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Notation
Throughout this talk S is a commutative ring (with identity) of the

following types
@ Noetherian local rings; or
@ Homogeneous K-algebras, K a field.
M is a finitely generated S-module and / an ideal of S.
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Notation

Throughout this talk S is a commutative ring (with identity) of the
following types
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s 35S \BS
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[5, = dimy Tor? (M, K);.
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Castelnuovo-Mumford regularity

Let K be a field and S = K[x1,- -+, x/].
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Castelnuovo-Mumford regularity

1. Regularity in terms of minimal graded free resolution

The regularity of a finitely generated graded S-module M is the regularity
of a minimal graded free resolution, IF, of M.

F:... —>@S(—a;d-) —>@5(—ai_1,j)—> T
J J

Then reg(F) = max{a;; — i}.
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Castelnuovo-Mumford regularity

1. Regularity in terms of minimal graded free resolution
2. Regularity in terms of Tor
reg(M) =max{j — i : Tor;(M, K); # 0},
iJ
=limeali = Bl 7= Ol

I'hen reg(lf) = max{a;; — /}.
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Castelnuovo-Mumford regularity
1. Regularity in terms of minimal graded free resolution

2. Regularity in terms of Tor

3. Regularity in terms of Local Cohomology
Let

ai(M) = max{t; H\ (M); # 0},0 < i < n,

where H! (M) is the ith local cohomology module with the support in m
(with the convention max () = —oc). Then the regularity is the number

reg(M) = max{aj(M) +i;0 < i < n}.

.
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Castelnuovo-Mumford regularity
1. Regularity in terms of minimal graded free resolution

2. Regularity in terms of Tor

3. Regularity in terms of Local Cohomology

4. Regularity in terms of Linear Resolutions

reg(M) = min{c : M. has linear resolution},

where naturally M, = @ M;.

i>c

[GRN 7 (SN 7 o = —_— )
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Some €asy consequences:

O reg(/) =reg(S/l)+ 1 for a graded ideal / of S,
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Some €asy consequences:

O reg(/) =reg(S/l)+ 1 for a graded ideal / of S,
@ For an Artinian graded S-module M, we have H2 (M) = M, and hence

reg(M) = max{j; M; # 0}.
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Some €asy consequences:

O reg(/) =reg(S/l)+ 1 for a graded ideal / of S,
@ For an Artinian graded S-module M, we have H2 (M) = M, and hence

reg(M) = max{j; M; # 0}.

© If | is generated by a regular sequence of forms of degrees di,--- , d,,

reg(S/1)=di+---+d —r.
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S := K[x1, x2, x3]. The graded free resolution of M = S/(x%,x3) is
2 1

0
— —— =
0— S(=5) &5(—2) B S(-3) &5 L m—s 0,

where
do 1l I,
dl . (1a0) = (_Xlz)a (07 1) = (—XS),
dy i1 (=3, x3).
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S := K[x1, x2, x3]. The graded free resolution of M = S/(x%,x3) is
2 1

0
— —— =
0— S(=5) &5(—2) B S(-3) &5 L m—s 0,

where
do 1l I,
dl . (1a0) = (_Xlz)a (07 1) = (—XS),
dy i1 (=3, x3).

reg(M) =max{0—-0,3-1,5—-2} =3 J
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Let S = K[x1, X2, x3], and m = (x1, x2, x3). The resolution of m® is

2 1 0

— — ——
0— S(-7)" — 5(-6)* — S(-5)* — m®> — 0, ()
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Let S = K[x1, X2, x3], and m = (x1, x2, x3). The resolution of m® is
2 1 0

— — ——
0— S(-7)" — 5(-6)* — S(-5)* — m®> — 0, ()

() is linear

reg(m®) = max{5 - 0,6 — 1,7 -2} =5

.
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Example
Let S = K|[x1,x2, x3], and m = (x1, x2, x3). The resolution of m® is
2 1 0

— — ——
0— S(-7)1 — 5(-6)® — S(-5) —m® —0, (¥

A\

(%) is linear

reg(m®) = max{5 - 0,6 —1,7 -2} =5

| N\

m9 has a d-linear resolution for all d > 1

For i > 1, the i-th free module in the resolution of m9, if nonzero, is a
direct sum of copies of S(—d — i) and so reg(m?) = d.

V.
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reg(M) = 8 and proj.dim(M) = 5, then?

reg(M) = 8 and proj.dim(M) =5 < 3;j(M) = 0 where j — i > 8
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reg(M) = 8 and proj.dim(M) = 5, then?

reg(M) = 8 and proj.dim(M) =5 < 3;j(M) = 0 where j — i > 8
Thus we have the following (proj.dim(M) + 1 = 6) conditions on M and

its syzygies:

M is generated in degrees < 8,
Q1(M)is generated in degrees <9,
Qy(M) is generated in degrees < 10,

)

Qs5(M)is generated in degrees < 8+ 5 = 13.
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Hilbert Syzygy Theorem

Any finitely generated graded S-module M has a finite graded free
resolution

0= Fn 2™ Fg = .. A Ry

Moreover, we may take m < r + 1, the number of variables in S.
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Hilbert Syzygy Theorem

Any finitely generated graded S-module M has a finite graded free
resolution

0= Fn 2™ Frnt = . > AL 25 Ry

Moreover, we may take m < r + 1, the number of variables in S.

Koszul complexes

K(m): 00— 512 5

T
K(zg,z1): 0 — §(-2) (__39). §%(-1) (T 7) ¢

Ip 0 = —m
Iy —y 0 Iy
_z O
K{zo,z1,72): 0—» S§(-8) 2/, gh gy \ T 70
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Minimal Free Resolution

A complex of graded S-modules
d;
= F = Fog— ..

is called minimal if for each / the image of d; is contained in mF;_;.
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Minimal Free Resolution

A complex of graded S-modules

9
o= F S Fioy— ...

is called minimal if for each / the image of d; is contained in mF;_;.

Informally, we may say that a complex of free modules is minimal if its
differential is represented by matrices with entries in the maximal ideal.
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Minimal Free Resolution

The minimal free resolutions are unique up to isomorphism. We can
construct a minimal free resolution from any resolution.
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Minimal Free Resolution

The minimal free resolutions are unique up to isomorphism. We can
construct a minimal free resolution from any resolution.

If F:---— F; — Fg is the minimal free resolution of a finitely generated
graded S-module M and K denotes the residue field S/m, then any
minimal set of homogeneous generators of F; contains precisely

dimg Tor;-s(K, M); generators of degree j.
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Minimal Free Resolution

The minimal free resolutions are unique up to isomorphism. We can
construct a minimal free resolution from any resolution.

If F:---— F; — Fg is the minimal free resolution of a finitely generated
graded S-module M and K denotes the residue field S/m, then any
minimal set of homogeneous generators of F; contains precisely

dimg Tor;-s(K, M); generators of degree j.

If M is a finitely generated graded S-module then the projective dimension
of M is equal to the length of the minimal free resolution.

v
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Describing Resolutions: Betti Diagrams

Suppose that F is a free complex
F:0-Fs—---—Fn—---—F

where F; = @j S(—j)Pii, that is, F; requires Bi,j minimal generators of
degree j. The Betti diagram of F has the form

0 1 e S
1 Bo,i B1,i+1 & s .Bs,a'+s
831 | Posaa Bueps = Bosrans
J .SD,j .Bl,j-l—L T .55,j+s
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Describing Resolutions: Betti Diagrams

The Betti diagram consists of a table with s + 1 columns, labeled
0,1,---,s, corresponding to the free modules Fy,--- , Fs. It has rows
labeled with consecutive integers corresponding to degrees.
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Describing Resolutions: Betti Diagrams

The Betti diagram consists of a table with s + 1 columns, labeled
0,1,---,s, corresponding to the free modules Fy,--- , Fs. It has rows
labeled with consecutive integers corresponding to degrees.

The m-th column specifies the degrees of the generators of Fp,.
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Describing Resolutions: Betti Diagrams

The Betti diagram consists of a table with s + 1 columns, labeled
0,1,---,s, corresponding to the free modules Fy,--- , Fs. It has rows
labeled with consecutive integers corresponding to degrees.

The m-th column specifies the degrees of the generators of Fp,.

Why i i4; rather than j; ;7

Let {3} be the graded Betti numbers of a finitely generated S-module.

If for a given i there is d such that ;; = 0 for all j < d, then fj1141 =0
for all j < d.
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Describing Resolutions: Betti Diagrams

The Betti diagram consists of a table with s + 1 columns, labeled
0,1,---,s, corresponding to the free modules Fy,--- , Fs. It has rows
labeled with consecutive integers corresponding to degrees.

The m-th column specifies the degrees of the generators of Fp,.

Why i i4; rather than j; ;7

Let {3} be the graded Betti numbers of a finitely generated S-module.
If for a given i there is d such that ;; = 0 for all j < d, then fj1141 =0
for all j < d.

v

The entry in the j-th row of the i-th column is f3; ;1 ; rather than 3; ;. In
fact if the i-th column of the Betti diagram has zeros above the j-th row,
then the (i + 1)-st column also has zeros above the j-th row. This allows a
more compact display of Betti numbers than if we had written 3;; in the
i-th column and j-th row.
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Some Applications

1. Regularity of powers of ideals
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Some Applications

1. Regularity of powers of ideals
2. Invariants similar to regularity
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Some Applications

1. Regularity of powers of ideals

2. Invariants similar to regularity

3. Resolution of path ideals of cycles
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1. Regularity of powers of ideals

Chandler (1997)

If dimS/I <1,
reg(1%) < kreg(/).

The hypothesis dim S// < 1 is necessary.
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1. Regularity of powers of ideals

Chandler (1997)

If dimS/I <1,
reg(1%) < kreg(/).

The hypothesis dim S// < 1 is necessary.

Eisenbud-Huneke-Ulrich (2007)
If dim Tor(M, N) < 1, then for any g,

reg(Toqu(/\/l, N)) < reg(M) + reg(N) + ¢
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1. Regularity of powers of ideals

Chandler (1997)

If dimS/I <1,
reg(1%) < kreg(/).

The hypothesis dim S// < 1 is necessary.

Eisenbud-Huneke-Ulrich (2007)
If dim Tor(M, N) < 1, then for any g,

reg(Toqu(I\/l, N)) <reg(M) +reg(N) + q

Kodiyalam (2000), Cutkosky-Herzog-Trung (1999)

reg(I¥) = kb+r, Yk>0
with indeg(/) < b < bo(/).
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Counter Examples

(The first) Terai

An example of Reisner «+— Triangulation of the real projective plane P2.
Let S := K|[x1, -, xe] one has

J = (X1X2X3, X1X2X4, X1X3X5, X1 X4X6, X1 X5 X6, X2X3 X6, X2 X4.X5 , X2X5X6, X3X4X5,

X3X4Xp ).
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Counter Examples

(The first) Terai

An example of Reisner «+— Triangulation of the real projective plane P2,
Let S := K|[x1, -, xe] one has

J = (X1X2X3, X1X2X4, X1X3X5, X1 X4X6, X1 X5 X6, X2X3 X6, X2 X4.X5 , X2X5X6, X3X4X5,

X3X4Xp ).

J is characteristic dependant

| A\

J is a square-free monomial ideal whose Betti numbers, regularity and
projective dimension depend on the characteristic of the base field.
o If char(K) # 2, S/J is Cohen-Macaulay. reg(J) = 3 and reg(J?) =7
(>2x3).
o If char(K) =2, S/J is not Cohen-Macaulay. J itself has no linear
resolution.

A\
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Natural Question:

How it goes on for the regularity of powers of J?
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Natural Question:
How it goes on for the regularity of powers of J?

Answer by [CHT]

By the help of [CHT] we are able to write

reg(JX) = 3k + b(J), Vk > c(J).

But what are b(J) and c(J)?
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Natural Question:
How it goes on for the regularity of powers of J?

—

Answer by [CHT]

By the help of [CHT] we are able to write
reg(JX) = 3k + b(J), Vk > c(J).

But what are b(J) and c(J)?

Let / € K[x1, -+ ,xa] := S be an equigenerated graded ideal. Let m be
the number of generators of / and let T := S[t1, -, tm], and let

R(I) = T/P be the Rees algebra associated to /.

If for some term order < on T, P has a Grobner basis G whose elements
are at most linear in the variables xi, - - - , x,, that is deg, (f) < 1 for all
f € G, then each power of | has a linear resolution.

v
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Rees ring of /

I =(f,...,fm) be a graded ideal of S = K[xi,...,x,] generated in a
single degree, say d.

R(I)=EPre = S[ht,..., fat] C S[t],

j=0

The standard bigraded structure of R(/)

RN (kgy = (") kaj (1)

A\

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 17 / 65



But..,

in(P) has at least 3 elements with deg, > 1, no matter if we take initial
ideal w.r.t term ordering x >t or t > x in either Lex or DegRevlLex order:

x>t t>x
DegRevLex | (1,2):2,(2,2):2 | (1,2):2,(2,2):1
Lex (1,2):2,(2,2):1 | (1,2):2,(2,2):1

Table: Count of elements of in(P) with deg, > 1 for J

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 18 / 65



But..,

in(P) has at least 3 elements with deg, > 1, no matter if we take initial
ideal w.r.t term ordering x >t or t > x in either Lex or DegRevlLex order:

x>t t>x
DegRevLex | (1,2):2,(2,2):2 | (1,2):2,(2,2):1
Lex (1,2):2,(2,2):1 | (1,2):2,(2,2):1

Table: Count of elements of in(P) with deg, > 1 for J

t-degree x-degree

A~ =
For example; (1 , 2 ) and so forth.

Keivan Borna (Math-KHU)
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So, what do we do?

We prove that J* has linear resolution Vk # 2

b(J)=0 andc(J)=3.
That is,

reg(JX) =3k, Vk #2.
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So, what do we do?

We prove that J* has linear resolution Vk # 2

b(J)=0 andc(J)=3.
That is,

reg(J¥) = 3k, Vk #2.

Our criterion

| A

Q €S =K]xi, - ,x] a graded ideal generated by m polynomials all of
the same degree d,

I = in(g(P)) for some linear bi-transformation g € GL,(K) x GL(K).

Write | = G + B where G is generated by elements of deg, < 1;
B is generated by elements of deg, > 1.
If k) = for all k > ko and for all j € Z, then Q¥ has linear

resolution for all k > kg. In other words, reg(Qk) = kd for all k > kg.
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The Algorithms and the coding in

1. Algorithm for calculating P

Data: an equigenerated ideal / of S
Result: The associated ideal of Rees ring /, i.e., P
1 begin
2 R <— Kk[x1,...,Xp t1,"+ , tm, U]
3 I +— IR
4 G «— Gens(/)
5 P <— Elim(u, Ideal([t[/] — u* G[i] | i =1,---Len(G)]))
6 return P
7 end

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013



2. Algorithm for calculating Good and Bad parts of in(P)

Data: a monomial ideal U of T
Result: The Good and Bad parts of U, i.e., G and B
1 begin
2 G <— ldeal(m € Gens(U) | deg,(m) < 1)
3 B <— ldeal(m € Gens(U) | deg,(m) > 1)
4 return G, B
5 end
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3. Algorithm for calculating x-degree and t-degree

Data: a term p of T, and a fixed term order < on T

Result: deg,(p), deg.(p)
1 begin

2 M <— Len(x) = r,N <— Len(t) = m,L <— Log(p)
/*Log, F :=x3y?z% + x2y + xz* then Log(F) = [3,2,5].*/
3 if x <t then
M M+N
deg,(p) = Y _L[i], degi(p) = > L[i]
4 i=1 i=M+1
5 else
N+M N
deg,(p) = Y Lli] dege(p) =) L[]
6 L i=N+1 i=1
7 | return deg,(p),deg.(p)
8 end
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4. Algorithm for calculating maximum t-degree of a subset of T

Data: a subset X of T
Result: maxdeg,(X)

1 begin

2 MaxTDeg <— 0

3 foreach x in X do

4 if degi(x) > MaxTDeg then
5 MaxTDeg := deg:(x)
6

7

8

9

endif
end
return MaxTDeg

end
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5. Algorithm for the condition x — gen = 1.

Data: a monomial ideal U of T
Result: N :=| {b € B | Ideal(b)(t)M+1~de&(b) ¢ G} |.
begin
Counter +— 0, /*see Algorithm 2x/
B +— BadParts(U),G <— GoodParts(U)
/*see Algorithm 4x*/

N =

w

M <— MaxTDeg(B)
foreach b in B do
Py +— M + 1 — deg:(b)
W), <— Ideal(b)(t">)
if W, € G then
Counter=Counter+1
endif
end
return Counter

W N = O © 0o N O g b

bt el e ek

end
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)

If fortunately N = 0, we are done and from our criterion we deduce the

N :=| {b € B | Ideal(b)(t)M+1-d%®) ¢ G} | .

linear resolution of /¥ for k > N. Otherwise having N in hand, we suggest

the following two approaches; even most of the time, we use a
combination of the two:

@ Change order

@ Switch to a sparse upper triangular bi-change of coordinates

13 May, 2013
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N :=| {b € B | Ideal(b)(t)M+1-d%®) ¢ G} | .

If fortunately N = 0, we are done and from our criterion we deduce the
linear resolution of /¥ for k > N. Otherwise having N in hand, we suggest
the following two approaches; even most of the time, we use a
combination of the two:

@ Change order
@ Switch to a sparse upper triangular bi-change of coordinates

case 1

| \

If | N | is large enough or more precisely when L’;’l is almost 1, we are
el

advised to do the change ordering. That is, if the large powers of P are
more concentrating on t's than x's, it is a good idea to choose the term
order t > x.

A\
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If fortunately N = 0, we are done and from our criterion we deduce the
linear resolution of /¥ for k > N. Otherwise having N in hand, we suggest
the following two approaches; even most of the time, we use a
combination of the two:

N :=| {b € B | Ideal(b)(t)M+1-d%®) ¢ G} | .

@ Change order
@ Switch to a sparse upper triangular bi-change of coordinates

v
case 1

. . N| -
If | N | is large enough or more precisely when I is almost 1, we are

Start with g(P) instead of P, where g is a bi-homogenous isomorphism on
K|x,t]. Hence we suggest to use the following algorithm to generate a
Sparse Random Upper Triangular bi-change of coordinates.
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Py, =Ideal(—t[2]x[3] + t[1]x[4], —t[3]x[2] + t[1]x[5], —t[7]x[1] + t[2]x[5],
— t[9]x[1] + t[3]x[4], —t[9]x[2] + t[7]x[3], —t[6]x[1] + t[1]x[6],
— t[4]x[2] + t[2]x[6], —t[10]x[1] + t[4]x[3], —t[10]x[2] + t[6]x[4],
— t[8]x[1] + t[5]x[2], —t[5]x[3] + t[3]x[6], —t[8]x[3] + t[6]x[5],
— t[5]x[4] + t[4]x[5], —t[8]x[4] + t[7]x[6], —t[10]x[5] + t[9]x[6],
t[2]t[6]t[9] — t[1]t[7]¢[10], —t[1]¢[4]t[9] + t[2]¢[3]¢[10], t[3]¢[6]¢t[7]
— t[1]¢[8]¢[9], t[3]¢[4]t[7] — t[2]¢[5]¢[9], —t[1]¢[5]¢[7] + £[2]¢[3]¢[8],
t[4]t[6]t[7] — t[2]¢t[8]t[10], t[5]t[6]t[9] — t[3]t[8]¢t[10], t[3]¢t[4]t[6]
— t[1]¢[5]¢[10], t[4]t[8]t[9] — t[5]t[7]t[10], t[2]t[5]t[6] — t[1]t[4]t[8],
t[2]7¢[3]¢[6] — t[1]*¢[4]¢[7], t[2]¢[3]°¢[6] — t[1]*¢[5]¢[9], —¢[1]¢[4]*¢[7]
+ t[2]2t[5]t[10], t[2]t[3]t[6]> — t[1]?¢[8]t[10], —t[1]¢t[4]t[7]>+
t[2]%¢[8]t[9], —t[1]¢[5]£[9]? + t[3]°¢[7]t[10], —t[2]¢[8]¢[9]*+
t[3]t[7]2t[10], —t[4]t[6]t[9]> + t[3]t[7]t[10]?, —t[3]*t[4]t[8]+
t[1]t[5]°[9], —t[5]t[6]t[7] + t[2]¢[8]2t[9], —t[4]>t[6]¢[9]+
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A Sparse Random Lower Triangular Matrix

( X1 —> C11X1
Xp > C21X1 + C22X2

Xp > Cp1X1 + Cp2X2 + -+ + ChnXp

t1 —> di1ty
th — do1ty + dooto

\ tm+— dmiti + dmoto + - + dmmtm

where ¢;;,d;j € {—1,0,1} are randomly chosen.
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6. Algorithm for generating such matrix.

1 begin
2 DS +—5
3 for i < 1 to r do
i-1 DS
Xi+— xi+ > (][ Rand(~1,1)x))
4 j=1 k=1
5 end
for i+ 1to mdo
i-1 DS
T «— t; + Z(H Rand(—1, 1)tj)
7 j=1 k=1
8 end
9 if Ideal( Xy, -+, X,, T1,---, Tpm) = Ideal(x,t) then
10 ‘ g=x1— X1, , x> X, t1—= T1,--+ tm+— T, return g
11 else
12 ‘ Generate again
13 endif
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7. Algorithm for searching for a desired g.

/*MainFnc(); the function in algorithm 5%/
/*CalcP(); the function in algorithm 1%/
/*Randgen() ; the function in algorithm 6%/
Data: / an equigenerated ideal / of S
Result: A bi-transformation g for which our criterion works
1 begin
2 P <— CalcP(/)
3 C <— MainFnc(in(P))
4 repeat
5 g <— Randgen()
6
7
8

C <— MainFnc(in(g(P)))
until C =0

end
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The second example, Conca (2006)

J1, the ideal of 3-minors of a 4 x 4 symmetric matrix of linear forms in 6
variables, that is, 3-minors of

0 x 1 X2 X3
x1 0 x4 x3
x> xa 0 Xxp
x3 x5 Xg O
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J1, the ideal of 3-minors of a 4 x 4 symmetric matrix of linear forms in 6
variables, that is, 3-minors of

0 x 1 X2 X3
x1 0 x4 x3
x> xa 0 Xxp
x3 x5 Xg O

As an ideal of S = Q[xy, - - - , x6] one has:

J1 = (2x1x0xa, 2X1X3X5, 2X2X3Xp, 2XaX5X6, X1X3Xa + X1 X0 X5 — x12x6, X3X4Xe +
Xo X5 X — X1X62, —XoX3Xq + X22X5 — X1X2Xg, —X§X4 + XoX3X5 +

X1X3X6, —X3xf + XoX4X5 + X1X4Xg, —X3XaX5 + x2x52 — X1X5X6).
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Again [HHZ] fails

Check: in(P1), where P; is the associated ideal to Rees ring of Ji, has at
least 9 elements with deg, > 1, no matter if we take initial ideal w.r.t
term ordering x >t or t > x in Lex or DegRevlLex order:

x>t t>x
DegRevlex | (1,2):6,(2,2):5,(1,3):1,(4,2):1 | (1,2):6,(2,2):3,(1,3):1
Lex (1,2):6,(2,2):3 (1,2):6,(2,2)5

Table: Count of elements of in(P;) with degy, > 1 for J;.
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J, J; resemble in many sense

The same behavior of regularity of powers

reg(JX) = 3k, Vk #2.

reg(Jy) = 3k, Vk #2.
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J, J; resemble in many sense

The same behavior of regularity of powers

reg(JX) = 3k, Vk #2.

reg(Jy) = 3k, Vk #2.

The same behavior of Hilbert series of powers

| A\

J and J; and their powers have the same Hilbert series (HS for short)
respectively:

HS(S/J*) = HS(S/J5), Vk.
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Linear bi-transformation g € GLg(K) x GL1o(K) for J

g =g x & € GLs(Q) x GL1o(Q)

g1 : Qx] — Q[x]
X4 — X1 + Xq,
X6 — X3 + Xe,

Xj — Xj, I £ 4,6

g2 : Q[t] — Q[t]

ti— t;, Vi
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Linear bi-transformation g € GLg(K) x GL1o(K) for J

g =g x & € GLs(Q) x GL1o(Q)

& : Qx] — Q[x]
X4 —> X1 + X4,
X — X3 + Xg,
Xj — Xj, I £ 4,6

g2 : Q[t] — Q[t]

i

Y

Then | G |=98, B = (t7x3, tatex2).

(t7X§)(t1,“' 7t10)2 € 5

l(kx) = G (kw), for k > 2 <= { (tatex2)(t1, - , t10) C G,
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Linear bi-transformation g € GLg(K) x GL1o(K) for J;

g =g x & € GLs(Q) x GL1o(Q)

g : Qx] — Q[x]
X4 —> X2 + X4,

X6 — X1 + Xe,

Xj —> Xj, I ;ﬁ 46

g : Qt] — Qft]
tg —> t7 + g,
ti— ti, i 75 8
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Linear bi-transformation g € GLg(K) x GL1o(K) for J;

g =g x & € GLs(Q) x GL1o(Q)

& : Qx] — Q[x]
X4 —> X2 + X4,
X — X1 + Xg,
Xj — Xj, I £ 4,6

g2 : Q[t] — Q[t]

Y

Then | ’: 144, B = (t10X2X3, t2t4X§).

I

(tioxoxs)(t1, -+, t10)? C G,

l(kx) = C(kx), for k > 2 <= { (tatax?)(t1, - , t10) C G,
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An example of Sturmfels

Sturmfels constructed a 2-dimensional Cohen-Macaulay ideal | generated
by 8 square-free monomials in 6 variables such that reg(/) = 3 but
reg(1?) = 7 for any base field K.
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An example of Sturmfels

Sturmfels constructed a 2-dimensional Cohen-Macaulay ideal | generated
by 8 square-free monomials in 6 variables such that reg(/) = 3 but
reg(1?) = 7 for any base field K.

S = Q[Xla"‘ ,X6].

J2 1= (X4 X5X6, X3X5X6, X3X4X6, X3X4X5, X2X5X6, X2X3X4, X1 X3X6 , X1 X4X5 ).
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An example of Sturmfels

Sturmfels constructed a 2-dimensional Cohen-Macaulay ideal | generated
by 8 square-free monomials in 6 variables such that reg(/) = 3 but
reg(1?) = 7 for any base field K.

S = Q[Xla"‘ ,X6].

J2 1= (X4 X5X6, X3X5X6, X3X4X6, X3X4X5, X2X5X6, X2X3X4, X1 X3X6 , X1 X4X5 ).

There exists at least 9 elements of x-degree > 1. So again HHZ fails.
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An example of Sturmfels

Sturmfels constructed a 2-dimensional Cohen-Macaulay ideal | generated
by 8 square-free monomials in 6 variables such that reg(/) = 3 but
reg(1?) = 7 for any base field K.

S = Q[le... ,X6].

J2 1= (X4 X5X6, X3X5X6, X3X4X6, X3X4X5, X2X5X6, X2X3X4, X1 X3X6 , X1 X4X5 ).

There exists at least 9 elements of x-degree > 1. So again HHZ fails.

Can we find a suitable upper triangular bi-change of x and t that fulfils the
requirements of our criterion.

After 122.000 times of tests the answer was “No”!
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We believe that powers of J; have non-linear resolution.

Keivan Borna (Math-KHU)

reg(Jh) = 3,

reg(J3) =7=3%2+1,
reg(J3) =10=3%3+1,
reg(Jy) =13 =34 +1,
reg(J3) =16 =3 x5+ 1, and
reg(J2) =19 =3%6+1
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We believe that powers of J; have non-linear resolution.

S

~— N N N N

=7=3%x2+41,
=10=3%3+1,
=13=3%x4+41,
=16=3%54+1, and
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It attracts our interests to the following question:

Is it true that reg(Jy) = 3k + 1, Vk > 27

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 36 / 65



2. Invariants similar to regularity

S is a polynomial ring over a field K.
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2. Invariants similar to regularity

S is a polynomial ring over a field K.
| is an ideal of S.
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2. Invariants similar to regularity

S is a polynomial ring over a field K.
| is an ideal of S.
w(1) denotes the number of a minimal generating set of /.
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2. Invariants similar to regularity

S is a polynomial ring over a field K.

| is an ideal of S.

w(1) denotes the number of a minimal generating set of /.

A(/) denotes the number of indeterminates appear in generators of /.
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2. Invariants similar to regularity

S is a polynomial ring over a field K.
| is an ideal of S.

w(1) denotes the number of a minimal generating set of /.
A(/) denotes the number of indeterminates appear in generators of /.
|I| denotes the total degree of /.
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Objective

O To find the regularity of monomial ideals that satisfy some conditions
on their primary representation.
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Objective

O To find the regularity of monomial ideals that satisfy some conditions
on their primary representation.

@ To ensure which associated primes of / still belong to associated
primes of its powers
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@ As usual, asss | = Asss(S/1).
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@ As usual, asss | = Asss(S/1).

@ In general there is no guaranty for having the implication
pEasssl/ = pcassg/” forall n>1.
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@ As usual, asss | = Asss(S/1).
@ In general there is no guaranty for having the implication
pEasss/ = pe€assg!” forall n>1.

@ We want to know if p € asss/ and htp = A(/), then p € asss /" for
all n > 17
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[Herzog-Hibi, Thm. 1.3.1]

@ Let / be a monomial ideal of S.
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[Herzog-Hibi, Thm. 1.3.1]

@ Let / be a monomial ideal of S.

@ Then | = ﬂf-‘le,-, where Q; is generated by pure powers of the
variables.
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[Herzog-Hibi, Thm. 1.3.1]

@ Let / be a monomial ideal of S.
@ Then | = ﬂf-‘le,-, where Q; is generated by pure powers of the

variables.
@ In other words, each Q; is of the form (x;*, x7%, ..., x7*) which is
p;-primary, where p; = (Xi, ..., Xj,).

13 May, 2013 40 / 65
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[Herzog-Hibi, Thm. 1.3.1]

@ Let / be a monomial ideal of S.
@ Then | = ﬂf-‘le,-, where Q; is generated by pure powers of the

variables.
@ In other words, each Q; is of the form (x;*, x7%, ..., x7*) which is
p;-primary, where p; = (Xi, ..., Xj,).

@ Thusasss /! ={p1, - ,pk}-
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[Herzog-Hibi, Thm. 1.3.1]

@ Let / be a monomial ideal of S.
@ Then | = ﬂf-‘le,-, where Q; is generated by pure powers of the

variables.
@ In other words, each Q; is of the form (x;*, x7%, ..., x7*) which is
p;-primary, where p; = (Xi, ..., Xj,).

@ Thusasss /! ={p1, - ,pk}-
o Finally an irredundant presentation of this form is unique.
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o Let S = K|x,y,z] and | = (xy, z).
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o Let S = K|x,y,z] and | = (xy, z).
@ Then | = (x,z)N(y,z) and so (x,y,z) ¢ asss .
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o Let S = K|x,y,z] and | = (xy, z).
@ Then | = (x,z)N(y,z) and so (x,y,z) ¢ asss .

° I?= (Xzyz’XyZ,Z2) = (X2,XyZ,22) n (y2,xyz,zz) - .. =
(X’ZZ) N (Xz’z) N (y722) N (y2az) N (Xzaya 22) N (ijz,zz).
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o | = ﬂf-‘zl Qi, where each Q; is generated by pure powers of the
variables. Thus Q; is a pj-primary ideal, where p; = (x;, - -, x;.) for
some positive integer c.
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o | = ﬂf-‘zl Qi, where each Q; is generated by pure powers of the

variables. Thus Q; is a pj-primary ideal, where p; = (x;, - -, x;.) for

some positive integer c.

@ One now can note that ht (Q;) = ht(xj,- -+ ,x;.) = ¢ and indeed
¢ < A(/). Hence ht(p) < A(/) for all p € ass s /.
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o | = ﬂf-‘ 1Qi, where each Q; is generated by pure powers of the

variables. Thus Q; is a pj-primary ideal, where p; = (x;, - -, x;.) for
some positive integer c.
@ One now can note that ht (Q;) = ht(xj,- -+ ,x;.) = ¢ and indeed

¢ < A(/). Hence ht(p) < A(/) for all p € ass s /.
@ It now makes perfect sense to see whenever the equality holds in fact.

v
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e We say that / satisfies the maximal height condition for asss | (MHC
for short), if there exists a prime ideal p € ass s / with ht (p) = A(/).
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MHC

e We say that / satisfies the maximal height condition for asss | (MHC
for short), if there exists a prime ideal p € ass s / with ht (p) = A(/).

@ We show that if / satisfies the MHC, then
reg(S/1) = m(l) = max{| Q] — ht (@) | j=1,....k}.
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MHC

e We say that / satisfies the maximal height condition for asss | (MHC
for short), if there exists a prime ideal p € ass s / with ht (p) = A(/).

o We show that if / satisfies the MHC, then
reg(S/1) = m(l) = max{|Q;| —ht(Q;) | j=1,...,k}.

@ That is, regularity of such ideals is given by max{|Q| — ht(Q)}, where
Q@ appears in the irredundant pure primary representaion of /.

v
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MHC in terms of depth

MHC in terms of depth

o Let A(/) = {x1,--- ,x¢}. Then [ satisfies the MHC if and only if
depth(S/1) e ) = 0.
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MHC in terms of depth

MHC in terms of depth

o Let A(/) = {x1,--- ,x¢}. Then [ satisfies the MHC if and only if
depth((S/1) s ) = 0.
@ In order to see this note that
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MHC in terms of depth

MHC in terms of depth

o Let A(/) = {x1,--- ,x¢}. Then [ satisfies the MHC if and only if
depth((S/1) s ) = 0.
@ In order to see this note that

| satisfies the MHC <= (x1,--- ,x) € Asss S/l —
(Xl, t 7Xt)5(x1,--- Xt ) € ASSS (S/I)(Xl,"',xt) —
depth((s//)(xl,m ,Xt)) =0.
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Veronese ideals

@ The square-free Veronese ideal of degree d in the variables
X, , X, is the ideal of S which is generated by all square-free
monomials in xj , - - -, x;, of degree d.
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@ The square-free Veronese ideal of degree d in the variables

X, , X, is the ideal of S which is generated by all square-free
monomials in xj , - - -, x;, of degree d.

@ Now let 2 < d < nand let /| = I, 4 be the square-free Veronese ideal
of degree d in the variables xi, - - - , xp.
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Veronese ideals

@ The square-free Veronese ideal of degree d in the variables
X, , X, is the ideal of S which is generated by all square-free
monomials in xj , - - -, x;, of degree d.

@ Now let 2 < d < nand let /| = I, 4 be the square-free Veronese ideal
of degree d in the variables xi, - - - , xp.

@ Since each power /¥ is the ideal of Veronese type indexed by kd and
(k,k,--- k), then depthS/I* = max{0,s — k(s — d) — 1}.
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Veronese ideals

@ The square-free Veronese ideal of degree d in the variables
X, , X, is the ideal of S which is generated by all square-free
monomials in xj , - - -, x;, of degree d.

@ Now let 2 < d < nand let /| = I, 4 be the square-free Veronese ideal
of degree d in the variables xi, - - - , xp.

@ Since each power /¥ is the ideal of Veronese type indexed by kd and
(k,k,--- k), then depthS/I* = max{0,s — k(s — d) — 1}.

@ Hence for k >> 0 we have depthS//% = 0, thus /¥ are satisfying
MHC.
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Assume that / is a monomial ideal of S. Define

m(1) = max{| Q] — ht(Q) | j=1,....k}
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Some elementary properties of m(/)

@ Assume that / and J are monomial ideals and u = x;"* - - - x&*, where
aj > 0 for each 1 < < s, is a monomial of S. Let

A ={x1,...,xt}
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Some elementary properties of m(/)

@ Assume that / and J are monomial ideals and u = x;"* - - - x&*, where
aj > 0 for each 1 < < s, is a monomial of S. Let
A ={x1,...,xt}
@ Then
(i) (INJ)u=lunJu.
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Some elementary properties of m(/)

@ Assume that / and J are monomial ideals and u = x;"* - - - x&*, where
aj > 0 for each 1 < < s, is a monomial of S. Let
A ={x1,...,xt}
@ Then
(i) (INJ)u=lunJu.
(i) m(I nJ) < max{m(l), m(J)}.
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Some elementary properties of m(/)

@ Assume that / and J are monomial ideals and u = x;"* - - - x&*, where
aj > 0 for each 1 < < s, is a monomial of S. Let
A ={x1,...,xt}
@ Then
(i) (InJu=lun Ju.
(i) m(I nJ) < max{m(l), m(J)}.
(i) m(lu) = max{m(/) + deg(u), ar41 — 1,...,as — 1}.
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[ is not MHC but /2, I3,--- arel

| is not MHC but /2, /3,--- arel

o Let S=K]x,y,z] and | = (xy,z) = (x,z) N (y,z). Then \(/) =3
and (x,y,z) ¢ asss /. Thus | does not satisfy MHC.
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[ is not MHC but /2, I3,--- arel

| is not MHC but /2, /3,--- arel

o Let S=K]x,y,z] and | = (xy,z) = (x,z) N (y,z). Then \(/) =3
and (x,y,z) ¢ asss /. Thus | does not satisfy MHC.

o 12 = (x%y2 xyz,z%) = (x>, xyz,2?) N (y?,xyz,2%) = @1 N --- N Qs,
g O = (x,2%), @ = (x*,2), Q3 = (v, 2°), Qa = (¥° ), Qs =
(X% y,2%) and Qs = (x,y%,2°).

13 May, 2013 48 / 65

Keivan Borna (Math-KHU) Betti Diagrams



[ is not MHC but /2, I3,--- arel

| is not MHC but /2, /3,--- arel

o Let S=K|x,y,z] and | = (xy,z) = (x,z) N (y,z). Then A(/) =3
and (x,y,z) ¢ asss /. Thus | does not satisfy MHC.

o 12 = (x%y2 xyz,z%) = (x>, xyz,2?) N (y?,xyz,2%) = @1 N --- N Qs,
where Ql (x,22), @ =(x*,2), s = (y,2%), Qs = (y? ), Qs =
(X% y,2%) and Qs = (x,y%,2°).

o Note that for i € {1,2,3,4}, Q; are of height 2 and |Q;| = 3.
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[ is not MHC but /2, I3,--- arel

| is not MHC but /2, /3,--- arel

o Let S=K]x,y,z] and | = (xy,z) = (x,z) N (y,z). Then \(/) =3
and (x,y,z) ¢ asss /. Thus | does not satisfy MHC.

o 12 = (x%y2 xyz,z%) = (x>, xyz,2?) N (y?,xyz,2%) = @1 N --- N Qs,
where Ql (x,2%), @ = (x%,2), Q3 = (y,22), Q4 = (y? )7 @5 =
(% y.2%) and Qs = (x,y%,2%).

o Note that for i € {1,2,3,4}, Q; are of height 2 and |Q;| = 3.

e For i€ {5,6}, Q; are of height 3 and |Q;| = 5.
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[ is not MHC but /2, I3,--- arel

| is not MHC but /2, /3,--- arel

o Let S=K]x,y,z] and | = (xy,z) = (x,z) N (y,z). Then \(/) =3
and (x,y,z) ¢ asss /. Thus | does not satisfy MHC.

1?2 = (x2y?, xyz,2%) = (x*,xyz,2%) N (y?,xyz,22) = Q1 N --- N Qp,

g O = [ 2 %), @ =(x%2), Q3= (y,2°), Q= (y° ), Qs =
(X% y,2%) and Qs = (x,y%,2°).

o Note that for i € {1,2,3,4}, Q; are of height 2 and |Q;| = 3.

e For i€ {5,6}, Q; are of height 3 and |Q;| = 5.

o Thus /2 satisfies MHC and m(/?) = max{5 — 3,3 — 2} = 2.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 48 / 65



| is not MHC but /2, I3,--- arel
@ The primary decomposition of /3 is, I3 = Q; N ---N Q7, where
Ql = (X,Z3), Q2 = (X372)7 Q3 = (X2,22), Q4 = (X27}/723)7 Q5 =
(<%, y,2%), Qo = (*,y% 2%) and @7 = (x,y3, 2°).
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| is not MHC but /2, I3,--- arel
@ The primary decomposition of /3 is, I3 = Q; N ---N Q7, where
Ql = (X,Z3), Q2 - (X372)7 Q3 = (X2,22), Q4 == (X27}/723), Q5 =
(<%, y,2%), Qo = (*,y% 2%) and @7 = (x,y3, 2°).
@ Hence /3 satisfies the MHC.
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| is not MHC but /2, I3,--- arel

@ The primary decomposition of /3 is, I3 = Q; N ---N Q7, where
Ql = (X,Z3), Q2 - (X372)7 Q3 = (X2,22), Q4 == (X27}/723), Q5 =
(x3,y,2%), Qs = (x*,y2,2%) and Q7 = (x,y3, 2°).

@ Hence /3 satisfies the MHC.

o Note that |Q;| =4 for i € {1,2,3}, |Q4| =6 and |Q;| =7 for
i €{5,6,7}.
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| is not MHC but /2, I3,--- arel

@ The primary decomposition of /3 is, I3 = Q; N ---N Q7, where
Qu=(x,2%), @ =(x%2), Q3= (x}2%), Q= (x*y,2%), Qs =
(x3,y,2%), Q6 = (x3,y?,2%) and Q7 = (x,y3, 2%).

@ Hence /3 satisfies the MHC.

o Note that |Q;| =4 for i € {1,2,3}, |Q4| =6 and |Q;| =7 for
i€ {567}

o Thus m(/3) = max{4 — 2,6 —3,7 — 3} = 4.
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An attractive question

@ Let / be a monomial ideal of S that satisfies the MHC. Then /"
satisfies the MHC for all n > 17
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An attractive question

@ Let / be a monomial ideal of S that satisfies the MHC. Then /"
satisfies the MHC for all n > 17

@ That is for a monomial ideal /, if p € asss/ and htp = A(/), then
p €assgl” forall n>17?
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Castelnuovo-Mumford regularity

Castelnuovo-Mumford Regularity
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Regularity of principal monomial ideals

Regularity of principal monomial ideals

@ One can easily see that for a principle monomial ideal
I =(x3"...x2) we have reg(/) = > 7_; a; = (m(1)+1).
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Regularity of principal monomial ideals

Regularity of principal monomial ideals
@ One can easily see that for a principle monomial ideal
I =(x3"...x2) we have reg(/) = > 7_; a; = (m(1)+1).

o Infactlet -+ — S(—> 7 ;@) »S— S/l — 0 be the graded free
resolution of S//.
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Regularity of principal monomial ideals

Regularity of principal monomial ideals

@ One can easily see that for a principle monomial ideal
I =(x3"...x2) we have reg(/) = > 7_; a; = (m(1)+1).

o Infactlet -+ — S(—> 7 ;@) »S— S/l — 0 be the graded free
resolution of S//.

@ Since depthS /I = depthS — 1, we have
depth/ > min{depthS, depthS/l + 1} = depthS.
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Regularity of principal monomial ideals

Regularity of principal monomial ideals

@ One can easily see that for a principle monomial ideal
I =(x3"...x2) we have reg(/) = > 7_; a; = (m(1)+1).
o Infactlet -+ — S(—> 7 ;@) »S— S/l — 0 be the graded free
resolution of S//.
@ Since depthS /I = depthS — 1, we have
depth/ > min{depthS, depthS// + 1} = depthS.Thus
depth/ = depthS.
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Regularity of principal monomial ideals

Regularity of principal monomial ideals

@ One can easily see that for a principle monomial ideal
I =(x3"...x2) we have reg(/) = > 7_; a; = (m(1)+1).

o Infactlet -+ — S(—> 7 ;@) »S— S/l — 0 be the graded free
resolution of S//.

@ Since depthS /I = depthS — 1, we have
depth/ > min{depthS, depthS// + 1} = depthS.Thus
depth/ = depthS.

@ Now the Auslander-Buchsbaum theorem implies that
pds | = depthS — depthS// =0, i.e.,, 0 = S(— > 7 ;aj) = S'is
exact.
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Regularity of principal monomial ideals

Regularity of principal monomial ideals

@ One can easily see that for a principle monomial ideal
I =(x3"...x2) we have reg(/) = > 7_; a; = (m(1)+1).

o Infactlet -+ — S(—> 7 ;@) »S— S/l — 0 be the graded free
resolution of S//.

@ Since depthS /I = depthS — 1, we have
depth/ > min{depthS, depthS// + 1} = depthS.Thus
depth/ = depthS.

@ Now the Auslander-Buchsbaum theorem implies that
pds | = depthS — depthS// =0, i.e.,, 0 = S(— > 7 ;aj) = S'is
exact.

o Hence reg(l) = Y5y ar = (m(1)+1).
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o Let S=Klx,y,z] and | = (x*,xy,y'% xz) = (x*,y,2) N (x,y™).
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o Let S = K[x,y,z] and I = (x?, xy, y1%, xz) = (x%,y, z) N (x, y*0).
@ Then [ satisfies the MHC and m(/) = max{4 — 3,11 — 2} = 0.
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o Let S = K[x,y,z] and I = (x?, xy, y1%, xz) = (x%,y, z) N (x, y*0).
@ Then [ satisfies the MHC and m(/) = max{4 — 3,11 — 2} = 0.
@ We also know that reg(S//) = 9.
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o Let S=K|x,y,z] and I = (x2,xy, y1% xz) = (x2,y,2z) N (x, y19).

@ Then [ satisfies the MHC and m(/) = max{4 — 3,11 — 2} = 0.

@ We also know that reg(S//) = 9.

@ We show that this phenomena happens for all ideals that satisfy MHC.
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Regularity of primary monomial ideals and monomial MHC

o Let / be a primary monomial ideal of S. Then reg(S/l) = m(/).
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Regularity of primary monomial ideals and monomial MHC

o Let / be a primary monomial ideal of S. Then reg(S/l) = m(/).

@ Let / be a monomial ideal of S that satisfies the MHC. Then
reg(S/1) = m(1).
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Regularity of primary monomial ideals and monomial MHC

o Let / be a primary monomial ideal of S. Then reg(S/l) = m(/).

@ Let / be a monomial ideal of S that satisfies the MHC. Then
reg(S/1) = m(1).

@ The following simple example shows that one can not remove the
MHC assumption.
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Regularity of primary monomial ideals and monomial MHC

o Let / be a primary monomial ideal of S. Then reg(S/l) = m(/).
@ Let / be a monomial ideal of S that satisfies the MHC. Then
reg(S/1) = m(1).

@ The following simple example shows that one can not remove the
MHC assumption.

o Let I = (xy,xz3,y%) = (x,¥?) N (y,23). Then I does not satisfy the
MHC and m(/) =2 < 3 = reg(S/1).
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Implementation

How do we find m(/) in practice?

Keivan Borna (Math-KHU Betti Diagrams 13 May, 2013 55 / 65
g



How do we find m(/) in practice?

o Let | = (x2x0, X252, x2, x2X3).
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How do we find m(/) in practice?

o Let | = (x2x0, X252, x2, x2X3).

@ Then t =3 and r = 4.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 56 / 65



How do we find m(/) in practice?

o Let | = (x2x0, X252, x2, x2X3).

@ Then t =3 and r = 4.

@ One can write / as in the following table:

200(010(000
200/000(002
000/020(000
000({010(002
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How do we find m(/) in practice?

@ The following algorithm will assign to each number between 1 and t"
a path.
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How do we find m(/) in practice?
@ The following algorithm will assign to each number between 1 and t"
a path.
@ private int[] numtopath(int x){
int y,z;
int al[l = new int[r];
al0l=x/t"1;
for(j=1;j<=r-1;j++){
y=(int) (a[j-1]*t"—J);
X=X-Y;
z=t"—i—1,;
aljl=x/z;

}

return a;
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How do we find m(/) in practice?

o Now consider the following three paths among all t" = 3* = 81

possible paths.

200

010

000

200

010

000

200

000

002

200

000

002

000

020

000

(1)

000

020

000

000

010

002

000

010

002

200

010

000

200

000

002

000

020

000

(3)

000

010

002

()
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How do we find m(/) in practice?

@ We will assign a t—tuple vector to each path.
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How do we find m(/) in practice?
@ We will assign a t—tuple vector to each path.

@ For the following path

200(010| 000
200( 000|002
000(020|000
000,010|003
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How do we find m(/) in practice?
@ We will assign a t—tuple vector to each path.

@ For the following path

200(010| 000
200( 000|002
000(020|000
000,010|003

e First b= (0,0,0).
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How do we find m(/) in practice?
@ We will assign a t—tuple vector to each path.

@ For the following path

200(010| 000
200( 000|002
000(020|000
000,010|003

e First b=(0,0,0).
e Following the first node in the path; b = (2,0,0).
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How do we find m(/) in practice?
@ We will assign a t—tuple vector to each path.

@ For the following path

200(010| 000
200( 000|002
000(020|000
000,010|003

e First b=(0,0,0).
e Following the first node in the path; b = (2,0,0).
o Continuing the second node, b is still b = (2,0,0).
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How do we find m(/) in practice?

@ We will assign a t—tuple vector to each path.

@ For the following path

200(010| 000
200( 000|002
000(020|000
000,010|003

e First b= (0,0,0).

e Following the first node in the path; b = (2,0,0).
o Continuing the second node, b is still b = (2,0,0).
@ Then following the third node; b = (2,2,0). Finally we finish this

path with b = (2,2, 3).
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How do we find m(/) in practice?

Note that two vectors of size t in each path will operate to each other by
the following rule:

int [] e = new int[t];

for(i=0;i<t;i++){
if (c[il*d[i]==0)e[il=Math.max(c[i],d[i]);
else e[il=Math.min(c[i],d[i]);

}
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How do we find m(/) in practice?
e For path (1), b=(2,0,0) andsom=(2+0+0)—-1=1.
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How do we find m(/) in practice?
e For path (1), b=(2,0,0) andsom=(2+0+0)—-1=1.
e For path (2), b=(2,1,0) andsom=(2+1+0)—-2=1.
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How do we find m(/) in practice?
e For path (1), b=(2,0,0) andsom=(2+0+0)—-1=1.
e For path (2), b=(2,1,0) andsom=(2+1+0)—-2=1.
e For path (3), b=(2,2,2) andso m=(2+2+2) -3 =3.
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How do we find m(/) in practice?
e For path (1), b=(2,0,0) andsom=(2+0+0)—-1=1.
e For path (2), b=(2,1,0) andsom=(2+1+0)—-2=1.
e For path (3), b=(2,2,2) andso m=(2+2+2) -3 =3.

@ As it is easily seen, the value of m(/) does not increase along other
remaining paths.
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How do we find m(/) in practice?
e For path (1), b=(2,0,0) andsom=(2+0+0)—-1=1.
e For path (2), b=(2,1,0) andsom=(2+1+0)—-2=1.
e For path (3), b=(2,2,2) andso m=(2+2+2) -3 =3.

@ As it is easily seen, the value of m(/) does not increase along other
remaining paths.

@ Hence m(l) =3 =reg(S/1).
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3. Resolution of path ideals of cycles

Path ideals

e K is afield and R = K|[x1,...,xn] is a polynomial ring in n variables.
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3. Resolution of path ideals of cycles

Path ideals

e K is afield and R = K|[x1,...,xn] is a polynomial ring in n variables.

e x is a simplicial complex on vertex set X = {x1,...,xn} is a
collection A of subsets of X satisfying xi € A for all i and
FeA,GCF= GeA.
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3. Resolution of path ideals of cycles

Path ideals

e K is afield and R = K|[x1,...,xn] is a polynomial ring in n variables.

e x is a simplicial complex on vertex set X = {x1,...,xn} is a
collection A of subsets of X satisfying xi € A for all i and
FeA,GCF= GeA.

e G = (X, E) is a finite simple graph.
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3. Resolution of path ideals of cycles

Path ideals

e K is afield and R = K|[x1,...,xn] is a polynomial ring in n variables.

e x is a simplicial complex on vertex set X = {x1,...,xn} is a
collection A of subsets of X satisfying xi € A for all i and
FeA,GCF= GeA.

e G = (X, E) is a finite simple graph.
@ Two special cases that [Alilooee, Faridi] considered in their recent

paper are when G is a cycle C,, or a line graph L, on vertices
{x1,...,xn}.
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3. Resolution of path ideals of cycles

Path ideals

e K is afield and R = K|[x1,...,xn] is a polynomial ring in n variables.

e x is a simplicial complex on vertex set X = {x1,...,xn} is a
collection A of subsets of X satisfying xi € A for all i and
FeA,GCF= GeA.

G = (X, E) is a finite simple graph.

Two special cases that [Alilooee, Faridi] considered in their recent
paper are when G is a cycle C,, or a line graph L, on vertices
{x1,...,xn}.

0 Cp =< X1X2, ooy Xp—1Xn, XnX1 >, Lp =< X1X2, o0y Xp—1Xn >.
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The Betti numbers of path ideals of cycles

If I is the degree t path ideal of a cycle, then

Bij(R/1)=0 forall i >1,j>ti
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The Betti numbers of path ideals of cycles

If I is the degree t path ideal of a cycle, then

Bij(R/1)=0 forall i >1,j>ti

v

Betti numbers of degree n

Let p, t,n,d be integers such that n = (t + 1)p + d, where
p>0,0<d<t and2<t<n. If C,isa cycle over n vertices, then

t, d=0,i=2(:5)=2p;
Bin(R/(C)) =S 1, d#0,i=2(22)+1=2p+1;
0, o.w.
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