
that there exists q ∈ mAssR R/I such that q $ p. Moreover, it
is well known that Q̄∗(I ) ⊆ Ā∗(I ), hence mAssR̂p

R̂p = {z}.
Therefore, Rad(I R̂p + z) = pR̂p. Now, let q∗ be a minimal
prime over qR̂p. Then I R̂p ⊆ qR̂p ⊆ q∗. Now, since z ⊆ q∗ it
follows that pR̂p ⊆ q∗, and hence pR̂p ⊆ q∗ ∩ Rp. On the other
hand, since q∗ is a minimal prime over qR̂p, we can therefore
deduce from the Going-Down Theorem that q∗ ∩ Rp = qRp.
Hence qRp = pRp, and so q = p, which is a contradiction.
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