ON THE INDEX OF REDUCIBILITY OF NOETHERIAN MODULES

Nguyen Tu Cuong
Institute of Mathematics - Vietnam Academy of Science and
Technology

Joint work with P. H. Quy and H. L. Truong

- R: a commutative Noetherian local ring with the unique maximal ideal \mathfrak{m} , $\mathfrak{k} = R/\mathfrak{m}$ the residue field.
- I is a proper ideal of R, i.e $I \neq R$.
- Primary ideal $I: a, b \in R, ab \in I \text{ and } a \notin I$ $\implies b \in \sqrt{I} = \{x \in R | \exists n > 0, x^n \in I\}$.
- Irreducible ideal I: If $I = I_1 \cap I_2 \Rightarrow I = I_1$ or $I = I_2$.

Facts:

- I is primary $\Rightarrow \sqrt{I} = \mathfrak{p}$ is a prime ideal. Then we call that I is \mathfrak{p} -primary.
- I is irreducible $\Rightarrow I$ is primary. The converse is not true.

Theorem I (Noether's Theorem on primary decomposition, 1921).

Let I be an ideal of R. Then there exist finite primary ideals $\mathfrak{q}_1,...,\mathfrak{q}_n,\sqrt{\mathfrak{q}_i}=\mathfrak{p}_i\neq\mathfrak{p}_j=\sqrt{\mathfrak{q}_j}, \forall i\neq j$ such that

- i) $I = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ is a reduced decomposition of I.
- ii) The set $\{\mathfrak{p}_1,...,\mathfrak{p}_n\}$ is independent of the choise of reduced primary decompositions of I, this set is called the set of associated prime ideals of I and denoted by Ass(I).

Theorem II (Noether's Theorem on irreducible decomposition, 1921).

Let I be an ideal of R. Then there exist finite irreducible ideals $Q_1, ..., Q_m$ of R such that

- i) $I = Q_1 \cap ..., Q_m$ is a reduced decomposition of I.
- ii) The number m is independent of the choise of reduced irreducible decompositions of I.

This number of irreducible components in that a reduced irreducible decomposition of I is called the *index of reducibility* of I and denoted by $\operatorname{ir}(I)$.

Facts:

- M. Brodmann (1979): The set $Ass(I^n)$ is asymtotic stability, i.e. $Ass(I^n) = Ass(I^{n+1})$ for all $n \gg 0$.
- Let $\operatorname{Ass}(I) = \{\mathfrak{p}_1,...,\mathfrak{p}_n\}$ as in Theorem I. Noether proved that there exist irreducible ideals $\mathfrak{q}_{i1},...,\mathfrak{q}_{ik_i}$ with $\sqrt{\mathfrak{q}_{ij}} = \mathfrak{p}_i, \forall j = 1,...,k_i, i = 1,...,n$ such that $I = \mathfrak{q}_{11} \cap ... \cap \mathfrak{q}_{1k_1} \cap ... \cap \mathfrak{q}_{n1} \cap ... \cap \mathfrak{q}_{nk_n}$ is a reduced irreducible decomposition of I. Moreover, the number k_i is dependent only on the prime ideal \mathfrak{p}_i and therefore $\operatorname{ir}(I) = k_1 + ... + k_n$.

2. Questions

Let I be an \mathfrak{m} -primary ideal of R, i.e. $\ell_R(R/I) < \infty$. Then it is well-known that

$$\operatorname{ir}(I) = \dim_{\mathfrak{k}}(\operatorname{Soc}(R/I)) = \ell_R(I : \mathfrak{m}/I)$$

Question a. Find a generalization of above formula for $\operatorname{ir}(I)$ withouth the request that $\ell_R(R/I) < \infty$.

Question b. Let $I = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ be reduced primary decomposition of I as in Theorem I. When $\operatorname{ir}(I) = \operatorname{ir}(\mathfrak{q}_1) + ... + \operatorname{ir}(\mathfrak{q}_n)$?

Question c. Consider $\operatorname{ir}(I^n)$ as a function in n. Is this function a

Question c. Consider $\operatorname{ir}(I^n)$ as a function in n. Is this function a polynomial?

The following result is an answer for Question a

Theorem 1.

Let I be an ideal of R. Then

$$\operatorname{ir}(I) = \sum_{\mathfrak{p} \in \operatorname{Ass}(I)} \dim_{k(\mathfrak{p})} (\operatorname{Soc}((R/I)_{\mathfrak{p}}))$$

where $k(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p} R_{\mathfrak{p}}$ is the residue field of $R_{\mathfrak{p}}$.

Proof. Passing to R/I we may assume that I=0. Let $\mathrm{Ass}(0)=\{\mathfrak{p}_1,...,\mathfrak{p}_n\}, t_i=\dim_{k(\mathfrak{p}_i)}(\mathrm{Soc}(R_{\mathfrak{p}_i}))$. Let $\mathcal{F}=\{\mathfrak{p}_{11},...,\mathfrak{p}_{1t_1},\mathfrak{p}_{21},...,\mathfrak{p}_{2t_2},...,\mathfrak{p}_{n1},...,\mathfrak{p}_{nt_n}\}$ be a family of prime ideals of R such that $\mathfrak{p}_{i1}=\cdots=\mathfrak{p}_{it_i}=\mathfrak{p}_i$ for all i=1,...,n. Denote E(R) the injective envelop of R. Then we can write

$$E(R) = \bigoplus_{i=1}^{n} E(R/\mathfrak{p}_{i})^{t_{i}} = \bigoplus_{\mathfrak{p}_{i} \in \mathcal{F}} E(R/\mathfrak{p}_{ij}).$$

Let

$$\pi_i: \oplus_{i=1}^n E(R/\mathfrak{p}_i)^{t_i} \to E(R/\mathfrak{p}_i)^{t_i} \text{ and } \pi_{ij}: \oplus_{\mathfrak{p}_{ij} \in \mathcal{F}} E(R/\mathfrak{p}_{ij}) \to E(R/\mathfrak{p}_{ij})$$

be the canonical projections for all i=1,...,n and $j=1,...,t_i$. Set $I_i=R\cap \operatorname{Ker} \pi_i\Rightarrow I_i$ is \mathfrak{p}_i -primary.

 $\mathfrak{q}_{ij}=\cap\operatorname{Ker}\pi_{ij}, i=1,...,n, j=1,...,t_i.\Rightarrow\mathfrak{q}_{ij}$ is \mathfrak{p}_i -primary and irreducible. Then

$$I_i = \mathfrak{q}_{i1} \cap ... \cap \mathfrak{q}_{it_i}$$

and $0 = \bigcap_{i=1}^{n} I_i = \bigcap_{\substack{1 \leq i \leq n, \\ 1 \leq j \leq t_i}} \mathfrak{q}_{ij}$ is a reduced irreducible decomposition

of I. Thus

$$\operatorname{ir}(0) = \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} \dim_{k(\mathfrak{p})}(\operatorname{Soc}(R_{\mathfrak{p}_i})).$$

Let $\mathfrak{p} \in \mathsf{Ass}(I)$. We use $\wedge_{\mathfrak{p}}(I)$ to denote the set of all \mathfrak{p} -primary ideals of R which appear in a primary decomposition of I. Following Heinzer, Ratliff and Shah, an ideal $\mathfrak{q} \in \wedge_{\mathfrak{p}}(I)$ is called \mathfrak{p} -maximal embedded component of I if \mathfrak{q} is a maximal element in $\wedge_{\mathfrak{p}}(I)$.

Theorem 2.

Let $I = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ be a reduced primary decomposition of I with $\mathsf{Ass}(I) = \{\mathfrak{p}_1, ..., \mathfrak{p}_n\}$. Then $\mathsf{ir}(I) = \sum_{i=1}^n \mathsf{ir}(\mathfrak{q}_i)$ if and only if \mathfrak{q}_i is a \mathfrak{p}_i -maximal embedded component of I for all i = 1, ..., n.

Combine Theorem 1 and Theorem 2 we get the following characterization of maximal embedded components in terms of the index reducibility.

Corollary 1.

Let $\mathfrak{p} \in \mathsf{Ass}(I)$ and $\mathfrak{q} \in \wedge_{\mathfrak{p}}(I)$. Then \mathfrak{q} is a \mathfrak{p} -maximal embedded component of I if and only if $\mathsf{ir}(\mathfrak{q}) = \dim_{k(\mathfrak{p})}(Soc(R/I)_{\mathfrak{p}})$.

By Brodmann's result: $\operatorname{Ass}(I^n) = \operatorname{Ass}(I^{n+1})$ for all $n \gg 0$. Denote this stable set by A(I). Then by Theorem 1 we get for $n \gg 0$

$$\operatorname{ir}(I^n) = \sum_{\mathfrak{p} \in A(I)} \dim_{k(\mathfrak{p})} (\operatorname{Soc}(R/I^n)_{\mathfrak{p}}).$$

Thus $ir(I^n)$ is a polynomial for $n \gg 0$ if the following result true:

Lemma.

Let I be an ideal in the local ring (R, \mathfrak{m}) . Then $\dim_{\mathfrak{k}}(Soc(R/I^n)) = \ell_R(I^n : \mathfrak{m}/I^n)$ is a polynomial for all $n \gg 0$.

We can also estimate the degree of the polynomial $ir(I^n)$.

- bight(I) = max{dim $R_{\mathfrak{p}} | \mathfrak{p} \in \mathsf{Ass}(I), \mathfrak{p}$ is minimal in $\mathsf{Ass}(I)$ }. This invariant is called the *big hight* of I.
- The analytic spread of I is defined by $\ell(I) = \dim F(I)$ where $F(I) = \bigoplus_{i=0}^{\infty} I^i / \operatorname{m} I^i$ is the ring of fiber cone w.r.t I.
- It should note that bight(I) $\leq \ell(I)$.

The following theorem is an answer for Question 3.

Theorem 3.

Let I be an ideal of R. Then there exists a polynomial $Ir_I(n)$ with rational coefficients such that

$$ir(I^n) = Ir_I(n)$$

for all $n \gg 0$. Moreover, we have

$$bight(I) - 1 \le \deg Ir_I(n) \le \ell(I) - 1.$$

Corollary 2.

If I is and \mathfrak{m} -primary ideal then $\deg Ir_I(n) = \dim R - 1$.

There are examples to show that although the bounds in Theorem 3 are sharp, neither bight(I) -1 nor $\ell(I)$ -1 equal to deg $Ir_I(n)$ in general:

• Let $I = (X^2, XY)$ be an ideal of the polynomial ring R = K[X, Y]. Then

$$\mathsf{bight}(I) - 1 = 0 < 1 = \mathsf{deg}\,\mathsf{Ir}_I(n) = \ell(I) - 1.$$

• Let $I = (X_1X_2, X_2X_3, X_3X_4, X_4X_5, X_5X_6, X_6X_1)$ be an ideal of the polynomial ring $(K[X_1, \ldots, X_6])_{(X_1, \ldots, X_6)}$. Then

$$bight(I) - 1 = 3 = deg Ir_I(n) < 4 = \ell(I) - 1.$$

Open problem: Find a formula for $\deg \operatorname{Ir}_{I}(n)$ in terms of known invariants associated to I and R.

6. Application

- Let dim R=d. A system of d elements $\underline{a}=\{a_1,...,a_d\}$ in \mathfrak{m} is called a *system of parameters* of R if $\ell_R(R/(a_1,...,a_d))<\infty$, and ideal I is called a *parameter ideal* if I generated by a system of parameters of R.
- A system of parameters $\underline{a} = \{a_1, ..., a_t\}$ of element in \mathfrak{m} is called a *regular sequence* of R, if a_{i+1} is a nonzero divisor of $R/(a_1, ..., a_i)$ for all i = 1, ..., t 1.
- R is called a Cohen-Macaulay ring if any system of parameters is a regular sequence of R.

6. Application

 D.G. Northcott (1957): Any parameter ideal in a Cohen-Macaulay has the same index of reducibility. But, S. Endo and M. Narita, (1964) showed that the converse is not true.

Theorem 3.

Let R be a local ring of dimension d. Then the following conditions are equivalent:

- (i) R is a Cohen-Macaulay ring.
- (ii) $\operatorname{ir}(\mathfrak{q}^{n+1}) = \dim_k(\operatorname{Soc}(H^d_{\mathfrak{m}}(R)))\binom{n+d-1}{d-1}$ for all parameter ideals \mathfrak{q} of R and $n \geq 0$.
- (iii) ir(\mathfrak{q}) = dim_k(Soc($H_{\mathfrak{m}}^d(R)$)) for all parameter ideal \mathfrak{q} of R. ($H_{\mathfrak{m}}^d(R) = \lim_{\stackrel{\rightarrow}{n}} R/(a_1^n,...,a_d^n)$, where $\{a_1,...,a_d\}$ is a system of parameters of R)

Thank you for your attention.