ON A FAMILY OF COHOMOLOGICAL DEGREES

Đoàn Trung Cường

Institute of Mathematics
Vietnam Academy of Science and Technology

The 16th Seminar on Commutative Algebra and Related Topics
Tehran - January 2020

1. Cohomological degrees

Definition

- (R, \mathfrak{m}, k) : a Noetherian local ring, $|k| = \infty$.
- Mod_R: the category of finitely generated R-modules.

Definition 1 (Doering-Gunston-Vasconcelos 1998)

A function

$$\operatorname{Deg}:\operatorname{Mod}_R\to\mathbb{R}_{\geq 0},$$

is a cohomological degree (extended degree) if

- (a) $\operatorname{Deg}(M) = \operatorname{Deg}(M/H_{\mathfrak{m}}^{0}(M)) + \ell(H_{\mathfrak{m}}^{0}(M));$
- (b) (Bertini) If depth(M) > 0 and $h \in \mathfrak{m} \setminus \mathfrak{m}^2$ then

$$\operatorname{Deg}(M) \ge \operatorname{Deg}(M/hM);$$

(c) (Calibration) If M is Cohen-Macaulay then $\mathrm{Deg}(M)=e(M)$.

Multiplicities of Cohen-Macaulay rings

• If M is Cohen-Macaulay then e(M) gives bounds for several important invariants:

$$\mu_R(M) \le e(M).$$

Theorem 2 (Sally, ...)

Let R be a Cohen-Macaulay ring and I be an ideal such that R/I is Cohen-Macaulay. Then

$$\mu(I) \le e(R) + (g-1)e(R/I),$$

where g = height(I) and r = depth(R/I).

Cohomological degree replaces the multiplicity

• If M is not Cohen-Macaulay then a cohomological degree Deg gives rise to bounds for $\mu(M)$, reg(M) (graded case), $P_{\mathfrak{m},M}(n)$, $\beta_i(M)$, $\mu_i(M)$, etc.

Theorem 3 (Doering-Gunston-Vasconcelos 1998)

$$\begin{split} \beta_i^R(M) &\leq \beta_i^R(k)\operatorname{Deg}(M), \\ \mu_i^R(M) &\leq \mu_i^R(k)\operatorname{Deg}(M), \end{split}$$

In particular, $\mu(M) \leq \text{Deg}(M)$.

Theorem 4 (Doering-Gunston-Vasconcelos 1998)

Let R be a Cohen-Macaulay ring and I be an ideal. Then

$$\mu(I) \le e(R) + (g-1)e(R/I) + (n-r+1)(\text{Deg}(R/I) - e(R/I)),$$

where $n = \dim(R)$, $g = \operatorname{height}(I)$ and $r = \operatorname{depth}(R/I)$.

Key in applications

- A cohomological degree plays a role of a measure for the complexity of algebraic structure.
- In application, to obtain a bound for certain invariant, one reduce to a low dimensional case by using the Bertini's rule.

Examples of cohomological degrees

• Homological degree hdeg (Vasconcelos 1998): Let R be a quotient of a Gorenstein local ring S of dimension s.

$$\mathrm{hdeg}(M) = e(M) + \sum_{i=0}^{d-1} \binom{d-1}{i} \, \mathrm{hdeg}(\mathrm{Ext}_S^{s-d+j}(M,S)),$$

where $d = \dim M$.

• Extreme cohomological degree bdeg (Gunston 1998¹):

$$bdeg(M) = \inf\{Deg(M) : \text{ for all coh. degrees } Deg\}.$$

Unmixed degree udeg (N.T. Cuong-Quy 2016).

¹T. Gunston, Cohomological degrees, Dilworth numbers and linear resolution, Ph.D. Thesis, Rutgers University, 1998.

Our aim: to construct a family of cohomological degrees and to study it relation with the hdeg, bdeg, udeg.

Let Deg be a cohomological degree and fix a finitely generated R-module M.

- dim M = 0: Deg $(M) = \ell(M)$;
- dim M = 1: Deg $(M) = e(M) + \ell(H_{\mathfrak{m}}^{0}(M))$;
- $\dim M \ge 2$: $\operatorname{Deg}(M)$ can attain infinitely many values.

2. A Cohen-Macaulay obstruction

p-Standard system of parameters

- Suppose that R is a quotient of a Cohen-Macaulay local ring.
- $\mathfrak{a}(M) = \operatorname{Ann}_R H^0_{\mathfrak{m}}(M) \dots \operatorname{Ann}_R H^{d-1}_{\mathfrak{m}}(M), d = \dim M.$ Then $\dim R/\mathfrak{a}(M) < \dim M.$
- M admits a system of parameters which satisfies:

Definition 5 (N.T. Cuong 1990)

A system of parameters x_1, \ldots, x_d of M is p-standard if

$$x_i \in \mathfrak{a}(M/(x_{i+1}, \dots, x_d)M), i = 1, \dots, d.$$

Almost p-standard system of parameters

Definition 6 (C-Nam 2015)

A system of parameters x_1, \ldots, x_d of M is almost p-standard if

$$\ell(M/(x_1^{n_1},\ldots,x_d^{n_d})M) = \sum_{i=0}^d \lambda_i n_1 \ldots n_i,$$

for given integer numbers $\lambda_0, \ldots, \lambda_d$ and for all $n_1, \ldots, n_d > 0$.

- (N.T. Cuong 1993) p-standard s.o.p \Rightarrow almost p-standard s.o.p.
- x_1, \ldots, x_d is an almost p-standard s.o.p of $M \Rightarrow x_1^{n_1}, x_2^{n_2}, \ldots, x_d^{n_d}$ is a p-standard s.o.p of M, for all $n_i \geq i$.
- If x_1, \ldots, x_d is an almost s.o.p then

$$\lambda_i = e(x_1, \dots, x_i; (0: x_{i+1})_{M/(x_{i+2}, \dots, x_d)}).$$

Almost p-standard system of parameters...

- An almost p-standard s.o.p is a strong d-sequence.
- (almost) p-Standard s.o.p.s are generalization of standard s.o.p of generalized Cohen-Macaulay modules.
- We may write

$$\ell(M/(x_1^{n_1}, \dots, x_d^{n_d})M) = \sum_{j=0}^r \lambda_{d_j} n_1 \dots n_{d_j},$$

where $\lambda_{d_i} \neq 0$ and $d_0 < d_1 < \ldots < d_r$. Then

- $d_r = d = \dim M = \dim \operatorname{Supp}(M);$
- $d_{r-1} = \dim \mathrm{nCM}(M);$
- If one permutes $x_{d_j+1},\ldots,x_{d_{j+1}}$ then the resulting s.o.p is also almost p-standard.

Existence

Theorem 7 (Kawasaki 2002, N.T. Cuong-C 2017)

Let R be a Noetherian local ring. TFAE

- R is universally catenary and all formal fibers of R are CM;
- R is a quotient of a CM local ring;
- Any quasi-unmixed quotient of R has a CM Rees algebra;
- R admits a (almost) p-standard s.o.p;
- All finitely generated R-modules admit a (almost) p-standard s.o.p;
- A faithful finitely generated R-module admits a p-standard s.o.p;

Corollary 8

A generalized Cohen-Macaulay local ring is a quotient of a Cohen-Macaulay ring.

Some subquotient modules

Theorem 9 (N.T. Cuong-Quy, C-Nam 2015)

Let x_1, \ldots, x_d be a p-standard s.o.p of M and $0 \le i < d$. Then the subquotient

$$(x_{i+2}^{n_{i+2}},\dots,x_d^{n_d})M:x_{i+1}^{n_{i+1}}/(x_{i+2}^{n_{i+2}},\dots,x_d^{n_d})M$$

is independent of the choice of the s.o.p and of the exponents $n_{i+1}, \ldots, n_d \gg 0$, up to an isomorphism.

Some more subquotient modules

Theorem 10 (C-Nam 2015)

Let x_1, \ldots, x_d be a p-standard s.o.p of M and $0 \le i < j \le d$.

(a) The subquotient

$$(x_{i+2}^{n_{i+2}}, \dots, x_j^{n_j})M : x_{i+1}/(x_{i+2}^{n_{i+2}}, \dots, x_j^{n_j})M$$

is independent of the choice of the s.o.p and of the exponents $n_{i+2}, \ldots, n_d > 1$. This module is denoted by U_M^{ij} .

(b) There is an injective homomorphism $\varphi:U_M^{i,j-1}\to U_M^{ij}$ such that ${\rm Im}(\varphi)$ is a direct summand of U_M^{ij} . We denote ${\rm Coker}(\varphi)$ by \overline{U}_M^{ij} . So there is a direct sum decomposition

$$U_M^{ij} \simeq \overline{\mathrm{U}}_M^{ij} \oplus \overline{\mathrm{U}}_M^{i,j-1} \oplus \cdots \oplus \overline{\mathrm{U}}_M^{i,i+2} \oplus U_M^{i,i+1}.$$

A Cohen-Macaulay obstruction

Remark 11

- $\dim(U_M^{ij}) \le i, \ 0 \le i < j \le d.$
- $U_M^{i,i+1} = D_i$: the unique maximal submodule with $\dim(D_i) \leq i$.

Proposition 12

Let $d = \dim M$. TFAE

- M is Cohen-Macaulay;
- ① $U_M^{id} = 0$ for all $0 \le i < d$;
- **o** $U_M^{ij} = 0$ for all $0 \le i < j \le d$;
- $\overline{\mathbb{U}}_{M}^{ij} = 0$ for all $0 \le i < j \le d$;
 - \bullet So the subquotients U_M^{ij} and $\overline{\mathbf{U}}_M^{ij}$'s are new Cohen-Macaulay obstruction of M.
 - Question: Should U_M^{ij} and $\overline{\mathbb{U}}_M^{ij}$ come from some spectral sequence?

Unmixed degree

• Let $i \ge 0$. For a f.g. R-module N with $\dim N \le i$, we denote

$$e(N)_i = \begin{cases} e(N) & \text{if } \dim N = i, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 13 (N.T. Cuong-Quy 2016)

Define the unmixed degree by

$$udeg(M) := \sum_{i=0}^{d} e(U_M^{id})_i,$$

where $d = \dim M$. Then udeg is a cohomological degree.

3. The extreme cohomological degree bdeg

Definition 14 (Gunston 1998)

The extreme cohomological degree is a function $\mathrm{bdeg}:\mathrm{Mod}_R\to\mathbb{R}_{\geq 0}$ defined by

 $bdeg(M) = \inf\{Deg(M) : Deg \text{ is a cohomological degree}\}.$

Theorem 15 (Gunston 1998)

- (a) bdeg is a cohomological degree.
- (b) For each finitely generated R-module M and a generic hyperplane section h,

$$bdeg(M) = bdeg(M/hM) + \ell(H_{\mathfrak{m}}^{0}(M)) - \ell(H_{\mathfrak{m}}^{0}(M)/hH_{\mathfrak{m}}^{0}(M)).$$

- The last property enables us to compute the bdeg by induction.
- Up to now, no precise formulas for the bdeg seemingly exist.

The arithmetic degree

- $U_M^{i,i+1}$ is the maximal submodule of M of dimension $\leq i$.
- The arithmetic degree of M is defined by

arith.
$$deg(M) := e(M) + \sum_{i=0}^{d-1} e(U_M^{i,i+1})_i$$
.

• Let $H_M = \{h \in \mathfrak{m} \setminus \mathfrak{m}^2 : \exists h^t, x_2, \dots, x_d \text{ a p-standard sop, } t \gg 0\}.$

Theorem 16

We have

$$bdeg(M) = arith. deg(M) + t(M),$$

where let $d = \dim(M)$, we may choose $h_1, \ldots, h_{d-1} \in \mathfrak{m}$ generically such that $h_i \in H_{M/(h_1, \ldots, h_{i-1})M}$ for $i = 1, \ldots, d-1$, and

$$t(M) = \sum_{i=1}^{d-1} \ell\left((0:h_i)_{\overline{\mathbf{U}}_{M/(h_1,\dots,h_{i-1})M}^{02}}\right).$$

The invariant t(M)

Corollary 17

Let $d = \dim(M)$.

- (a) $t(M) = bdeg(M) arith. deg(M) \le Deg(M) arith. deg(M)$ for any cohomological degree Deg;
- $t(M) = t(M/H_{\mathfrak{m}}^{0}(M));$
- For lower dimension modules, we have

$$t(M) = \begin{cases} 0 & \text{if } \dim(M) = 0, 1; \\ \ell((0:h)_{U_M^{02}}) & \text{if } \dim(M) = 2, \text{ for all } h \in H_M. \end{cases}$$

If M is Buchsbaum then

$$t(M) + \ell(H^0_{\mathfrak{m}}(M)) = I(M) = \sum_{i=0}^{d-1} \binom{d-1}{i} \ell(H^i_{\mathfrak{m}}(M)).$$

4. A family of cohomological degrees

From now on, R is a quotient of a Cohen-Macaulay ring, $\dim(R) = n$.

Theorem 18

Let $\Lambda = \{\lambda_{ij} \in \mathbb{R} : 0 \le i \le j \le n\}$ such that

$$\lambda_{01} = 1, \lambda_{0j} \le \lambda_{0,j+1}, \ \ \text{and} \ \lambda_{ij} \le \lambda_{i+1,j+1} \ \ \text{for} \ 0 \le i < j < n.$$

Define a function $\mathrm{Deg}_{\Lambda}:\mathrm{Mod}_R \to \mathbb{R}$ by

$$\operatorname{Deg}_{\Lambda}(M) = e(M) + \sum_{0 \le i < j \le \dim M} \lambda_{ij} e(\overline{U}_{M}^{ij})_{i}.$$

Then Deg_{Λ} is a cohomological degree.

Corollary 19

The function $Deg_{\Lambda}(M) + t(M)$ is also a cohomological degree.

Proof

- (a) $\operatorname{Deg}_{\Lambda}(M) = \operatorname{Deg}_{\Lambda}(M/H_{\mathfrak{m}}^{0}(M)) + \ell(H_{\mathfrak{m}}^{0}(M));$
- (b) (Bertini) $\operatorname{depth}(M) > 0$, h generic, $\operatorname{Deg}_{\Lambda}(M) \geq \operatorname{Deg}_{\Lambda}(M/hM)$
- (c) (Calibration) If M is Cohen-Macaulay then $\mathrm{Deg}_{\Lambda}(M)=e(M).$

Proposition 20

Let $h \in H_M$ and $1 \le i < j \le d$. There are exact sequences

$$0 \to U_M^{ij}/hU_M^{ij} \to U_{M/hM}^{i-1,j-1} \to L \to 0,$$

$$0 \to \overline{U}_M^{ij}/h\overline{U}_M^{ij} \to \overline{U}_{M/hM}^{i-1,j-1} \to N \to 0,$$

where $\dim(L), \dim(N) \leq 0$ such that

$$(0:h)_{U_M^{i-1,j}} \simeq L \oplus (0:h)_{U_M^{ij}},$$

$$\ell(N) = \begin{cases} \ell((0:h)_{\overline{U}_{M}^{i-1,j}}) - \ell((0:h)_{\overline{U}_{M}^{ij}}) & \text{ if } j > i+1, \\ \ell((0:h)_{\overline{U}_{M}^{i-1,i+1}}) & \text{ if } j = i+1. \end{cases}$$

A refinement

Theorem 21

Let $\lambda_{ijk} \in \mathbb{R}$, $0 \le i \le j \le k \le n$, be such that

$$\lambda_{01k} = 1, \lambda_{0jk} \leq \lambda_{0,j+1,k}, \text{ and } \lambda_{ijk} \leq \lambda_{i+1,j+1,k+1} \text{ for } 0 \leq i < j \leq k < n.$$

The following function is a cohomological degree

$$\operatorname{Deg}_{(\lambda_{ijd})}(M) = e(M) + \sum_{0 \le i < j \le d} \lambda_{ijd} e\left(\overline{\mathbf{U}}_{M}^{ij}\right)_{i}.$$

Remark 22

Let $\mathcal{L}(R)$ be the family of cohomological degree constructed in Theorem 21. Then $\mathcal{L}(R)$ is a convex set and

$$\dim(\mathcal{L}(R)) = \binom{n+2}{3} - n.$$

Examples

Example 23

(a) Given numbers $1 = \lambda_0 \le \lambda_1 \le \ldots \le \lambda_n$. Let $\lambda_{ij} = \lambda_i$ for $i = 0, 1, \ldots, n$ and $j = i + 1, \ldots, n$. We get a cohomological degree

$$Deg(M) = e(M) + \lambda_{d-1}e(U_M^{d-1,d})_{d-1} + \dots + \lambda_1e(U_M^{1d})_1 + \ell(U_M^{0d}),$$

where $\dim(M) = d$.

- (b) If $\lambda_0 = \ldots = \lambda_n = 1$ then one gets the unmixed degree udeg.
- (c) Let $\lambda_{ij} = {j-1 \choose i}$, $0 \le i < j$. By Theorem 9,

$$\operatorname{Deg}_b(M) := e(M) + \sum_{0 \le i < j \le \dim M} {j-1 \choose i} e(\overline{U}_M^{ij})_i.$$

5. Relation with hdeg

The homological degree hdeg

- Suppose R is a quotient of a Gorenstein local ring S, $\dim(R) = \dim(S)$.
- $M \in \operatorname{Mod}_R$, $\dim(M) = d = \dim(R)$.
- $K_M^i := \operatorname{Ext}_S^{d-i}(M,S)$: the i-th module of deficiency of M, for $i=0,1,\ldots,d$.
- K_M^d : the canonical module of M.
- Def:

hdeg(M) =
$$e(M) + \sum_{i=0}^{d-1} {d-1 \choose i} hdeg(K_M^i)$$
.

Question 24

What are relations between hdeg and $\operatorname{Deg}_{\Lambda}$, or more precisely, with $\operatorname{Deg}_{\hbar}$?

Sequentially (generalized) Cohen-Macaulay modules

Definition 25 (N. T. Cuong-Schenzel-N. V. Trung)

M is called generalized Cohen-Macaulay if $\ell(H^i_{\mathfrak{m}}(M)) < \infty$, for all $0 \leq i \leq d$, where $d = \dim(M)$. Set $\mathrm{I}(M) = \sum_{i=0}^{d-1} {d-1 \choose i} \ell(H^i_{\mathfrak{m}}(M))$.

Definition 26 (Stanley, Schenzel, N.T. Cuong-Nhan)

M is sequentially (generalized) Cohen-Macaulay if D_{i+1}/D_i is (generalized) Cohen-Macaulay for $i=0,\,1,\,\ldots,\,\dim(M)-1,$ where D_i is the unique maximal submodule of smaller dimension of D_{i+1} for $i=t-1,\ldots,0,$ where $D_t=M.$

Theorem 27 (Stanley, Schenzel, N. T. Cuong-Nhan)

M is sequentially (generalized) Cohen-Macaulay if and only if K_M^i is either (generalized) Cohen-Macaulay of dimension i or zero (finite length) for $i=0,1,\ldots,\dim(M)-1$.

hdeg and Deg_b on seq. gCM modules

Proposition 28

Let M be a sequentially generalized CM module with the dimension filtration $D_0 = H^0_{\mathfrak{m}}(M) \subset D_1 \subset \cdots \subset D_t = M$ and $d_j = \dim(D_j)$, $j = 0, 1, \ldots, t$, then

$$hdeg(M) = e(M) + \sum_{j=0}^{t-1} {d-1 \choose d_j} e(D_j) + \sum_{i=1}^{d-1} {d-1 \choose i} I(K_M^i),$$

$$Deg_b(M) = e(M) + \sum_{j=0}^{t-1} {d-1 \choose d_j} e(D_j) + c,$$

where

$$c = \sum_{i=0}^{t-1} \sum_{i=0}^{d_{i+1}-1} {\binom{d_{i+1}-1}{j} - \binom{d_i-1}{j}} \ell(H_{\mathfrak{m}}^j(M/D_i).$$

hdeg and Deg_b

Corollary 29

Let M be a finitely generated R-module. We have

$$hdeg(M) = Deg_b(M),$$

in the following cases

- (a) M is a sequentially Cohen-Macaulay module;
- (b) M is a generalized Cohen-Macaulay module;
- (c) $\dim(M) = 2$.

Proposition 30

Let $\dim M = 2$. Then

- (a) $bdeg(M) = e(M) + e(U_M^{12}) + \ell(U_M^{01}) + t(M);$
- (b) $hdeg(M) = udeg(M) = e(M) + e(U_M^{12}) + e(U_M^{02}).$

Vasconcelos's question

Question 31 (Vasconcelos)

Let R be a CM ring, denote by $\mathbb N$ the set of all rational numbers

$$\frac{\operatorname{hdeg}(M) - \operatorname{hdeg}(M/hM)}{e(M)},$$

where $M \neq 0 \in \operatorname{Mod}_R$ and $h \in \mathfrak{m} \setminus \mathfrak{m}^2$ generic. Is \mathfrak{N} finite or bounded?

Example 32

Let R = k[[X,Y]] for a field k. Let $\mathfrak{m} = (X,Y)$ and $L_t = \mathfrak{m}^{t+1}$ for $t \geq 0$.

$$\operatorname{hdeg}(L_t) = e(L_t) + \ell(R/\mathfrak{m}^{t+1}) = 1 + \binom{t+2}{2},$$

$$\operatorname{hdeg}(L_t/hL_t) = 1 + \ell(\mathfrak{m}^t/\mathfrak{m}^{t+1}) = t+2,$$

$$\frac{\operatorname{hdeg}(L_t) - \operatorname{hdeg}(L_t/hL_t)}{e(L_t)} = \binom{t+1}{2}.$$

Thank you for your attention!