

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Binomial D-module

Hamid Damadi

Faculty of Mathematics, Amirkabir University of Technology, (Tehran Polytechnic) Tehran, Iran.

Workshop on Commutative Algebra, Ipm, 2013, Tehran, Iran

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

k[X] = *k*[*x*₁,..., *x_n*] is a vector space of infinite dimension over k.

・ロット (雪) (日) (日) (日)

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differentia equations

Some properties

Holonomic

Binomial D-modules

References

k[X] = *k*[*x*₁,..., *x_n*] is a vector space of infinite dimension over k.

It's algebra of linear operators is denoted by End_k(k[X]); the algebra operations are the addition and composition of operators.

Binomial D-module

Introduction

Degree of an operator

- Examples
- Differential equations
- Some properties
- Holonomic
- Binomial D-modules
- References

k[X] = *k*[*x*₁,..., *x_n*] is a vector space of infinite dimension over k.

- It's algebra of linear operators is denoted by End_k(k[X]); the algebra operations are the addition and composition of operators.
- Let x̂₁,..., x̂_n be the operators of k[X] which are defined on a polynomial f ∈ k[X] by the formulate x̂_i.f = x_if. Similarly, ∂₁,..., ∂_n are the operators defined by ∂_i(f) = ∂f/∂x_i.

Binomial D-module

Damadi

Introduction

Degree of an operator

- Examples
- Differential equations
- Some properties
- Holonomic
- Binomial D-modules
- References

k[X] = *k*[*x*₁,..., *x_n*] is a vector space of infinite dimension over k.

- It's algebra of linear operators is denoted by End_k(k[X]); the algebra operations are the addition and composition of operators.
- Let x̂₁,..., x̂_n be the operators of k[X] which are defined on a polynomial f ∈ k[X] by the formulate x̂_i.f = x_if. Similarly, ∂₁,..., ∂_n are the operators defined by ∂_i(f) = ∂f/∂x_i.
- The n-th Weyl algebra D_n is the k-subalgebra of End_k(k[X]) generated by the operators x̂₁,..., x̂_n, ∂₁,..., ∂_n.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Note that we have:

$$\hat{x}_i \hat{x}_j = \hat{x}_j \hat{x}_i$$
 $\partial_i \partial_j = \partial_j \partial_i$
 $\partial_i \hat{x}_j = \hat{x}_j \partial_i, i \neq j$
 $\partial_i \hat{x}_i = \hat{x}_i \partial_i + 1$

Then Weyl algebra is a noncommutative algebra.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Note that we have:

$$\hat{x}_i \hat{x}_j = \hat{x}_j \hat{x}_i$$
 $\partial_i \partial_j = \partial_j \partial_i$
 $\partial_i \hat{x}_j = \hat{x}_j \partial_i, i \neq j$
 $\partial_i \hat{x}_i = \hat{x}_i \partial_i + 1$

Then Weyl algebra is a noncommutative algebra.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

The set $B = \{x^{\alpha}\partial^{\beta} : \alpha, \beta \in \mathbb{N}^n\}$ is a basis of D_n as a vector space over k.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

The set $B = \{x^{\alpha}\partial^{\beta} : \alpha, \beta \in \mathbb{N}^n\}$ is a basis of D_n as a vector space over k.

Definition

If an element of D_n is written as a linear combination of this basis then we say that it is in canonical form.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Degree of an operator

Let P ∈ D_n. The degree of P is the largest length of the multi-indices (α, β) in Nⁿ × Nⁿ for which x^α∂^β appears with non-zero coefficient in the canonical form of P.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Degree of an operator

■ Let $P \in D_n$. The degree of P is the largest length of the multi-indices (α, β) in $\mathbb{N}^n \times \mathbb{N}^n$ for which $x^{\alpha} \partial^{\beta}$ appears with non-zero coefficient in the canonical form of P.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

The degree satisfies the following properties; for $P, Q \in D_n$:

- $deg(P+Q) \leq max\{deg(P), deg(Q)\}.$
- $\bullet \ deg(PQ) = deg(P) + deg(Q)$
- $\bullet \ deg[P,Q] \leq deg(P) + deg(Q) 2$

Damadi

Definition

Introduction

Degree of an operator

- Examples
- Differential equations

Some properties

Holonomic

Binomial D-modules

References

Denote by B_k the set of all operators of D_n of degree $\leq k$. $B = \{B_k\}_{k \in \mathbb{N}}$ is called *Bernstein filtration*.

Let M be a left D_n-module and Γ a filtration of M with respect to the Bernstein filtration B.When gr^ΓM is finitely generated over k[X, ξ] we say that Γ is a good filtration of M.

Damadi

Introduction

Degree of an operator

- Examples
- Differential equations
- Some properties
- Holonomic
- Binomial D-modules
- References

Remark

In this presentation when we talk about dim *M* we mean the degree of the Hilbert polynomial of the associated graded algebra of M with a good filtration respect to *Bernstein filtration*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Corollary

The algebra D_n is a domain.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Corollary

The algebra D_n is a domain.

Corollary

The algebra D_n is simple.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Corollary

The algebra D_n is a domain.

Corollary

The algebra D_n is simple.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

Let *R* be a ring.

- An R-module M is irreducible or simple, if it has no proper submodules.
- Let M be a left R-module. An element u ∈ M is a torsion element if ann_R(u) is a nonzero left ideal. if every element of M is torsion, then M is called a torsion module.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

Let *R* be a ring.

- An R-module M is irreducible or simple, if it has no proper submodules.
- Let M be a left R-module. An element u ∈ M is a torsion element if ann_R(u) is a nonzero left ideal. if every element of M is torsion, then M is called a torsion module.

Theorem

k[X] is an irreducible, torsion D-module. Besides this,

$$k[X] \simeq rac{D}{\sum_{1}^{n} D \partial_i}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differentia equations

Some properties

Holonomic

Binomial D-modules

References

■ Let U be an open subset of C. The set H(U) of holomorphic functions defined on U is a left D₁-module.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

■ Let U be an open subset of C. The set H(U) of holomorphic functions defined on U is a left D₁-module.

■ Let U be an open subset of Cⁿ. The set H(U) of holomorphic functions defined on U is a left D_n-module.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

■ Let P be an operator in D_n . It may be represented in the form $\sum_{\alpha} g_{\alpha} \partial^{\alpha}$ where $\alpha \in \mathbb{N}^n$ and $g_{\alpha} \in k[x_1, \dots, x_n] = k[X]$. This differential operator gives rise to the equation

$${\sf P}(f) = \sum_lpha {oldsymbol g}_lpha \partial^lpha(f) = {\sf 0},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where f may be a polynomial or, if $k = \mathbb{R}$, a C^{∞} function on the variables x_1, \ldots, x_n .

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Let P be an operator in D_n. It may be represented in the form ∑_α g_α∂^α where α ∈ Nⁿ and g_α ∈ k[x₁,...,x_n] = k[X]. This differential operator gives rise to the equation

$$\mathsf{P}(f) = \sum_lpha g_lpha \partial^lpha(f) = \mathsf{0},$$

where f may be a polynomial or, if $k = \mathbb{R}$, a C^{∞} function on the variables x_1, \ldots, x_n .

More generally, if P₁,..., P_m are differential operations in D, then we have a system of differential equations

$$P_1(f) = \cdots = P_m(f) = 0. \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

A polynomial solution of (1) is a polynomial $f \in k[X]$ which satisfies $P_i(f) = 0$, for i = 1, ..., m. The set of all polynomial solutions of (1) forms a k-vector space.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

A polynomial solution of (1) is a polynomial $f \in k[X]$ which satisfies $P_i(f) = 0$, for i = 1, ..., m. The set of all polynomial solutions of (1) forms a k-vector space.

(日)

■ The D-module associated to the system of differential equations (1) is ^D
 ∑^m
 DP_i
 .

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

Let *M* be the *D*-module associated with the system (1). the vector space of polynomial solutions of the system (1) is isomorphic to $Hom_D(M, k[X])$.

・ロット (雪) (日) (日) (日)

Some properties

Damadi

Introduction

Degree of an operator

Examples

Differentia equations

Some properties

Holonomic

Binomial D-modules

References

D is a left Noetherian ring.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Some properties

- Binomial D-module
- Damadi
- Introduction
- Degree of an operator
- Examples
- Differentia equations

Some properties

Holonomic

Binomial D-modules

References

- D is a left Noetherian ring.
- Let M be a finitely generated D_n-module. Then dim(M) ≤ 2n.

Some properties

- Binomial D-module
- Damadi
- Introduction
- Degree of an operator
- Examples
- Differentia equations
- Some properties
- Holonomic
- Binomial D-modules
- References

- D is a left Noetherian ring.
- Let M be a finitely generated D_n -module. Then $dim(M) \le 2n$.
- If M is a finitely generated non-zero left D_n -module, then **dim**(M) ≥ n.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

A finitely generated left D-module is Holonomic if is zero, or if it has dimension n.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

A finitely generated left D-module is Holonomic if is zero, or if it has dimension n.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Example

k[X] is a holonomic D-module.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

 Submodules and quotients of holonomic D-modules are holonomic.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

- Submodules and quotients of holonomic D-modules are holonomic.
- finite sums of holonomic D-modules are holonomic.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

- Submodules and quotients of holonomic D-modules are holonomic.
- finite sums of holonomic D-modules are holonomic.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Holonomic D-modules are torsion modules.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

- Submodules and quotients of holonomic D-modules are holonomic.
- finite sums of holonomic D-modules are holonomic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Holonomic D-modules are torsion modules.
- Holonomic D-modules are artinian.

Binomial D-module

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

- Submodules and quotients of holonomic D-modules are holonomic.
- finite sums of holonomic D-modules are holonomic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Holonomic D-modules are torsion modules.
- Holonomic D-modules are artinian.
- Holonomic D-modules are cyclic.

Damadi

Introduction

Degree of an operator

Examples

Differentia equations

Some properties

Holonomic

Binomial D-modules

References

Definition

• Let $P = \sum c_{\alpha\beta} X^{\alpha} \partial^{\beta} \in D_n$. We define initial form in(*P*) as follows:

$$\mathsf{in}({\it P}) = \sum {\it c}_{lphaeta} {\it X}^lpha \xi^eta$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where ξ are commutative variables.

Damadi

Definition

Introduction

Degree of an operator

Examples

Differentia equations

Some properties

Holonomic

Binomial D-modules

References

• Let $P = \sum c_{\alpha\beta} X^{\alpha} \partial^{\beta} \in D_n$. We define initial form in(*P*) as follows:

$$\mathsf{in}({\it P}) = \sum {\it c}_{lphaeta} {\it X}^lpha \xi^eta$$

where ξ are commutative variables.
Let I be an ideal of *D_n*. Then the k-vector space

 $\mathsf{in}(I) := k.\{\mathsf{in}(P) : P \in I\}$

is a left ideal of the polynomial ring $k[X, \xi]$ and called characteristic ideal of I.

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

Let I be a non-zero ideal of D_n . We call I holonomic if its characteristic ideal has dimension n. The holonomic rank of I is the following vector space dimension over the field $k(X) = k(x_1, ..., x_n)$:

$$\operatorname{rank}(I) := \dim_{k(X)}(\frac{k(X)[\xi]}{k(X)[\xi].\operatorname{in}(I)}).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

Consider an ordinary differential equation of order m,

$$[a_m(x)\frac{d^m}{dx^m}+\cdots+a_0(x)]\bullet f=0, \qquad a_0,\ldots,a_m\in\mathbb{C}[x].$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Let U be a simply connected domain contained in $\{P \in \mathbb{C} : a_m(P) \neq 0\}$. Then, the dimension of the space of holomorphic solutions on U is equal to m.

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

Consider an ordinary differential equation of order m,

$$[a_m(x)rac{d^m}{dx^m}+\cdots+a_0(x)]\bullet f=0, \qquad a_0,\ldots,a_m\in\mathbb{C}[x].$$

Let U be a simply connected domain contained in $\{P \in \mathbb{C} : a_m(P) \neq 0\}$. Then, the dimension of the space of holomorphic solutions on U is equal to m.

Example

Gauss hypergeometric equation:

$$[x(1-x)\frac{d^2}{dx^2} + (c - x(a+b+1))\frac{d}{dx} - ab] \bullet f = 0.$$

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

Let I be an ideal of D_n . **Sing**(*I*) is the zero set of the following ideal:

$$(\mathbf{in}(I):<\xi_1,\ldots,\xi_n>^\infty)\bigcap \mathbb{C}[x_1,\ldots,x_n]$$

Theorem

Let I be a holonomic ideal and U a simply connected domain in $\frac{\mathbb{C}^n}{\operatorname{Sing}(I)}$. Consider the system of differential equations I • f = 0 that is,

 $p \bullet f = 0, p \in I$, for holomorphic functions f on U.

The dimension of the complex vector space of solutions is equal to **rank**(*I*).

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Convention 1

 $A = (a_{ij}) \in \mathbb{Z}^{d \times n}$ denotes an integer $d \times n$ matrix of rank d whose columns a_1, \ldots, a_n all lie in a single open linear half-space of \mathbb{R}^d ; equivalently, the cone generated by the columns of A is pointed (contains no lines), and all of the a_i are nonzero. We also assume that $\mathbb{Z}A = \mathbb{Z}^d$; that is, the columns of A span \mathbb{Z}^d as a lattice.

Convention 2

Let $B = (b_{jk}) \in Z^{n \times m}$ be an integer matrix of full rank $m \le n$. Assume that every nonzero element of the column-span of B over the integers \mathbb{Z} is mixed, meaning that it has at least one positive and one negative entry; in particular, the columns of B are mixed. We write b_1, \dots, b_n for the rows of B. Having chosen B, we set d = n - m and pick a matrix $A \in Z^{d \times n}$ whose columns span \mathbb{Z}^d as a lattice, such that AB = 0.

Damadi

Introduction

Degree of an operator

Examples

Differentia equations

Some properties

Holonomic

Binomial D-modules

References

Definition

For each $i \in \{1, ..., d\}$, the ith Euler operator is $E_i = a_{i1}x_1\partial_1 + \cdots + a_{in}x_n\partial_n$. Given a vector $\beta \in \mathbb{C}^d$, we write $E - \beta$ for the sequence $E_1 - \beta_1, ..., E_d - \beta_d$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

- For each $i \in \{1, ..., d\}$, the ith Euler operator is $E_i = a_{i1}x_1\partial_1 + \cdots + a_{in}x_n\partial_n$. Given a vector $\beta \in \mathbb{C}^d$, we write $E \beta$ for the sequence $E_1 \beta_1, ..., E_d \beta_d$.
- For an A-graded binomial ideal I of $\mathbb{C}[\partial]$, we denote by $H_A(I,\beta)$ the left ideal $I + \langle E \beta \rangle$ in the Weyl algebra D. The binomial D-module associated to I is $\frac{D}{H_A(I,\beta)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Question

When is $\frac{D}{H_A(I,\beta)}$ a holonomic D-module?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

Given an integer matrix M with q rows, we call $l(M) \subseteq k[t_1, \cdots, t_q] = k[\mathbb{N}^q]$ the binomial ideal

 $I(M) = \langle t^u - t^v | u - v$ is a column of $M, u, v \in \mathbb{N}^q > d$

 $= < t^{w_+} - t^{w_-} | w = w_+ - w_-$ is a column of M >

Here for an integer vector $w \in \mathbb{Z}^q$, the vector w_+ has ith coordinate w_i if $w_i \ge 0$ and 0 otherwise. The vector $w_- \in \mathbb{N}^q$ is defined by $w_+ - w_- = w$, or equivalently, $w_- = (-w)_+$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition and Proposition

The lattice basis ideal corresponding to the lattice $\mathbb{Z}B = \{Bz : z \in \mathbb{Z}^m\}$ is defined by $I(B) = \langle \partial^{u_+} - \partial^{u_-} : u = u_+ - u_-$ is a column of $B \geq \mathbb{C}\mathbb{C}[\partial_1, \cdots, \partial_n]$. Each of the minimal primes of I(B) arises, after row and column permutations, from a block decomposition of B of the form

$$\left(\begin{array}{cc}
N & B_J \\
M & 0
\end{array}\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where M is a mixed submatrix of B of size $q \times p$ for some $0 \le q \le p \le m$.

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Definition

Any integer matrix M with q rows defines an undirected graph $\Gamma(M)$ having vertex set \mathbb{N}^q and an edge from u to v if u - v or v - u is a column of M. An M-subgraph of \mathbb{N}^q is a connected component of $\Gamma(M)$. An M-subgraph is bounded if it has finitely many vertices, and unbounded otherwise.

Damadi

- Introduction
- Degree of an operator
- Examples
- Differential equations
- Some properties
- Holonomic
- Binomial D-modules
- References

Lemma

Let M be a $q \times q$ mixed invertible integer matrix, and assume that $q \ge 0$. Fix $\gamma \in \mathbb{N}^{\overline{J}}$, and denote by Γ the M-subgraph containing Γ .

- The system I(M) of differential equations has a unique formal power series solution of the form $G_{\Gamma} = \sum_{u \in \Gamma} \lambda_u x^u$ in which $\lambda_{\Gamma} = 1$.
- The other coefficients \(\lambda_u\) of \(G_{\[G]\)}\) for \(u \in \[G]\) are all nonzero.

Damadi

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

Theorem

■ *The set* {*G*_Γ :

 Γ runs over a set of representatives for the M-subgraphs of $\mathbb{N}^{\overline{J}}$ is a basis for the space of all formal power series solutions of I(M).

The set {G_Γ : Γ ∈ S(M)} is a basis for the space of polynomial solutions of I(M).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Degree of an operator

Examples

Differential equations

Some properties

Holonomic

Binomial D-modules

References

References

[Cou95] S. C. Coutinho, *A Primer of Algebraic D-modules*, London Mathematical Society Student Texts, vol. 33, Cambridge University Press, Cambridge, 1995.

[DMM07] Alicia Dickenstein, Laura Felicia Matusevich and Ezra Miller, *Binomial D-modules*, preprint, math.AG/0610353.

[DMM08] Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller, *Combinatorics of binomial primary decomposition*, math.AC/08033846.

[MMW05] Laura Felicia Matusevich, Ezra Miller, and Uli Walther, *Homological methods for hypergeometric families*, J. Amer. Math. Soc. 18 (2005), no. 4, 919941.

[SST00] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, *Grobner Deformations of Hypergeometric Differential Equations*, Springer-Verlag, Berlin, 2000.