Strongly irreducible submodules in the Arithmetical and Noetherian modules

Reza Naghipour

Let R be a commutative ring and let M be an arbitrary R-module. In this talk, we will introduce the concept of strongly irreducible submodules of M and we will prove some properties of them, whenever M is either an arithmetical or a Noetherian module. In case when R is Noetherian and M is finitely generated, several characterizations of strongly irreducible submodules are included. Among other things, it is shown that when N is a submodule of M such that $N:_R M$ is not a prime ideal, then N is strongly irreducible if and only if there exist a submodule L of M and a prime ideal \mathfrak{p} of R such that N is \mathfrak{p} -primary, $N \subsetneq L \subseteq \mathfrak{p} M$ and for all submodules K of M either $K \subseteq N$ or $L_{\mathfrak{p}} \subseteq K_{\mathfrak{p}}$. In addition, we show that a submodule N of M is strongly irreducible if and only if N is primary, $M_{\mathfrak{p}}$ is arithmetical and $N = (\mathfrak{p} M)^{(n)}$ for some integer n > 1, where $\mathfrak{p} = \operatorname{Rad}(N:_R M)$ with $\mathfrak{p} \not\in \operatorname{Ass}_R R/\operatorname{Ann}_R(M)$ and $\mathfrak{p} M \not\subseteq N$. As a consequence we deduce that if R is integral domain and M is torsion-free, then there exists a strongly irreducible submodule N of M such that $N:_R M$ is not a prime ideal if and only if there is a prime ideal \mathfrak{p} of R with $\mathfrak{p} M \not\subseteq N$ and $M_{\mathfrak{p}}$ is an arithmetical $R_{\mathfrak{p}}$ -module.

This talk is based on a joint work with M. Sedghi (preprint 2020).

University of Tabriz Tabriz Iran

E-mail address: naghipour@ipm.ir