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Preliminaries

e Simplicial Complexes

¢ Minimal free resolution and betti numbers

¢ Reduced Homology and Hochster’s formula



Simplicial Complexes

Notations:  [n] denotes set {1,...,n}
S=Klzy,...,z,] and K is a field.

Definition: A € P([n]) is simplicial complex. if: F € A and
G c F then G € A

F € A is called Face and maximal faces called Facet.
dim(F') =| F'| -1 and dim(A) = maz{dim(F) | F € A}
F(A) is a set of all Facets of A

N(A) is a set of all minimal non-face of A



Simplicial Complexes

Stanley-Reisner ideal and Facet ideal:
In =< zp; F e N(A) > is called Stanley-Reisner ideal

[(A) =<zp; F e F(A) > is called facet ideal

S
Ring K(A) = 7 is called Stanley-Reisner ring of A
A



Simplicial Complexes

One may ask if there exist A’ such that I(A") = Iz

AY is Alexander dual of A and  F(AY) ={[n]N F; F e N(A)}

A¢ is a complement of A and F(AY) ={F|FeF(A)}

Tav = I(A)



Simplicial Complexes associated to a graph

Simplicial Complexes associated to a graph

Independent Complex Clique Complex
Ind(G) Ac(G)
is called independent complex  is called clique complex of G
of GG and facets of this and facets of this simplicial

simplicial complexare maximal complex are maximal
independet sets of G clique sets of G

\/

Ac(G®) = Ind(G)



Edge ideal

Definition:(Edge Ideal) If G is a graph. I(G) denotes edge ideal
of G if:

{i,j} € E(G) < xx; € [(G)

Lemma:

Inacey = 1(G)



Minimal free resolution and betti numbers

We know that every module of S have minimal free resolution
like:

0 —F — - —F —F— M-—70

where each F; = @ S(-a;;) = @ S(-j)%M) that is, F; requires
5; ; minimal generator of degree j

B;.j(M) is called 4, j'" graded betti numbers

One can investigate that 5; ;(M) = dimTor? (K, M),



Minimal free resolution and betti numbers

Graded betti numbers are important because other homological
ivariant like projective dimension and regularity can be
computed by them.

Projective dimension

Regularity
Reg(M) =max{j-i| p;i;(M) +0}



Minimal free resolution and betti numbers

Definition(Linear resolution): We called that a module M
has a linear resolution if the following condition holds for M:

d; Vi, Vj+i+d B j(M)=0
From definition we can conclude that every generator of M has

a degree d and Reg(M) = d

Example: I = (z,y,2z) in S = K[x,y, z] then minimal free res-

olution of 7 1S:

0 —> S1(=3) — 93(=2) — $3(-1) — [ — 0



Redued homology

Suppose A be a d — 1 dimensional simplicial complex on [n] with
the set of vertex {vy,...,v,}. Set C;(A) = K/i(A),

Consider the following complex:
0 —> Cyo1(A) “23 Cup(A) #3 - =5 Cy(A) =5 C4(A) =50
such that every 0; defined by:

{ 0; : Ci(A) — Ciz1(A)
Fr— Zﬂgjgi—l(_l)j(F N {’”j}

We have 83'_1 O 83 =0

| : = Ker(0; : :
Therefore we can define r;f(if}( “'])) as a 1" reduced homology of A
i+

and we denote it by H;(A)




Hochster’s Formula

Hochster’s Formula(1977): Let A be a simplicial complex
on [n]. Betti numbers of In can be computed by this formula:

523(1/_\) = ZHH:} dim gj_.i_Z(A‘Hf)



S K[ﬂ?h co jﬂﬁn]

Square-free monomaal ideals

powers of

edge 1deals




Linear resolution of monomial ideals

e Graded betti numbers of edge ideals

e Linear resolution of all powers of monomial ideals

o Monomial ideals with 2-linear resolution



Graded betti numbers of edge ideals

Suppose minimal free resolution of edge ideal I(G) has a form:
0—> F % o — F -5 By -8 [(G) — 0

By construction of minimal free resolution we know that gener-
ators of Fj correspond to the generators of I((), therefore all of
the generators of Fjy have a degree 2 and cardinal of them is the
same as cardinal of generators of I((), that are edges of G. So
we have:

ﬁﬂ,? :| E(G) | , 5[}1;; = () Vj *+ 2.



Graded betti numbers of edge ideals

First syzygies have a relation to the shape of the edge of G ie.
k

lf we hﬂve A

/ P
type of edges in graph we can conclude ;3 # 0
[ P

And if we have

£

-..H‘_P\\

type of edges we can conclude that 8y 4 # 0



Graded betti numbers of edge ideals

Definition: A graph G is called chordal if every cycle has a chord.

Definition: A simplicial complex A on [n] is called flag if ev-
ery minimal nonface of A is a 2-elements subset of [n]

Lemma: A simplicial complex A is flag if and only if A is the
clique complex of a finite graph.

Corrolary: Every flag complex A is the clique complex of its 1-

skeleton. Also In = I(G°).



Graded betti numbers of edge ideals

Froberg’s theorem: The edge ideal I(G) has a linear reso-
lution if and only if the graph G°¢ is chordal.

Sketch of proof: Since I(G) = Ia.(ge), what we must prove is
that the stanley-reisner ideal of the clique complex Ao (G¢) has
the linear resolution if and only if G¢ is chordal.

We know that if G is a chordal graph then H;(Ac(G)) = 0 for
all 2 # 0. By using this fact and Hochster’s formula we can prove
the theorem.



Graded betti numbers of edge ideals

Example: Let I = (zw,xt,yw,yt) in S = K[x,y,z,t,w]. Then
I = I(QG) for the graph:

Note that we should consider isolate vertex corresponds to the
variable z

Now complement of G is:
y t



Graded betti numbers of edge ideals

We see that Hochster’s formula is very usetull for computing graded
betti numbers of edge ideals. But it is also useful in more general
case( 1.e square free monomial ideals), for example in the case of
quasi-tree and quasi forest simplicial complexes we can compute
all of the graded betti numbers of In and Iav. This result was
stated by S.Faridi in 2013 for simplicial trees and we extended it
for quasi forest simplicial complexes.



Linear resolution of all powers of monomial ideals

In this section we ask when such an ideal has the property that all
of its powers have a linear resolution.

In general, powers of ideals with linear resolution need not to have
linear resolutions.

The first example of such an ideal was given by Terai. He showed
that over a base field of characteristic # 2 the Stanley Reisner ideal
I = (abd,abf,ace,adc,aef,bde,bcf, bee, cdf,def)
of the minimal triangulation of the projective plane has a linear

resolution, while 7% has no linear resolution.

The example depends on the characteristic of the base field. If the
base field has characteristic 2. then [ itself has no linear resolution.



Linear resolution of all powers of monomial ideals

Another example, namely I = (def,cef, cdf,cde,bef,bed, acf, ade)
is given by Sturmfels. Again I has a linear resolution, while 72 has

no linear resolution.

1. 1t does not depend on the characteristic of the base field

2. 1t 1s a linear quotient ideal.

Definition: An equigenerated ideal [ is said to have linear quo-
tients if there exists an order fy,..., f,, of the generators of 1
such that for all 2 = 1,...,m the colon ideals (fi,..., fi_1) : f; are
generated by linear forms.



Linear resolution of all powers of monomial ideals

It is known that the regularity of powers I" of a graded ideal I
is bounded by a linear function an + b, and is a linear function for
large n.

For ideals I whose generators are all of degree d Romer shows

that one has the bound Reg(I") < nd+ Reg,.(R(I)).

Here R([1) is Rees ring and Reg,(R([I)) is x—regularity of R(I)
that defined as follow:



Linear resolution of all powers of monomial ideals

Let S = K|zy,...,2,], I ¢S an equigenerated graded ideal with
set of generator {f1,..., f,,}. Then the Rees ring

R(I) - EszD I}tj = S[flt) s 3fmt] C S[t]

is naturally bigraded with deg(x;) = (1,0) for i = 1,...,n and
deg(fit)=(0,1) fori=1,....,m

Let T' = S[y1,...,ym| be the polynomial ring over S in the vari-
ables y1,...,ym. We define a bigrading on T by setting deg(z;) =
(1,0) fore=1,...,n, and deg(y;) = (0,1) for j =1,...,m Then
there 1s a natural surjective homomorphism of bigraded K-algebras
¢: T — R(I) with ¢(x;) = z; fori =1,...,n and ¢(y;) = f;t
for y=1,...,m.



Linear resolution of all powers of monomial ideals

Let
F.:0—F,—F, ——F—F—R()—0

be the bigraded minimal free T-resolution of R(I). Here F; =
@; T (-a;j,—b;;) for i = 0,...,p. The x - regularity of R(I) is
defined to be the number

RGQ;(R(I)) = ma:r,;,;:j{af,;jj — ?}

Theorem:
Reg(I™) < nd + Reg,(R(I)). In particular, if Reg,(R(I)) =0,
then each power of I admits a linear resolution.



Monomial ideals with 2-linear resolution

Theorem(HHZ-2003): Let I be a monomial ideal generated
in degree 2. Then following conditions are equivalent:

(a) I has a linear resolution;

(b) I has linear quotients;

(¢) Each powers of I has a linear resolution.



Cy—free edge ideals

e LCM lattice

eWhy not C,?

e Conjecture of Peeva and Nevo



LCM lattice

In this section we mention LCM lattice method that introduce
by Gasharov, Peeva and Welker in 1999. It is a usefull method to
computing graded betti numbers.

Definition: A lattice is a kind of poset that each two elements
have meet and joint.

Definition: The Hasse diagram of P is the graph with ver-
tices the elements in P so that if y covers o then vy 1s placed higher
than o and they are connected with an edge.



LCM lattice

Definition: The order complex O(P) of P is the simplicial
complex whose vertices are the elements of P and whose faces are
the chains in the poset. We implicitly think of a poset P as a
topological space by considering its order complex O(P).




LCM lattice

LCM lattice:

Construction: Let I = (mq,...,m,), we denote by L; the lattice
with elements the least common multiples of subsets of mq,...,m,
ordered by divisibility. We call £; the lem-lattice of I. For m €
Lrwe denote by (1,m), the open interval in £; below m; it con-
sists of all non-unit monomials in £; that strictly divide m.

Example: Let I = (x,y,z) in S = K[z,y,z]. LCM lattice I

1S. Y

Xy vz



LCM lattice

Theorem(GPW): For i > 1 we have:

a . dim ﬁi—l (O((]- ?ﬂ')ﬂf)) L#me Elr
.*ji,m(f) - { 0 m, ¢ EI



LCM lattice

Example: Let I = (23, 2y, y°). LCM lattice of I is

3 r

Xy

Xy Xy

1

3

By theorem we only need to find O((1,m)¢,) form = z3y, zy°, x%y°.



LCM lattice

m = x5y then geometric realization of O((1,2%y).,) is

5. .

X Xy
Clearly Ho(O((1,2%y).,)) = 1, therefor B3, = 1. Form =
ry® 1t is the same. But for m = z3y® geometric realization of

O((1,$:3y5)£l,) 1S XY, xy

/NN

S Xy

We have H;(O((1,2%y),,)) = 0, Then obviously minimal free res-
olution is:

0> S(-4)®S(-6)%2 S(-3)®S(-2)®S(-5) % -0



I(G) has a linear resolution

‘ Froberg (1990)
(¢ 1s a chordal graph
? l Herzog Hibi Zheng(2003)

For all n > 2 ideal I(G)" has a linear resolution

What we can say about reverse?



Why not 04 ?

Observation :G¢ has no induced 4-cycles if and only if the Betti
numbers B ;(I(G)) vanish for j # 3.

The condition that G¢ has no induced 4-cycles has strong implica-
tions for the LCM-lattice.

Theorem: If G¢ has no induced 4-cycle, then for any s > 1 we
have

Reg(I(G)") =25+ MaALmeLy gy ,m#1 CE(O((L Tn’)ﬁf(g)))

where for a simplcial complex A, a(A) denotes the largest codi-
mension of a non-vanishing reduced homology.



Why not 04 ?

Francisco, Ha, and Van Tuyl proved the following result:

Theorem(Francisco-Ha-Van Tuyl; non-published): If I(G)® has a
linear resolution for some s > 1, then G¢ has no induced 4-cycles.

Question: Is it true that if G¢ has no induced 4-cycles then I(G)?
has a linear resolution for all s > 27



Why not C,?

Counterexample: If GG is this graph:

Reg(I(G)) =4 Reg(1(G)?) =5

Reg(1(G)*) =6 Reg(I(G)*) =8



Conjecture of Peeva and Nevo

Conjecture(2013):

(1) The main question is if it is true that G¢ is Cy—free if and only
if I(G)® has a linear minimal free resolution for every s > 07

(2) The question is meant to be a tool for the study of the first
question. Suppose that G¢ has no induced 4-cycles. Is it true
that for s > 1, we have that

Reg(I(G))*™ < max{2s+2, Reg(I(G))*+1}7



Conjecture of Peeva and Nevo

A positive answer to (2) will imply that the following conditions
are equivalent:

(1) I(G)* has a linear resolution for some s > 2.
(2) I(G)? has a linear resolution for every s > Reg(I(G)) - 1.

(3) 1(G) has only linear minimal first syzygies, that is, 81 ;(1(G)) =
0 for 5 # 3.

(4) G has no induced 4-cycles.



Conjecture of Peeva and Nevo

[t is worth to mentioned that question (2) is open even in the case

Reg(I(G)) = 3:

[s it true that I(G)® has a linear resolution for all s > 2 if G°
has no induced 4-cycles and Reg(I(G)) =37
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