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Notation

Throughout this talk S is a commutative ring (with identity) of the
following types

Noetherian local rings; or

Homogeneous K -algebras, K a field.

M is a finitely generated S-module and I an ideal of S .

Betti numbers

0→ Sβ
S
n

fn−→ Sβ
S
n−1 → . . .→ Sβ

S
1

f1−→ Sβ
S
0

f0−→M→ 0

βSi = dimK TorSi (M,K ).

Graded Betti numbers

0→ ⊕j∈ZS(−j)β
S
n j → · · · → ⊕j∈ZS(−j)β

S
1 j → ⊕j∈ZS(−j)β

S
0 j →M→ 0

βSi j = dimK TorSi (M,K )j .
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Castelnuovo-Mumford regularity

Let K be a field and S = K [x1, · · · , xr ].

1. Regularity in terms of minimal graded free resolution

The regularity of a finitely generated graded S-module M is the regularity
of a minimal graded free resolution, F, of M.

F : · · · →
⊕
j

S(−ai ,j)→
⊕
j

S(−ai−1,j)→ · · · ,

Then reg(F) = max{ai ,j − i}.

2. Regularity in terms of Tor

reg(M) = max
i ,j
{j − i : Tori (M,K )j 6= 0},

= max
i ,j
{j − i ;βi j(M) 6= 0}.

3. Regularity in terms of Local Cohomology

Let
ai (M) = max{t; Hi

m(M)t 6= 0}, 0 ≤ i ≤ n,

where Hi
m(M) is the ith local cohomology module with the support in m

(with the convention max ∅ = −∞). Then the regularity is the number

reg(M) = max{ai (M) + i ; 0 ≤ i ≤ n}.

4. Regularity in terms of Linear Resolutions

reg(M) = min{c : Mc has linear resolution},

where naturally Mc =
⊕
i≥c

Mi .
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Some easy consequences:

1 reg(I ) = reg(S/I ) + 1 for a graded ideal I of S ,

2 For an Artinian graded S-module M, we have H0
m(M) = M, and hence

reg(M) = max{j ; Mj 6= 0}.

3 If I is generated by a regular sequence of forms of degrees d1, · · · , dr ,

reg(S/I ) = d1 + · · ·+ dr − r .
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Example

S := K [x1, x2, x3]. The graded free resolution of M = S/(x2
1 , x

3
2 ) is

0 −→
2︷ ︸︸ ︷

S(−5)
d2−→

1︷ ︸︸ ︷
S(−2)⊕ S(−3)

d1−→
0︷︸︸︷
S

d0−→ M −→ 0,

where

d0 : 1 7→ 1,

d1 : (1, 0) 7→ (−x2
1 ), (0, 1) 7→ (−x3

2 ),

d2 : 1 7→ (−x3
2 , x

2
1 ).

reg(M) = max{0− 0, 3− 1, 5− 2} = 3
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Example

Let S = K [x1, x2, x3], and m = (x1, x2, x3). The resolution of m5 is

0 −→

2︷ ︸︸ ︷
S(−7)15 −→

1︷ ︸︸ ︷
S(−6)35 −→

0︷ ︸︸ ︷
S(−5)21 −→ m5 −→ 0, (∗)

(∗) is linear

reg(m5) = max{5− 0, 6− 1, 7− 2} = 5

md has a d-linear resolution for all d ≥ 1

For i ≥ 1, the i-th free module in the resolution of md , if nonzero, is a
direct sum of copies of S(−d − i) and so reg(md) = d .

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 6 / 65



Example

Let S = K [x1, x2, x3], and m = (x1, x2, x3). The resolution of m5 is

0 −→

2︷ ︸︸ ︷
S(−7)15 −→

1︷ ︸︸ ︷
S(−6)35 −→

0︷ ︸︸ ︷
S(−5)21 −→ m5 −→ 0, (∗)

(∗) is linear

reg(m5) = max{5− 0, 6− 1, 7− 2} = 5

md has a d-linear resolution for all d ≥ 1

For i ≥ 1, the i-th free module in the resolution of md , if nonzero, is a
direct sum of copies of S(−d − i) and so reg(md) = d .

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 6 / 65



Example

Let S = K [x1, x2, x3], and m = (x1, x2, x3). The resolution of m5 is

0 −→

2︷ ︸︸ ︷
S(−7)15 −→

1︷ ︸︸ ︷
S(−6)35 −→

0︷ ︸︸ ︷
S(−5)21 −→ m5 −→ 0, (∗)

(∗) is linear

reg(m5) = max{5− 0, 6− 1, 7− 2} = 5

md has a d-linear resolution for all d ≥ 1

For i ≥ 1, the i-th free module in the resolution of md , if nonzero, is a
direct sum of copies of S(−d − i) and so reg(md) = d .

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 6 / 65



reg(M) = 8 and proj.dim(M) = 5, then?

reg(M) = 8 and proj.dim(M) = 5⇔ βi j(M) = 0 where j − i > 8

Thus we have the following (proj.dim(M) + 1 = 6) conditions on M and
its syzygies:

M is generated in degrees ≤ 8,

Ω1(M) is generated in degrees ≤ 9,

Ω2(M) is generated in degrees ≤ 10,

· · · ,
Ω5(M) is generated in degrees ≤ 8 + 5 = 13.
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Hilbert Syzygy Theorem

Any finitely generated graded S-module M has a finite graded free
resolution

0→ Fm
φm−−→ Fm−1 → . . .→ F1

φ1−→ F0

Moreover, we may take m ≤ r + 1, the number of variables in S .

Koszul complexes
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Minimal Free Resolution

A complex of graded S-modules

· · · → Fi
δi−→ Fi−1 → . . .

is called minimal if for each i the image of δi is contained in mFi−1.

Informally, we may say that a complex of free modules is minimal if its
differential is represented by matrices with entries in the maximal ideal.
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Minimal Free Resolution

The minimal free resolutions are unique up to isomorphism. We can
construct a minimal free resolution from any resolution.

If F : · · · → F1 → F0 is the minimal free resolution of a finitely generated
graded S-module M and K denotes the residue field S/m, then any
minimal set of homogeneous generators of Fi contains precisely
dimK TorSi (K ,M)j generators of degree j .

If M is a finitely generated graded S-module then the projective dimension
of M is equal to the length of the minimal free resolution.
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Describing Resolutions: Betti Diagrams

Suppose that F is a free complex

F : 0→ Fs → · · · → Fm → · · · → F0

where Fi =
⊕

j S(−j)βi,j , that is, Fi requires βi ,j minimal generators of
degree j . The Betti diagram of F has the form

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 11 / 65



Describing Resolutions: Betti Diagrams

The Betti diagram consists of a table with s + 1 columns, labeled
0, 1, · · · , s, corresponding to the free modules F0, · · · ,Fs . It has rows
labeled with consecutive integers corresponding to degrees.

The m-th column specifies the degrees of the generators of Fm.

Why βi ,i+j rather than βi ,j?

Let {βi ,j} be the graded Betti numbers of a finitely generated S-module.
If for a given i there is d such that βi ,j = 0 for all j < d , then βi+1,j+1 = 0
for all j < d .

The entry in the j-th row of the i-th column is βi ,i+j rather than βi ,j . In
fact if the i-th column of the Betti diagram has zeros above the j-th row,
then the (i + 1)-st column also has zeros above the j-th row. This allows a
more compact display of Betti numbers than if we had written βi ,j in the
i-th column and j-th row.
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Some Applications

1. Regularity of powers of ideals

2. Invariants similar to regularity

3. Resolution of path ideals of cycles
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1. Regularity of powers of ideals

Chandler (1997)

If dim S/I ≤ 1,
reg(I k) ≤ kreg(I ).

The hypothesis dim S/I ≤ 1 is necessary.

Eisenbud-Huneke-Ulrich (2007)

If dimTorR1 (M,N) ≤ 1, then for any q,

reg(TorRq (M,N)) ≤ reg(M) + reg(N) + q

Kodiyalam (2000), Cutkosky-Herzog-Trung (1999)

reg(I k) = kb + r , ∀k � 0

with indeg(I ) ≤ b ≤ b0(I ).
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reg(I k) = kb + r , ∀k � 0

with indeg(I ) ≤ b ≤ b0(I ).
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Counter Examples

(The first) Terai

An example of Reisner ←→ Triangulation of the real projective plane P2.
Let S := K [x1, · · · , x6] one has

J = (x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5,

x3x4x6).

J is characteristic dependant

J is a square-free monomial ideal whose Betti numbers, regularity and
projective dimension depend on the characteristic of the base field.

If char(K ) 6= 2, S/J is Cohen-Macaulay. reg(J) = 3 and reg(J2) = 7
(> 2× 3).

If char(K ) = 2, S/J is not Cohen-Macaulay. J itself has no linear
resolution.
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Natural Question:

How it goes on for the regularity of powers of J?

Answer by [CHT]

By the help of [CHT] we are able to write

reg(Jk) = 3k + b(J), ∀k ≥ c(J).

But what are b(J) and c(J)?

[HHZ]

Let I ⊆ K [x1, · · · , xn] := S be an equigenerated graded ideal. Let m be
the number of generators of I and let T := S [t1, · · · , tm], and let
R(I ) = T/P be the Rees algebra associated to I .
If for some term order < on T , P has a Gröbner basis G whose elements
are at most linear in the variables x1, · · · , xn, that is degx(f ) ≤ 1 for all
f ∈ G, then each power of I has a linear resolution.
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are at most linear in the variables x1, · · · , xn, that is degx(f ) ≤ 1 for all
f ∈ G, then each power of I has a linear resolution.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 16 / 65



Natural Question:

How it goes on for the regularity of powers of J?

Answer by [CHT]

By the help of [CHT] we are able to write

reg(Jk) = 3k + b(J), ∀k ≥ c(J).

But what are b(J) and c(J)?

[HHZ]

Let I ⊆ K [x1, · · · , xn] := S be an equigenerated graded ideal. Let m be
the number of generators of I and let T := S [t1, · · · , tm], and let
R(I ) = T/P be the Rees algebra associated to I .
If for some term order < on T , P has a Gröbner basis G whose elements
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Rees ring of I

I = (f1, . . . , fm) be a graded ideal of S = K [x1, . . . , xr ] generated in a
single degree, say d .

R(I ) =
⊕
j≥0

I j t j = S [f1t, . . . , fmt] ⊆ S [t],

The standard bigraded structure of R(I )

R(I )(k,j) = (I k)kd+j (1)
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But..,

in(P) has at least 3 elements with degx > 1, no matter if we take initial
ideal w.r.t term ordering x > t or t > x in either Lex or DegRevLex order:

x > t t > x

DegRevLex (1,2):2,(2,2):2 (1,2):2,(2,2):1

Lex (1,2):2,(2,2):1 (1,2):2,(2,2):1

Table: Count of elements of in(P) with degx > 1 for J

For example; (

t-degree︷︸︸︷
1 ,

x-degree︷︸︸︷
2 ) and so forth.
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So, what do we do?

We prove that Jk has linear resolution ∀k 6= 2

b(J) = 0 and c(J) = 3.

That is,

reg(Jk) = 3k, ∀k 6= 2.

Our criterion

Q ⊆ S = K [x1, · · · , xr ] a graded ideal generated by m polynomials all of
the same degree d ,
I = in(g(P)) for some linear bi-transformation g ∈ GLr (K )×GLm(K ).
Write I = G + B where G is generated by elements of degx ≤ 1;
B is generated by elements of degx > 1.
If I(k,j) = G(k,j) for all k ≥ k0 and for all j ∈ Z, then Qk has linear

resolution for all k ≥ k0. In other words, reg(Qk) = kd for all k ≥ k0.
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The Algorithms and the coding in CoCoA

1. Algorithm for calculating P

Data: an equigenerated ideal I of S
Result: The associated ideal of Rees ring I , i.e., P
begin1

R ←− k[x1, . . . , xr , t1, · · · , tm, u]2

I ←− IR3

G ←− Gens(I )4

P ←− Elim(u, Ideal([t[i ]− u ∗ G [i ] | i = 1, · · · Len(G )]))5

return P6

end7
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2. Algorithm for calculating Good and Bad parts of in(P)

Data: a monomial ideal U of T
Result: The Good and Bad parts of U, i.e., G and B
begin1

G ←− Ideal(m ∈ Gens(U) | degx(m) ≤ 1)2

B ←− Ideal(m ∈ Gens(U) | degx(m) > 1)3

return G ,B4

end5
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3. Algorithm for calculating x-degree and t-degree

Data: a term p of T , and a fixed term order < on T
Result: degx(p), degt(p)
begin1

M ←− Len(x) = r ,N ←− Len(t) = m,L←− Log(p)2

/*Log, F := x3y2z5 + x2y + xz4 then Log(F ) = [3, 2, 5].*/
if x < t then3

degx(p) =
M∑
i=1

L[i ], degt(p) =
M+N∑
i=M+1

L[i ]
4

else5

degx(p) =
N+M∑
i=N+1

L[i ], degt(p) =
N∑
i=1

L[i ]
6

return degx(p), degt(p)7

end8
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4. Algorithm for calculating maximum t-degree of a subset of T

Data: a subset X of T
Result: max degt(X )
begin1

MaxTDeg ←− 02

foreach x in X do3

if degt(x) > MaxTDeg then4

MaxTDeg := degt(x)5

endif6

end7

return MaxTDeg8

end9
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5. Algorithm for the condition x − gen = 1.

Data: a monomial ideal U of T
Result: N :=| {b ∈ B | Ideal(b)(t)M+1−degt(b) * G} | .
begin1

Counter ←− 0, /*see Algorithm 2*/2

B ←− BadParts(U),G ←− GoodParts(U)3

/*see Algorithm 4*/
M ←− MaxTDeg(B)4

foreach b in B do5

Pb ←− M + 1− degt(b)6

Wb ←− Ideal(b)(tPb)7

if Wb * G then8

Counter=Counter+19

endif10

end11

return Counter12

end13
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N :=| {b ∈ B | Ideal(b)(t)M+1−degt(b) * G} | .
If fortunately N = 0, we are done and from our criterion we deduce the
linear resolution of I k for k > N. Otherwise having N in hand, we suggest
the following two approaches; even most of the time, we use a
combination of the two:

1 Change order

2 Switch to a sparse upper triangular bi-change of coordinates

case 1

If | N | is large enough or more precisely when |N||B| is almost 1, we are
advised to do the change ordering. That is, if the large powers of P are
more concentrating on t’s than x ’s, it is a good idea to choose the term
order t > x.

case 2

Start with g(P) instead of P, where g is a bi-homogenous isomorphism on
K [x, t]. Hence we suggest to use the following algorithm to generate a
Sparse Random Upper Triangular bi-change of coordinates.
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PJ1 =Ideal(−t[2]x [3] + t[1]x [4],−t[3]x [2] + t[1]x [5],−t[7]x [1] + t[2]x [5],

− t[9]x [1] + t[3]x [4],−t[9]x [2] + t[7]x [3],−t[6]x [1] + t[1]x [6],

− t[4]x [2] + t[2]x [6],−t[10]x [1] + t[4]x [3],−t[10]x [2] + t[6]x [4],

− t[8]x [1] + t[5]x [2],−t[5]x [3] + t[3]x [6],−t[8]x [3] + t[6]x [5],

− t[5]x [4] + t[4]x [5],−t[8]x [4] + t[7]x [6],−t[10]x [5] + t[9]x [6],

t[2]t[6]t[9]− t[1]t[7]t[10],−t[1]t[4]t[9] + t[2]t[3]t[10], t[3]t[6]t[7]

− t[1]t[8]t[9], t[3]t[4]t[7]− t[2]t[5]t[9],−t[1]t[5]t[7] + t[2]t[3]t[8],

t[4]t[6]t[7]− t[2]t[8]t[10], t[5]t[6]t[9]− t[3]t[8]t[10], t[3]t[4]t[6]

− t[1]t[5]t[10], t[4]t[8]t[9]− t[5]t[7]t[10], t[2]t[5]t[6]− t[1]t[4]t[8],

t[2]2t[3]t[6]− t[1]2t[4]t[7], t[2]t[3]2t[6]− t[1]2t[5]t[9],−t[1]t[4]2t[7]

+ t[2]2t[5]t[10], t[2]t[3]t[6]2 − t[1]2t[8]t[10],−t[1]t[4]t[7]2+

t[2]2t[8]t[9],−t[1]t[5]t[9]2 + t[3]2t[7]t[10],−t[2]t[8]t[9]2+

t[3]t[7]2t[10],−t[4]t[6]t[9]2 + t[3]t[7]t[10]2,−t[3]2t[4]t[8]+

t[1]t[5]2t[9],−t[5]t[6]t[7]2 + t[2]t[8]2t[9],−t[4]2t[6]t[9]+

t[2]t[5]t[10]2,−t[4]t[6]2t[9] + t[1]t[8]t[10]2,−t[3]t[4]2t[8]+

t[2]t[5]2t[10],−t[5]2t[6]t[7] + t[3]t[4]t[8]2,−t[5]t[6]2t[7]

+ t[1]t[8]2t[10])
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A Sparse Random Lower Triangular Matrix



x1 7−→ c1 1x1
x2 7−→ c2 1x1 + c2 2x2
· · ·
xn 7−→ cn 1x1 + cn 2x2 + · · ·+ cn nxn
· · ·
t1 7−→ d1 1t1
t2 7−→ d2 1t1 + d2 2t2
· · ·
tm 7−→ dm 1t1 + dm 2t2 + · · ·+ dmmtm

where ci j , di j ∈ {−1, 0, 1} are randomly chosen.
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6. Algorithm for generating such matrix.

begin1

DS ←− 52

for i ← 1 to r do3

Xi ←− xi +
i−1∑
j=1

(
DS∏
k=1

Rand(−1, 1)xj)
4

end5

for i ← 1 to m do6

Ti ←− ti +
i−1∑
j=1

(
DS∏
k=1

Rand(−1, 1)tj)
7

end8

if Ideal(X1, · · · ,Xr ,T1, · · · ,Tm) = Ideal(x, t) then9

g := x1 7→ X1, · · · , xr 7→ Xr , t1 7→ T1, · · · , tm 7→ Tm return g10

else11

Generate again12

endif13
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7. Algorithm for searching for a desired g .

/*MainFnc(); the function in algorithm 5*/
/*CalcP(); the function in algorithm 1*/

/*Randgen(); the function in algorithm 6*/
Data: I an equigenerated ideal I of S
Result: A bi-transformation g for which our criterion works
begin1

P ←− CalcP(I )2

C ←− MainFnc(in(P))3

repeat4

g ←− Randgen()5

C ←− MainFnc(in(g(P)))6

until C = 07

end8
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The second example, Conca (2006)

J1, the ideal of 3-minors of a 4× 4 symmetric matrix of linear forms in 6
variables, that is, 3-minors of

0 x1 x2 x3
x1 0 x4 x5
x2 x4 0 x6
x3 x5 x6 0



As an ideal of S = Q[x1, · · · , x6] one has:
J1 := (2x1x2x4, 2x1x3x5, 2x2x3x6, 2x4x5x6, x1x3x4 + x1x2x5 − x2

1x6, x3x4x6 +
x2x5x6 − x1x2

6 ,−x2x3x4 + x2
2x5 − x1x2x6,−x2

3x4 + x2x3x5 +
x1x3x6,−x3x2

4 + x2x4x5 + x1x4x6,−x3x4x5 + x2x2
5 − x1x5x6).
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Again [HHZ] fails

Check: in(P1), where P1 is the associated ideal to Rees ring of J1, has at
least 9 elements with degx > 1, no matter if we take initial ideal w.r.t
term ordering x > t or t > x in Lex or DegRevLex order:

x > t t > x

DegRevLex (1,2):6,(2,2):5,(1,3):1,(4,2):1 (1,2):6,(2,2):3,(1,3):1

Lex (1,2):6,(2,2):3 (1,2):6,(2,2):5

Table: Count of elements of in(P1) with degx > 1 for J1.
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J , J1 resemble in many sense

The same behavior of regularity of powers

reg(Jk) = 3k , ∀k 6= 2.

reg(Jk
1 ) = 3k, ∀k 6= 2.

The same behavior of Hilbert series of powers

J and J1 and their powers have the same Hilbert series (HS for short)
respectively:

HS(S/Jk) = HS(S/Jk
1 ), ∀k .
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Linear bi-transformation g ∈ GL6(K )×GL10(K ) for J

g := g1 × g2 ∈ GL6(Q)×GL10(Q)

g1 : Q[x] −→ Q[x]

x4 7−→ x1 + x4,

x6 7−→ x3 + x6,

xi 7−→ xi , i 6= 4, 6

g2 : Q[t] −→ Q[t]

ti 7−→ ti , ∀i

G ,B

Then | G |= 98, B = (t7x2
3 , t4t6x2

5 ).

I (k,?) = G (k,?), for k > 2⇐⇒
{

(t7x2
3 )(t1, · · · , t10)2 ⊆ G ,

(t4t6x2
5 )(t1, · · · , t10) ⊆ G ,
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Linear bi-transformation g ∈ GL6(K )×GL10(K ) for J1

g := g1 × g2 ∈ GL6(Q)×GL10(Q)

g1 : Q[x] −→ Q[x]

x4 7−→ x2 + x4,

x6 7−→ x1 + x6,

xi 7−→ xi , i 6= 4, 6

g2 : Q[t] −→ Q[t]

t8 7−→ t7 + t8,

ti 7−→ ti , i 6= 8

G ,B

Then | G |= 144, B = (t10x2x3, t2t4x2
5 ).

I (k,?) = G (k,?), for k > 2⇐⇒
{

(t10x2x3)(t1, · · · , t10)2 ⊆ G ,
(t2t4x2

5 )(t1, · · · , t10) ⊆ G ,
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5 )(t1, · · · , t10) ⊆ G ,
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An example of Sturmfels

Sturmfels constructed a 2-dimensional Cohen-Macaulay ideal I generated
by 8 square-free monomials in 6 variables such that reg(I ) = 3 but
reg(I 2) = 7 for any base field K .

S = Q[x1, · · · , x6],

J2 := (x4x5x6, x3x5x6, x3x4x6, x3x4x5, x2x5x6, x2x3x4, x1x3x6, x1x4x5).

There exists at least 9 elements of x-degree > 1. So again HHZ fails.

Question

Can we find a suitable upper triangular bi-change of x and t that fulfils the
requirements of our criterion.

After 122, 000 times of tests the answer was “No”!
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We believe that powers of J2 have non-linear resolution.

reg(J2) = 3,

reg(J2
2 ) = 7 = 3 ∗ 2 + 1,

reg(J3
2 ) = 10 = 3 ∗ 3 + 1,

reg(J4
2 ) = 13 = 3 ∗ 4 + 1,

reg(J5
2 ) = 16 = 3 ∗ 5 + 1, and

reg(J6
2 ) = 19 = 3 ∗ 6 + 1

It attracts our interests to the following question:

Question

Is it true that reg(Jk
2 ) = 3k + 1, ∀k ≥ 2?
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2. Invariants similar to regularity

Setup

S is a polynomial ring over a field K .

I is an ideal of S .
µ(I ) denotes the number of a minimal generating set of I .
λ(I ) denotes the number of indeterminates appear in generators of I .
|I | denotes the total degree of I .
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Objective

1 To find the regularity of monomial ideals that satisfy some conditions
on their primary representation.

2 To ensure which associated primes of I still belong to associated
primes of its powers
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ass S I
n

As usual, ass S I = Ass S(S/I ).

In general there is no guaranty for having the implication
p ∈ ass S I =⇒ p ∈ ass S I n for all n ≥ 1.

We want to know if p ∈ ass S I and ht p = λ(I ), then p ∈ ass S I n for
all n ≥ 1?
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[Herzog-Hibi, Thm. 1.3.1]

Let I be a monomial ideal of S .

Then I = ∩ki=1Qi , where Qi is generated by pure powers of the
variables.

In other words, each Qi is of the form (xa1
i1
, xa2

i2
, . . . , xat

it
) which is

pi -primary, where pi = (xi1 , . . . , xit ).

Thus ass S I = {p1, · · · , pk}.
Finally an irredundant presentation of this form is unique.
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Let S = K [x , y , z ] and I = (xy , z).

Then I = (x , z) ∩ (y , z) and so (x , y , z) /∈ ass S I .

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = · · · =
(x , z2) ∩ (x2, z) ∩ (y , z2) ∩ (y2, z) ∩ (x2, y , z2) ∩ (x , y2, z2).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 41 / 65



Let S = K [x , y , z ] and I = (xy , z).

Then I = (x , z) ∩ (y , z) and so (x , y , z) /∈ ass S I .

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = · · · =
(x , z2) ∩ (x2, z) ∩ (y , z2) ∩ (y2, z) ∩ (x2, y , z2) ∩ (x , y2, z2).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 41 / 65



Let S = K [x , y , z ] and I = (xy , z).

Then I = (x , z) ∩ (y , z) and so (x , y , z) /∈ ass S I .

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = · · · =
(x , z2) ∩ (x2, z) ∩ (y , z2) ∩ (y2, z) ∩ (x2, y , z2) ∩ (x , y2, z2).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 41 / 65



MHC

MHC

I = ∩ki=1Qi , where each Qj is generated by pure powers of the
variables. Thus Qj is a pj -primary ideal, where pj = (xi1 , · · · , xic ) for
some positive integer c .

One now can note that ht (Qj) = ht (xi1 , · · · , xic ) = c and indeed
c ≤ λ(I ). Hence ht (p) ≤ λ(I ) for all p ∈ ass S I .

It now makes perfect sense to see whenever the equality holds in fact.
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MHC

We say that I satisfies the maximal height condition for ass S I (MHC
for short), if there exists a prime ideal p ∈ ass S I with ht (p) = λ(I ).

We show that if I satisfies the MHC, then
reg(S/I ) = m(I ) = max{|Qj | − ht (Qj) | j = 1, . . . , k}.
That is, regularity of such ideals is given by max{|Q| − ht(Q)}, where
Q appears in the irredundant pure primary representaion of I .
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MHC in terms of depth

MHC in terms of depth

Let Λ(I ) = {x1, · · · , xt}. Then I satisfies the MHC if and only if
depth((S/I )(x1,··· ,xt)) = 0.

In order to see this note that

I satisfies the MHC⇐⇒ (x1, · · · , xt) ∈ Ass S S/I ⇐⇒
(x1, · · · , xt)S(x1,··· ,xt) ∈ Ass S (S/I )(x1,··· ,xt) ⇐⇒
depth((S/I )(x1,··· ,xt)) = 0.
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Veronese ideals

The square-free Veronese ideal of degree d in the variables
xi1 , · · · , xit is the ideal of S which is generated by all square-free
monomials in xi1 , · · · , xit of degree d .

Now let 2 ≤ d < n and let I = In,d be the square-free Veronese ideal
of degree d in the variables x1, · · · , xn.

Since each power I k is the ideal of Veronese type indexed by kd and
(k, k , · · · , k), then depthS/I k = max{0, s − k(s − d)− 1}.
Hence for k >> 0 we have depthS/I k = 0, thus I k are satisfying
MHC.
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m(I )

m(I )

Assume that I is a monomial ideal of S . Define

m(I ) = max{|Qj | − ht (Qj) | j = 1, . . . , k}
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Some elementary properties of m(I )

Assume that I and J are monomial ideals and u = xα1
1 · · · xαs

s , where
αi ≥ 0 for each 1 ≤ i ≤ s, is a monomial of S . Let
Λ(I ) = {x1, . . . , xt}.

Then

(i) (I ∩ J)u = Iu ∩ Ju.
(ii) m(I ∩ J) ≤ max{m(I ),m(J)}.
(iii) m(Iu) = max{m(I ) + deg(u), at+1 − 1, . . . , as − 1}.
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I is not MHC but I 2, I 3, · · · are!

I is not MHC but I 2, I 3, · · · are!

Let S = K [x , y , z ] and I = (xy , z) = (x , z) ∩ (y , z). Then λ(I ) = 3
and (x , y , z) /∈ ass S I . Thus I does not satisfy MHC.

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = Q1 ∩ · · · ∩ Q6,
where Q1 = (x , z2), Q2 = (x2, z), Q3 = (y , z2), Q4 = (y2, z), Q5 =
(x2, y , z2) and Q6 = (x , y2, z2).

Note that for i ∈ {1, 2, 3, 4}, Qi are of height 2 and |Qi | = 3.

For i ∈ {5, 6}, Qi are of height 3 and |Qi | = 5.

Thus I 2 satisfies MHC and m(I 2) = max{5− 3, 3− 2} = 2.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 48 / 65



I is not MHC but I 2, I 3, · · · are!

I is not MHC but I 2, I 3, · · · are!

Let S = K [x , y , z ] and I = (xy , z) = (x , z) ∩ (y , z). Then λ(I ) = 3
and (x , y , z) /∈ ass S I . Thus I does not satisfy MHC.

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = Q1 ∩ · · · ∩ Q6,
where Q1 = (x , z2), Q2 = (x2, z), Q3 = (y , z2), Q4 = (y2, z), Q5 =
(x2, y , z2) and Q6 = (x , y2, z2).

Note that for i ∈ {1, 2, 3, 4}, Qi are of height 2 and |Qi | = 3.

For i ∈ {5, 6}, Qi are of height 3 and |Qi | = 5.

Thus I 2 satisfies MHC and m(I 2) = max{5− 3, 3− 2} = 2.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 48 / 65



I is not MHC but I 2, I 3, · · · are!

I is not MHC but I 2, I 3, · · · are!

Let S = K [x , y , z ] and I = (xy , z) = (x , z) ∩ (y , z). Then λ(I ) = 3
and (x , y , z) /∈ ass S I . Thus I does not satisfy MHC.

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = Q1 ∩ · · · ∩ Q6,
where Q1 = (x , z2), Q2 = (x2, z), Q3 = (y , z2), Q4 = (y2, z), Q5 =
(x2, y , z2) and Q6 = (x , y2, z2).

Note that for i ∈ {1, 2, 3, 4}, Qi are of height 2 and |Qi | = 3.

For i ∈ {5, 6}, Qi are of height 3 and |Qi | = 5.

Thus I 2 satisfies MHC and m(I 2) = max{5− 3, 3− 2} = 2.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 48 / 65



I is not MHC but I 2, I 3, · · · are!

I is not MHC but I 2, I 3, · · · are!

Let S = K [x , y , z ] and I = (xy , z) = (x , z) ∩ (y , z). Then λ(I ) = 3
and (x , y , z) /∈ ass S I . Thus I does not satisfy MHC.

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = Q1 ∩ · · · ∩ Q6,
where Q1 = (x , z2), Q2 = (x2, z), Q3 = (y , z2), Q4 = (y2, z), Q5 =
(x2, y , z2) and Q6 = (x , y2, z2).

Note that for i ∈ {1, 2, 3, 4}, Qi are of height 2 and |Qi | = 3.

For i ∈ {5, 6}, Qi are of height 3 and |Qi | = 5.

Thus I 2 satisfies MHC and m(I 2) = max{5− 3, 3− 2} = 2.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 48 / 65



I is not MHC but I 2, I 3, · · · are!

I is not MHC but I 2, I 3, · · · are!

Let S = K [x , y , z ] and I = (xy , z) = (x , z) ∩ (y , z). Then λ(I ) = 3
and (x , y , z) /∈ ass S I . Thus I does not satisfy MHC.

I 2 = (x2y2, xyz , z2) = (x2, xyz , z2) ∩ (y2, xyz , z2) = Q1 ∩ · · · ∩ Q6,
where Q1 = (x , z2), Q2 = (x2, z), Q3 = (y , z2), Q4 = (y2, z), Q5 =
(x2, y , z2) and Q6 = (x , y2, z2).

Note that for i ∈ {1, 2, 3, 4}, Qi are of height 2 and |Qi | = 3.

For i ∈ {5, 6}, Qi are of height 3 and |Qi | = 5.

Thus I 2 satisfies MHC and m(I 2) = max{5− 3, 3− 2} = 2.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 48 / 65



I is not MHC but I 2, I 3, · · · are!

The primary decomposition of I 3 is, I 3 = Q1 ∩ · · · ∩ Q7, where
Q1 = (x , z3), Q2 = (x3, z), Q3 = (x2, z2), Q4 = (x2, y , z3), Q5 =
(x3, y , z3), Q6 = (x3, y2, z2) and Q7 = (x , y3, z3).

Hence I 3 satisfies the MHC.

Note that |Qi | = 4 for i ∈ {1, 2, 3}, |Q4| = 6 and |Qi | = 7 for
i ∈ {5, 6, 7}.
Thus m(I 3) = max{4− 2, 6− 3, 7− 3} = 4.
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An attractive question

If I is MHC, then so is I n?

Let I be a monomial ideal of S that satisfies the MHC. Then I n

satisfies the MHC for all n ≥ 1?

That is for a monomial ideal I , if p ∈ ass S I and ht p = λ(I ), then
p ∈ ass S I n for all n ≥ 1?
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Castelnuovo-Mumford regularity

Castelnuovo-Mumford Regularity
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Regularity of principal monomial ideals

Regularity of principal monomial ideals

One can easily see that for a principle monomial ideal
I = (xα1

1 . . . xαs
s ) we have reg(I ) =

∑s
i=1 αi = (m(I)+1).

In fact let · · · → S(−
∑s

i=1 αi )→ S → S/I → 0 be the graded free
resolution of S/I .

Since depthS/I = depthS − 1, we have
depthI ≥ min{depthS ,depthS/I + 1} = depthS .Thus
depthI = depthS .

Now the Auslander-Buchsbaum theorem implies that
pdS I = depthS − depthS/I = 0, i.e., 0→ S(−

∑s
i=1 αi )→ S is

exact.

Hence reg(I ) =
∑s

i=1 αi = (m(I)+1).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 52 / 65



Regularity of principal monomial ideals

Regularity of principal monomial ideals

One can easily see that for a principle monomial ideal
I = (xα1

1 . . . xαs
s ) we have reg(I ) =

∑s
i=1 αi = (m(I)+1).

In fact let · · · → S(−
∑s

i=1 αi )→ S → S/I → 0 be the graded free
resolution of S/I .

Since depthS/I = depthS − 1, we have
depthI ≥ min{depthS ,depthS/I + 1} = depthS .Thus
depthI = depthS .

Now the Auslander-Buchsbaum theorem implies that
pdS I = depthS − depthS/I = 0, i.e., 0→ S(−

∑s
i=1 αi )→ S is

exact.

Hence reg(I ) =
∑s

i=1 αi = (m(I)+1).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 52 / 65



Regularity of principal monomial ideals

Regularity of principal monomial ideals

One can easily see that for a principle monomial ideal
I = (xα1

1 . . . xαs
s ) we have reg(I ) =

∑s
i=1 αi = (m(I)+1).

In fact let · · · → S(−
∑s

i=1 αi )→ S → S/I → 0 be the graded free
resolution of S/I .

Since depthS/I = depthS − 1, we have
depthI ≥ min{depthS ,depthS/I + 1} = depthS .

Thus
depthI = depthS .

Now the Auslander-Buchsbaum theorem implies that
pdS I = depthS − depthS/I = 0, i.e., 0→ S(−

∑s
i=1 αi )→ S is

exact.

Hence reg(I ) =
∑s

i=1 αi = (m(I)+1).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 52 / 65



Regularity of principal monomial ideals

Regularity of principal monomial ideals

One can easily see that for a principle monomial ideal
I = (xα1

1 . . . xαs
s ) we have reg(I ) =

∑s
i=1 αi = (m(I)+1).

In fact let · · · → S(−
∑s

i=1 αi )→ S → S/I → 0 be the graded free
resolution of S/I .

Since depthS/I = depthS − 1, we have
depthI ≥ min{depthS ,depthS/I + 1} = depthS .Thus
depthI = depthS .

Now the Auslander-Buchsbaum theorem implies that
pdS I = depthS − depthS/I = 0, i.e., 0→ S(−

∑s
i=1 αi )→ S is

exact.

Hence reg(I ) =
∑s

i=1 αi = (m(I)+1).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 52 / 65



Regularity of principal monomial ideals

Regularity of principal monomial ideals

One can easily see that for a principle monomial ideal
I = (xα1

1 . . . xαs
s ) we have reg(I ) =

∑s
i=1 αi = (m(I)+1).

In fact let · · · → S(−
∑s

i=1 αi )→ S → S/I → 0 be the graded free
resolution of S/I .

Since depthS/I = depthS − 1, we have
depthI ≥ min{depthS ,depthS/I + 1} = depthS .Thus
depthI = depthS .

Now the Auslander-Buchsbaum theorem implies that
pdS I = depthS − depthS/I = 0, i.e., 0→ S(−

∑s
i=1 αi )→ S is

exact.

Hence reg(I ) =
∑s

i=1 αi = (m(I)+1).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 52 / 65



Regularity of principal monomial ideals

Regularity of principal monomial ideals

One can easily see that for a principle monomial ideal
I = (xα1

1 . . . xαs
s ) we have reg(I ) =

∑s
i=1 αi = (m(I)+1).

In fact let · · · → S(−
∑s

i=1 αi )→ S → S/I → 0 be the graded free
resolution of S/I .

Since depthS/I = depthS − 1, we have
depthI ≥ min{depthS ,depthS/I + 1} = depthS .Thus
depthI = depthS .

Now the Auslander-Buchsbaum theorem implies that
pdS I = depthS − depthS/I = 0, i.e., 0→ S(−

∑s
i=1 αi )→ S is

exact.

Hence reg(I ) =
∑s

i=1 αi = (m(I)+1).

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 52 / 65



Example

Let S = K [x , y , z ] and I = (x2, xy , y10, xz) = (x2, y , z) ∩ (x , y10).

Then I satisfies the MHC and m(I ) = max{4− 3, 11− 2} = 9.

We also know that reg(S/I ) = 9.

We show that this phenomena happens for all ideals that satisfy MHC.
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Regularity of primary monomial ideals and monomial MHC

Let I be a primary monomial ideal of S . Then reg(S/I ) = m(I ).

Let I be a monomial ideal of S that satisfies the MHC. Then
reg(S/I ) = m(I ).

The following simple example shows that one can not remove the
MHC assumption.

Let I = (xy , xz3, y2) = (x , y2) ∩ (y , z3). Then I does not satisfy the
MHC and m(I ) = 2 < 3 = reg(S/I ).
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Implementation

How do we find m(I ) in practice?
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How do we find m(I ) in practice?

Let I = (x2
1x2, x

2
1x2

3 , x
2
2 , x2x2

3 ).

Then t = 3 and r = 4.

One can write I as in the following table:

2 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 2

0 0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0 2
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How do we find m(I ) in practice?

The following algorithm will assign to each number between 1 and tr

a path.

private int[] numtopath(int x){
int y,z;

int a[] = new int[r];

a[0]=x/tr−1;

for(j=1;j<=r-1;j++){
y=(int)(a[j-1]*tr−j);
x=x-y;

z=tr−j−1;

a[j]=x/z;

}
return a;

}
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How do we find m(I ) in practice?

Now consider the following three paths among all tr = 34 = 81
possible paths.

2 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 2

0 0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0 2

(1)

2 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 2

0 0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0 2

(2)

2 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 2

0 0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0 2

(3)
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How do we find m(I ) in practice?

We will assign a t–tuple vector to each path.

For the following path

2 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 2

0 0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0 3

First b = (0, 0, 0).

Following the first node in the path; b = (2, 0, 0).

Continuing the second node, b is still b = (2, 0, 0).

Then following the third node; b = (2, 2, 0). Finally we finish this
path with b = (2, 2, 3).
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How do we find m(I ) in practice?

Note that two vectors of size t in each path will operate to each other by
the following rule:

int [] e = new int[t];

for(i=0;i<t;i++){
if(c[i]*d[i]==0)e[i]=Math.max(c[i],d[i]);

else e[i]=Math.min(c[i],d[i]);

}
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How do we find m(I ) in practice?

For path (1), b = (2, 0, 0) and so m = (2 + 0 + 0)− 1 = 1.

For path (2), b = (2, 1, 0) and so m = (2 + 1 + 0)− 2 = 1.

For path (3), b = (2, 2, 2) and so m = (2 + 2 + 2)− 3 = 3.

As it is easily seen, the value of m(I ) does not increase along other
remaining paths.

Hence m(I ) = 3 = reg(S/I ).
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3. Resolution of path ideals of cycles

Path ideals

K is a field and R = K [x1, ..., xn] is a polynomial ring in n variables.

χ is a simplicial complex on vertex set X = {x1, ..., xn} is a
collection ∆ of subsets of X satisfying xi ∈ ∆ for all i and
F ∈ ∆,G ⊂ F =⇒ G ∈ ∆.

G = (X ,E ) is a finite simple graph.

Two special cases that [Alilooee, Faridi] considered in their recent
paper are when G is a cycle Cn, or a line graph Ln on vertices
{x1, ..., xn}.
Cn =< x1x2, ..., xn−1xn, xnx1 > , Ln =< x1x2, ..., xn−1xn >.
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The Betti numbers of path ideals of cycles

If I is the degree t path ideal of a cycle, then

βi ,j(R/I ) = 0 for all i ≥ 1, j ≥ ti .

Betti numbers of degree n

Let p, t, n, d be integers such that n = (t + 1)p + d , where
p ≥ 0, 0 ≤ d ≤ t, and 2 ≤ t ≤ n. If Cn is a cycle over n vertices, then

βi ,n(R/It(Cn)) =


t, d = 0, i = 2( n

t+1) = 2p;

1, d 6= 0, i = 2(n−dt+1 ) + 1 = 2p + 1;

0, o.w.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 63 / 65



The Betti numbers of path ideals of cycles

If I is the degree t path ideal of a cycle, then

βi ,j(R/I ) = 0 for all i ≥ 1, j ≥ ti .

Betti numbers of degree n

Let p, t, n, d be integers such that n = (t + 1)p + d , where
p ≥ 0, 0 ≤ d ≤ t, and 2 ≤ t ≤ n. If Cn is a cycle over n vertices, then

βi ,n(R/It(Cn)) =


t, d = 0, i = 2( n

t+1) = 2p;

1, d 6= 0, i = 2(n−dt+1 ) + 1 = 2p + 1;

0, o.w.

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 63 / 65



References

Borna (2009)

Borna, Jafari (2013)

Chardin (2004)

Conca (2006)

Cutkosky, Herzog and Trung (1999)

Herzog, Hibi and Zheng (2004)

Faridi (2013)

Kodiyalam (2000)

Sturmfels (2000)

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 64 / 65



MANY THANKS FOR YOUR ATTENTION

Keivan Borna (Math-KHU) Betti Diagrams 13 May, 2013 65 / 65


