On local rings with zero-dimensional formal fibers

Đoàn Trung Cường

Institute of Mathematics Vietnam Academy of Science and Technology

The 16th Seminar on Commutative Algebra and Related Topics Tehran - January 2020

Doan Trung Cường Local rings with zero-dimensional formal fibers

・ロト ・ 同ト ・ ヨト ・ ヨト

Dar

1. Introduction

- If α(R) = 0 then R is quite close to its completion R
 geometrically. In special situation, we may expect to
 understand R by studying R
 .
- Examples of such rings are from

Theorem

Let (R, \mathfrak{m}) be a complete one-dimensional local ring. Let X be a curve over R, x be a closed point in the special fiber X_k . Suppose for all components X_i of X through x, dim_x $(X_i) > 1$. Then

$$\alpha(\mathfrak{O}_{\boldsymbol{X},\boldsymbol{x}})=\boldsymbol{0}.$$

• In applications, *R* is the ring of *p*-adic integers in a *p*-adic field.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

Theorem

Let R be a universally catenary local domain. TFAE

(a)
$$\alpha(R) = 0;$$

(b) For any ideal $I \subset \widehat{R}$, dim $\widehat{R}/I = \dim R/I \cap R$;

(c) For any parameter element $x \in \widehat{R}$, there is $y \in \widehat{R}$ such that $xy \in R$ which is a parameter element;

(d)
$$\pi^{-1}(0) = \text{Assh}(\widehat{R}).$$

Theorem

Let R be a local domain with $\alpha(R) = 0$. TFAE

(a) *R* is universally catenary;

(b) R is a homomorphic image of a Cohen-Macaulay ring;

(c) dim R / Ann_R $H^i_{\mathfrak{m}}(R) < i$ for $i = 0, 1, \ldots, \dim(R) - 1$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

ъ

Theorem

Let R be a universally catenary local domain. TFAE

(a)
$$\alpha(R) = 0;$$

(b) For any ideal $I \subset \widehat{R}$, dim $\widehat{R}/I = \dim R/I \cap R$;

(c) For any parameter element $x \in \widehat{R}$, there is $y \in \widehat{R}$ such that $xy \in R$ which is a parameter element;

(d)
$$\pi^{-1}(0) = \text{Assh}(\widehat{R}).$$

Theorem

Let R be a local domain with $\alpha(R) = 0$. TFAE

(a) *R* is universally catenary;

(b) R is a homomorphic image of a Cohen-Macaulay ring;

(c) dim $R / Ann_R H^i_{\mathfrak{m}}(R) < i$ for i = 0, 1, ..., dim(R) - 1.

ヘロア 人間 アメヨア 人口 ア

ъ

Dac

Going up property

- $\Re^0 := \{ \text{local rings with trivial formal fibers} \};$
- $\mathcal{R}^{0}_{uc} := \{ R \in \mathcal{R}^{0} : R \text{ is universally catenary} \};$
- $\Re^{0}_{gu} := \{ \text{local rings with going-up property} \};$
- $\mathcal{R}_{int}^0 := \{ \text{local rings } R \text{ such that } \hat{R} \text{ is integral over } R \}.$

Theorem (Zöschinger 2010)

$$\mathcal{R}^{\mathsf{0}}_{gu} \subseteq \mathcal{R}^{\mathsf{0}}_{uc}.$$

In general,

$$\mathfrak{R}^{\mathsf{0}}_{int} \subset \mathfrak{R}^{\mathsf{0}}_{gu} \subset \mathfrak{R}^{\mathsf{0}}_{uc} \subset \mathfrak{R}^{\mathsf{0}}.$$

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Theorem

Let R be a universally catenary local ring with $\alpha(R) = 0$. TFAE

- R satisfies the going-up theorem;
- For any ideal *I* ⊂ *R* and any quotient *S* of *R*, *H*^{dim S}_{*I*}(*S*) = 0 if and only if dim *R*/(p + *I*) > 0 for all p ∈ Assh(*S*).

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

3. Weierstrass preparation theorem

Definition

Let *A* be a commutative ring. A Weierstrass extension of *A* is a ring extension $A \subseteq B$ such that for any $b \in B$,

b = ua,

for some $a \in A$ and an invertible element $u \in B^{\times}$.

Examples of Weierstrass extensions.

- Let *M* be a complex smooth algebraic curve and $a \in M$. Then $\mathcal{O}_{M,a} \subset \mathcal{O}_{M,a}^{an}$ is a Weierstrass extension (classical WPT in one variable).
- $k[X] \subset k[[X]]$ and $k[[X]][Y] \subset k[[X, Y]]$.
- For a domain A, a localization $A \rightarrow S^{-1}A$ is Weierstrass.
- In fact, each result giving a new Weierstrass extension could be regarded as a new Weierstrass preparation theorem.

3. Weierstrass preparation theorem

Definition

Let *A* be a commutative ring. A Weierstrass extension of *A* is a ring extension $A \subseteq B$ such that for any $b \in B$,

b = ua,

for some $a \in A$ and an invertible element $u \in B^{\times}$.

Examples of Weierstrass extensions.

- Let *M* be a complex smooth algebraic curve and *a* ∈ *M*. Then O_{*M*,*a*} ⊂ O^{an}_{*M*,*a*} is a Weierstrass extension (classical WPT in one variable).
- $k[X] \subset k[[X]]$ and $k[[X]][Y] \subset k[[X, Y]]$.
- For a domain A, a localization $A \rightarrow S^{-1}A$ is Weierstrass.
- In fact, each result giving a new Weierstrass extension could be regarded as a new Weierstrass preparation theorem.

3. Weierstrass preparation theorem

Definition

Let *A* be a commutative ring. A Weierstrass extension of *A* is a ring extension $A \subseteq B$ such that for any $b \in B$,

b = ua,

for some $a \in A$ and an invertible element $u \in B^{\times}$.

Examples of Weierstrass extensions.

- Let *M* be a complex smooth algebraic curve and *a* ∈ *M*. Then O_{*M*,*a*} ⊂ O^{an}_{*M*,*a*} is a Weierstrass extension (classical WPT in one variable).
- $k[X] \subset k[[X]]$ and $k[[X]][Y] \subset k[[X, Y]]$.
- For a domain A, a localization $A \rightarrow S^{-1}A$ is Weierstrass.
- In fact, each result giving a new Weierstrass extension could be regarded as a new Weierstrass preparation theorem.

u-invariant

- *k* is a field, char(*k*) \neq 2. A quadratic form $\lambda_1 x_1^2 + ... + \lambda_n x_n^2$ is anisotropic if it has no non-zero roots.
- u-invariant:

$$u(k) = max\{n : \exists \lambda_1 x_1^2 + \ldots + \lambda_n x_n^2 \text{ anisotropic}\}.$$

•
$$u(\mathbb{C}) = 1$$
; $u(\mathbb{R}) = \infty$ and $u(\mathbb{F}_p) = 2$.

• u(k) = 4 if k is a p-adic field (Springer's theorem).

Theorem (u-invariant)

Let F be a function field in one variable over a p-adic field. Then u(F) = 8.

- Parimala-Suresh (Ann. Math. 2010): cohomological method.
- Harbater-Hartmann-Krashen (Invent. Math. 2009): patching method.
- Leep (Crelle' 2012): p-adic analytic method.

4 E b

San

u-invariant

- *k* is a field, char(*k*) \neq 2. A quadratic form $\lambda_1 x_1^2 + \ldots + \lambda_n x_n^2$ is anisotropic if it has no non-zero roots.
- u-invariant:

$$u(k) = max\{n : \exists \lambda_1 x_1^2 + \ldots + \lambda_n x_n^2 \text{ anisotropic}\}.$$

•
$$u(\mathbb{C}) = 1$$
; $u(\mathbb{R}) = \infty$ and $u(\mathbb{F}_p) = 2$.

• u(k) = 4 if k is a p-adic field (Springer's theorem).

Theorem (u-invariant)

Let F be a function field in one variable over a p-adic field. Then u(F) = 8.

- Parimala-Suresh (Ann. Math. 2010): cohomological method.
- Harbater-Hartmann-Krashen (Invent. Math. 2009): patching method.
- Leep (Crelle' 2012): p-adic analytic method.

Dac

WPT and u-invariant

- For a domain A, K_A is the field of fractions.
- Assume the following
 - A, B are domains, $A \subseteq B$ is a Weierstrass extension.
 - $I \subset A$ an ideal such that *B* is henselian relative to *IB*.
 - $A/I \simeq B/IB$ with 2 invertible.

Lemma (Hensel) For a unit $b \in B^{\times}$, there are $a \in A, \alpha \in B^{\times}$ such that $b = a\alpha^2$. Proof.

- $A/I \simeq B/IB \Rightarrow a \in A^{\times}$ such that $a \equiv b \pmod{IB}$.
- Let $F(X) = aX^2 b \in B[X] \Rightarrow F'(1) = 2a$ is invertible in B/IB.
- $F(1) = a b \equiv 0 \pmod{IB}$.

• *B* is henselian relative to $IB \Rightarrow \exists ! \alpha \in B$ such that $F(\alpha) = a\alpha^2 - b = 0$ and $\alpha \equiv 1 \pmod{IB}$.

200

WPT and u-invariant

- For a domain A, K_A is the field of fractions.
- Assume the following
 - A, B are domains, $A \subseteq B$ is a Weierstrass extension.
 - $I \subset A$ an ideal such that *B* is henselian relative to *IB*.
 - $A/I \simeq B/IB$ with 2 invertible.

Lemma (Hensel)

For a unit $b \in B^{\times}$, there are $a \in A, \alpha \in B^{\times}$ such that $b = a\alpha^2$.

Proof.

- $A/I \simeq B/IB \Rightarrow a \in A^{\times}$ such that $a \equiv b \pmod{IB}$.
- Let $F(X) = aX^2 b \in B[X] \Rightarrow F'(1) = 2a$ is invertible in B/IB.

•
$$F(1) = a - b \equiv 0 \pmod{IB}$$
.

• *B* is henselian relative to $IB \Rightarrow \exists! \alpha \in B$ such that $F(\alpha) = a\alpha^2 - b = 0$ and $\alpha \equiv 1 \pmod{IB}$.

200

WPT and u-invariant

- For a domain A, K_A is the field of fractions.
- Assume the following
 - A, B are domains, $A \subseteq B$ is a Weierstrass extension.
 - *I* ⊂ *A* an ideal such that *B* is henselian relative to *IB*.
 - $A/I \simeq B/IB$ with 2 invertible.

Theorem

 $u(K_B) \leq u(K_A).$

Proof.

$$\lambda_1 x_1^2 + \ldots + \lambda_n x_n^2, \quad (\lambda_i \in B)$$

$$\implies a_1 b_i x_1^2 + \ldots + a_n b_n x_n^2, \quad (a_i \in A, b_i \in B^{\times})$$

$$\implies c_1 \alpha_1^2 x_1^2 + \ldots + c_n \alpha_n^2 x_n^2, \quad (c_i \in A, \alpha_i \in B^{\times})$$

$$\implies c_1 (\alpha_1 x_1)^2 + \ldots + c_n (\alpha_n x_n)^2$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

- In many cases, K_B is henselian or even complete, and hence there are effective ways to compute $u(K_B)$. We then get a lower bound for $u(K_A)$.
- The theorem works for higher forms.
- The theorem works at the level of rings.
- We are interested in the case $A \subseteq B$ is a flat extension.

・ロト ・ 同ト ・ ヨト ・ ヨト

Dar

4. Flat Weierstrass extension

- $A \subseteq B$ are Noetherian domains, *B* is local.
- For a prime ideal *P* of *B*, denote $k_B(P) = B_P/PB_P$, the residue field.

Theorem

Assume B/A is flat. Then B/A is Weierstrass if and only if any prime ideal $P \in \text{Spec}(B)$ satisfies

- (a) $P = (A \cap P)B;$
- (b) Either B_P is a principal ideal domain or the natural inclusion

 $k_A(A \cap P) \hookrightarrow k_B(P),$

is an isomorphism.

・ロト ・ 同ト ・ ヨト ・ ヨト

Corollary

Let $A \subseteq B$ be a flat, Weierstrass extension, where A, B are Noetherian local rings. Then either

- B is a field, or
- B is a DVR, or
- A and B are analytically isomorphic, i. e., $\hat{A} \simeq \hat{B}$.

Remark

- Condition (a) is equivalent to

 (a1) The dimensions of the fibers are zero, and
 (a2) For p ∈ Spec(A), either pB = B or pB is a prime ideal.

 ℝ[[X]] → ℂ[[X]] is faithfully flat and Weierstrass which is
 - not an isomorphism.

ヘロア 人間 アメヨア 人口 ア

5. Functions on curves

- (*R*, m_R): a complete Noetherian local domain of dim *R* = 1, with *K* = Frac(*R*), *k* = *R*/m_R.
- \mathfrak{X} : a connected projective normal curve over *R* with closed fiber *X* and function field *F*.
- $U \subset X$ is a subset contained in an affine set.
- A: ring of rational functions in F which are regular on U.
- \widehat{A} is the $\mathfrak{m}_{R}A$ -adic completion of the ring A.

Proposition

For any prime ideal $\mathfrak{p} \neq 0$ of A, the canonical embedding $A/\mathfrak{p} \hookrightarrow \hat{A}/\mathfrak{p}\hat{A}$ is an isomorphism. In particular, $\mathfrak{p}\hat{A}$ is a prime ideal.

Conversely, for a non-minimal prime ideal Q of \widehat{A} , if we denote $\mathfrak{q} = Q \cap A$, then $Q = \mathfrak{q}\widehat{A}$ and $k_A(\mathfrak{q}) \simeq k_{\widehat{A}}(Q)$.

nan

Theorem Let U be a subset of the closed fiber X; P₁,..., P_t ∈ Spec be generic points of the irreducible components of Spec Â; Q be a maximal ideal of Â.

For each $P_i \subseteq Q$, we have a Weierstrass extension

 $A \subset (\widehat{A}/P_i)_Q.$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

San

Corollary (Harbater-Hartmann-Krashen)

Let U be either

- (a) A set consisting of one closed point; or
- (b) An open subset of an irreducible component of X which does not intersect other components.

For each prime ideal Q of \widehat{A} , the extension $A \subset (\widehat{A})_Q$ is Weierstrass.

ヘロア 人間 アメヨア 人口 ア

San

Theorem (Harbater-Hartmann-Krashen)

Let $x \in X$ be a closed point of the closed fiber. Assume

For each irreducible component X_i of X and x ∈ X_i, the ring O_{Xi,x} is analytically unramified and unibranch.

Then the \mathfrak{m}_x -adic completion $R_x \subset \widetilde{R_x}$ is Weierstrass.

It is the case if x is a non-singular point of the component X_i .

・ロット (四)・ (日)・ (日)・

6. Henselization and completion

- (A, m_A) ⊆ (B, m_B) is a faithfully flat extension consisting of Noetherian local domains.
- B is henselian.
- A^h: the Henselization of A.
- \hat{A} : the \mathfrak{m}_A -adic completion of A.

Proposition

Suppose B/A is Weierstrass. Then

(a) There are faithfully flat embeddings $A \hookrightarrow A^h \hookrightarrow B$;

(b) If B is not a PID, then there are faithfully flat embeddings

 $A^h \hookrightarrow B \hookrightarrow \hat{A}.$

(c) The Henselization $A \subseteq A^h$ is Weierstrass.

・ロット (四)・ (日)・ (日)・

ъ

A local ring R is unibranch if the reduction R_{red} is a domain and the integral closure of R in its field of fractions is a local ring.

Proposition

Let A be a Noetherian local domain. The Henselization $A \subseteq A^h$ is Weierstrass if and only if

(a) For $\mathfrak{p} \in \text{Spec}(A)$, A/\mathfrak{p} is unibranch, and

(b) For $\mathfrak{p} \in \text{Spec}(A)$, if $A_{\mathfrak{p}}$ is neither a field nor a DVR, then

$$k_{\mathcal{A}}(\mathfrak{p})\simeq k_{\mathcal{A}^h}(\mathfrak{p}\mathcal{A}^h).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Corollary

Let A be a Noetherian local domain of dimension one. Then $A \subseteq \hat{A}$ is Weierstrass if and only if A is analytically unramified and unibranch.

Example (Matsumura)

Let X be a projective variety over a field k and $x \in X$. The dimension of the generic fiber of $\mathcal{O}_{X,x} \hookrightarrow \widehat{\mathcal{O}}_{X,x}$ is $\operatorname{codim}_{x}(X) - 1$. So if the completion map is Weierstrass, we get $\operatorname{codim}_{x}(X) = 1$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Question

How to formulate a higher dimensional WPT which is applicable to study u-invariants?

Proposition

Let (A, \mathfrak{m}_A) be a Noetherian local ring. Let P be a prime ideal which is maximal in the generic fiber of the extension $A \hookrightarrow \hat{A}$. If in addition dim $\hat{A}/P = 1$, then $A \hookrightarrow \hat{A}/P$ as a Weierstrass extension.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

1

Thank you for your attention

 Doan Trung Cường
 Local rings with zero-dimensional formal fibers

(ロ) (同) (三) (三) (三) (0) (0)